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* * * 

 

Introductory Remarks 
 
 This course mostly follows the well-established traditions of teaching classical mechanics to 
physics graduate students. Its most distinguishing feature is substantial attention to the mechanics of 
physical continua, including the discussions of 1D waves in Chapter 6, deformations and elasticity 
(including 3D waves) in Chapter 7, and fluid dynamics in Chapter 8. A natural extension of the 
discussion of turbulence in the last of these chapters becomes possible after a brief introduction to 
deterministic chaos in Chapter 9. 

 Another not-quite-standard feature of this course is that the introduction to analytical mechanics, 
starting with the Lagrangian formalism in Chapter 2, is based on the experiment-based Newton’s laws 
rather than general concepts such as the Hamilton principle, which is discussed only at the end of the 
course (Sec. 10.3). I feel that this route emphasizes better the experimental roots of physics, and the 
secondary nature of any general principles – regardless of their aesthetic and heuristic value. 
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Chapter 1. Review of Fundamentals 

After a brief discussion of the title and contents of the course, this introductory chapter reviews the 
basic notions and facts of the non-relativistic classical mechanics, that are supposed to be known to the 
reader from their undergraduate studies.1 Due to this reason, the discussion is very short.  

 

1.0. Terminology: Mechanics and dynamics 

 A more fair title for this course would be Classical Mechanics and Dynamics, because the 
notions of mechanics and dynamics, though much intertwined, are still somewhat different. The term 
mechanics, in its narrow sense, means the derivation of equations of motion of point-like particles and 
their systems (including solids and fluids), the solution of these equations, and an interpretation of the 
results. Dynamics is a more ambiguous term; it may mean, in particular: 

 (i) the part of physics that deals with motion (in contrast to statics); 
 (ii) the part of physics that deals with reasons for motion (in contrast to kinematics); 
 (iii) the part of mechanics that focuses on its two last tasks, i.e. the solution of the equations of 
motion and discussion of the results.2  

 Because of this ambiguity, after some hesitation, I have opted to use the traditional name 
Classical Mechanics, with the word Mechanics in its broad sense that includes (similarly to Quantum 
Mechanics and Statistical Mechanics) studies of dynamics of some non-mechanical systems as well. 

1 The reader is advised to perform (perhaps after reading this chapter as a reminder) a self-check by solving a few 
problems of those listed in Sec. 1.6. If the results are not satisfactory, it may make sense to start with some 
remedial reading. For that, I could recommend, e.g., J. Marion and S. Thornton, Classical Dynamics of Particles 
and Systems, 5th ed., Saunders, 2003; and D. Morin, Introduction to Classical Mechanics, Cambridge U., 2008.  
2 The reader may have noticed that the last definition of dynamics is suspiciously close to the part of mathematics 
devoted to differential equation analysis; what is the difference? An important bit of philosophy: physics may be 
defined as an art (and a bit of science :-) of describing Mother Nature by mathematical means; hence in many 
cases the approaches of a mathematician and a physicist to a problem are very similar. The main difference 
between them is that physicists try to express the results of their analyses in terms of the properties of the systems 
under study, rather than the functions describing them, and as a result develop a sort of intuition (“gut feeling”) 
about how other similar systems may behave, even if their exact equations of motion are somewhat different – or 
not known at all. The intuition so developed has enormous heuristic power, and most discoveries in physics have 
been made through gut-feeling-based insights rather than by plugging one formula into another one. 

 

1.1. Kinematics: Basic notions 

 The basic notions of kinematics may be defined in various ways, and some mathematicians pay 
much attention to alternative systems of axioms and the relations between them. In physics, we typically 
stick to less rigorous ways (in order to proceed faster to solving particular problems) and end debating 
any definition as soon as “everybody in the room” agrees that we are all speaking about the same thing – 
at least in the context in which they are being discussed. Let me hope that the following notions used in 
classical mechanics do satisfy this criterion in our “room”: 
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(i) All the Euclidean geometry notions, including the point, the straight line, the plane, etc.3 

(ii) Reference frames: platforms for observation and mathematical description of physical 
phenomena. A reference frame includes a coordinate system used for measuring the point’s position 
(namely, its radius vector r that connects the coordinate origin to the point – see Fig. 1) and a clock that 
measures time t. A coordinate system may be understood as a certain method of expressing the radius 
vector r of a point as a set of its scalar coordinates. The most important of such systems (but by no 
means the only one) are the Cartesian (orthogonal, linear) coordinates4 rj of a point, in which its radius 
vector  may be represented as the following sum: 





3

1j
jj rnr ,    (1.1) 

where n1, n2, and n3 are unit vectors directed along the coordinate axis – see Fig. 1.5 

 

 

 

 

 

 

(iii) The absolute (“Newtonian”) space/time,6 which does not depend on the matter distribution. 
The space is assumed to have the Euclidean metric, which may be expressed as the following relation 
between the length r of any radius vector r and its Cartesian coordinates: 

             



3

1

222

j
jrr r ,     (1.2) 

while time t is assumed to run similarly in all reference frames. These assumptions are critically revised 
in the relativity theory (which, in this series, is discussed only starting from EM Chapter 9.) 

3 All these notions are of course abstractions: simplified models of the real objects existing in Nature. But please 
always remember that any quantitative statement made in physics (e.g., a formula) may be strictly valid only for 
an approximate model of a physical system. (The reader should not be disheartened too much by this fact: 
experiments show that many models make extremely precise predictions of the behavior of the real systems.) 
4 In this series, the Cartesian coordinates (introduced in 1637 by René Descartes, a.k.a. Cartesius) are denoted 
either as either {r1, r2, r3} or {x, y, z}, depending on convenience in each particular case. Note that axis numbering 
is important for operations like the vector (“cross”) product; the “correct” (meaning generally accepted) 
numbering order is such that the rotation n1  n2  n3  n1… looks counterclockwise if watched from a point 
with all rj > 0 – like the one shown in Fig. 1. 
5 Note that representation (1) is also possible for locally orthogonal but curvilinear (for example, polar/cylindrical 
and spherical) coordinates, which will be extensively used in this series. However, such coordinates are not 
Cartesian, and for them some of the relations given below are invalid – see, e.g., MA Sec. 10. 
6 These notions were formally introduced by Sir Isaac Newton in his main work, the three-volume Philosophiae 
Naturalis Principia Mathematica published in 1686-1687, but are rooted in earlier ideas by Galileo Galilei, 
published in 1632. 

Cartesian 
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Fig. 1.1. Cartesian coordinates of a point. 
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 (iv) The (instant) velocity of the point, 

                  r
r

v 
dt

d
t)( ,     (1.3) 

and its acceleration: 

rv
v

a  
dt

d
t)( .        (1.4)     

(v) Transfer between reference frames. The above definitions of vectors r, v, and a depend on 
the chosen reference frame (are “reference-frame-specific”), and we frequently need to relate those 
vectors as observed in different frames. Within Euclidean geometry, the relation between the radius 
vectors in two frames with the corresponding axes parallel at the moment of interest (Fig. 2), is very 
simple:  

           '' 0in 0in 0in 0rrr  .     (1.5) 

 

 

 

 

 
  
 
 If the frames move versus each other by translation only (no mutual rotation!), similar relations 
are valid for the velocities and accelerations as well: 

          '' 0in 0in 0in 0vvv  ,     (1.6) 

          '' 0in 0in 0in 0aaa  .     (1.7) 

 Note that in the case of mutual rotation of the reference frames, the transfer laws for velocities 
and accelerations are more complex than those given by Eqs. (6) and (7). Indeed, in this case, notions 
like v0in 0’  are not well defined: different points of an imaginary rigid body connected to frame 0 may 
have different velocities when observed in frame 0’. It will be more natural for me to discuss these more 
general relations at the end of Chapter 4 devoted to rigid body motion. 

 (vi) A particle (or “point particle”): a localized physical object whose size is negligible, and 
whose shape is irrelevant to the given problem. Note that the last qualification is extremely important. 
For example, the size and shape of a spaceship are not too important for the discussion of its orbital 
motion but are paramount when its landing procedures are being developed. Since classical mechanics 
neglects the quantum mechanical uncertainties,7 in it, the position of a particle at any particular instant t 
may be identified with a single geometrical point, i.e. with a single radius vector r(t). The formal final 
goal of classical mechanics is finding the laws of motion r(t) of all particles in the given problem. 

7 This approximation is legitimate when the product of the coordinate and momentum scales of the particle 
motion is much larger than Planck’s constant  ~ 10-34 Js. More detailed conditions of the classical mechanics’ 
applicability depend on a particular system – see, e.g., the QM part of this series.  

Fig. 1.2. Transfer between two reference frames.
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1.2. Dynamics: Newton’s laws 

 Generally, the classical dynamics is fully described (in addition to the kinematic relations 
discussed above) by three Newton’s laws. In contrast to the impression some textbooks on theoretical 
physics try to create, these laws are experimental in nature, and cannot be derived from purely 
theoretical arguments. 

 I am confident that the reader of these notes is already familiar with Newton’s laws,8 in some 
formulation. Let me note only that in some formulations, the 1st Newton’s law looks just like a particular 
case of the 2nd law – when the net force acting on a particle equals zero. To avoid this duplication, the 1st 
law may be formulated as the following postulate: 

There exists at least one reference frame, called inertial, in which any freeparticle (i.e. a 
particle fully isolated from the rest of the Universe) moves with v = const, i.e. with a = 0.  

Note that according to Eq. (7), this postulate immediately means that there is also an infinite number of 
inertial reference frames – because all frames 0’ moving without rotation or acceleration relative to the 
postulated inertial frame 0 (i.e. having a0in 0’ = 0) are also inertial. 

 On the other hand, the 2nd and 3rd Newton’s laws may be postulated together in the following 
elegant way. Each particle, say number k, may be characterized by a scalar constant (called mass mk), 
such that at any interaction of N particles (isolated from the rest of the Universe), in any inertial system, 

      const. 
11




N

k
kk

N

k
k m vpP     (1.8) 

(Each component of this sum,  
         ,kkk m vp         (1.9) 

is called the mechanical momentum9 of the corresponding particle, while the sum P, the total momentum 
of the system.)  

 Let us apply this postulate to just two interacting particles. Differentiating Eq. (8) written for this 
case, over time, we get 
           .21 pp          (1.10) 

Let us give the derivative 1p  (which is a vector) the name of the force F exerted on particle 1. In our 

current case, when the only possible source of the force is particle 2, it may be denoted as F12: .121 Fp   

Similarly, 221 pF  , so Eq. (10) becomes the 3rd Newton’s law 

            2112 FF  .      (1.11) 

Plugging Eq. (1.9) into these force definitions, and differentiating the products mkvk, taking into account 
that particle masses are constants,10 we get that for the k and k’ taking any of values 1, 2,    

8 Due to the genius of Sir Isaac, these laws were formulated in the same Principia (1687), well ahead of the 
physics of his time. 
9 The more extended term linear momentum is typically used only in cases when there is a chance of confusion 
with the angular momentum of the same particle/system – see below. The present-day definition of linear 
momentum and the term itself belong to John Wallis (1670), but the concept may be traced back to more vague 
notions of several previous scientists – all the way back to at least a 570 AD work by John Philoponus. 

Total 
momentum  
and its 
conservation 
 

Particle’s 
momentum 

3rd Newton’s 
 law 

1st Newton’s  
law 
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         . where,' kk'mm kkkkkk  Fav .    (1.12) 

 Now, returning to the general case of several interacting particles, and making an additional (but 
very natural) assumption that all partial forces Fkk’ acting on particle k add up as vectors, we may 
generalize Eq. (12) into the 2nd Newton’s law 

        k
kk

kkkkkm FFpa  
'

' ,     (1.13) 

that allows a clear interpretation of the mass as a measure of a particle’s inertia. 

 As a matter of principle, if the dependence of all pair forces Fkk’ of particle positions (and 
generally of time as well) is known, Eq. (13) augmented with the kinematic relations (2) and (3) allows 
calculation of the laws of motion rk(t) of all particles of the system. For example, for one particle the 2nd 
law (13) gives an ordinary differential equation of the second order: 

       ),( tm rFr  ,      (1.14) 

which may be integrated – either analytically or numerically.  

In certain cases, this is very simple. As an elementary example, for local motions with r << r, 
Newton’s gravity force11 

                RF
3R

mm'
G      (1.15) 

(where R  r – r’ is the distance between particles of masses m and m’)12 may be approximated as 

           ,gF m       (1.16) 

with the vector g  –(Gm’/R3)R being constant.13 As a result, m in Eq. (13) cancels, it is reduced to just 
gr   = const, and may be easily integrated twice: 

         )0()0(
2

)0( )()(),0()0( )()(
2

00

rvgrvrvgvgvr   t
t

dt't'ttdt'tt
tt

 , (1.17) 

thus giving the generic solution to all those undergraduate problems on the projectile motion, which 
should be so familiar to the reader. 

10 Note that this may not be true for composite bodies of varying total mass M (e.g., rockets emitting jets, see 
Problem 11), in these cases the momentum’s derivative may differ from Ma. 
11 Introduced in the same famous Principia! 
12 The fact that the masses participating in Eqs. (14) and (16) are equal, the so-called weak equivalence principle, 
is actually highly nontrivial, but has been repeatedly verified with gradually improved relative accuracy, starting 
from ~10-3 in Isaac Newton’s own experimentation and all the way down to 1.510-15 from recent satellite 
experiments – see P. Touboul et al., Phys. Rev. Lett. 129, 121102 (2022). 
13 Of course, the most important particular case of Eq. (16) is the gravity field near the Earth’s surface. In this 
case, using the fact that Eq. (15) remains valid for the gravity field created by a spherically uniform sphere, we get 
g = GME/RE

2, where ME and RE are the Earth’s mass and radius. Plugging in their values, ME  5.971024 kg and 
RE  6.37106 m, we get g  9.82 m/s2. The experimental value of g varies from 9.78 to 9.83 m/s2 at various 
locations on the surface (due to the deviations of Earth’s shape from a sphere, and the location-dependent effect of 
the centrifugal “inertial force” – see Sec. 4.5 below), with an average value of approximately 9.807 m/s2. 

2nd 
 Newton’s 

 law 

Uniform  
gravity field 

Newton’s 
gravity law 
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 All this looks (and indeed is) very simple, but in most other cases, Eq. (13) leads to more 
complex calculations. As an example, let us think about how would we use it to solve another simple 
problem: a bead of mass m sliding, without friction, along a round ring of radius R in a gravity field 
obeying Eq. (16) – see Fig. 3. (This system is equivalent to the usual point pendulum, i.e. a point mass 
suspended from point 0 on a light rod or string, and constrained to move in one vertical plane.) 

 

 

 

 

 

 

  

  

 Suppose we are only interested in the bead’s velocity v at the lowest point after it has been 
dropped from the rest at the rightmost position. If we want to solve this problem using only the Newton 
laws, we have to take the following steps: 

 (i) consider the bead in an arbitrary intermediate position on a ring, described, for example by 
the angle θ shown in Fig. 3; 
 (ii) draw all the forces acting on the particle – in our current case, the gravity force mg and the 
reaction force N exerted by the ring – see Fig. 3 above 
 (iii) write the Cartesian components of the 2nd Newton’s law (14) for the bead acceleration: max 
= Nx, may = Ny – mg, 
 (iv) recognize that in the absence of friction, the force N should be normal to the ring, so that we 
can use two additional equations, Nx = –N sin  and Ny = N cos ; 
 (v) eliminate unknown variables N, Nx, and Ny from the resulting system of four equations, thus 
getting a single second-order differential equation for one variable, for example, : 

       sinmgmR  ;     (1.18)  

 (vi) use the mathematical identity    dd /2/2   to integrate this equation over  once to get 

an  expression relating the velocity   and the angle ; and, finally, 
 (vii) using our specific initial condition ( 0 at 2/  ), find the final velocity as Rv   at 

0 . 

 All this is very much doable, but please agree that the procedure it too cumbersome for such a 
simple problem. Moreover, in many other cases even writing equations of motion along relevant 
coordinates is very complex, and any help the general theory may provide is highly valuable. In many 
cases, such help is given by conservation laws; let us review the most general of them. 

 

 

 

Fig. 1.3. A bead sliding along a vertical ring. 
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1.3. Conservation laws 

 (i) Energy conservation is arguably the most general law of physics, but in mechanics, it takes a 
more humble form of mechanical energy conservation, which has limited applicability. To derive it, we 
first have to define the kinetic energy of a particle as14 

          2

2
v

m
T  ,        (1.19) 

and then recast its differential as15 

       .
22

2

dt

d
d

dt

dd
mdm

m
dv

m
ddT

p
r

vr
vvvv 









 






   (1.20) 

Now plugging in the momentum’s derivative from the 2nd Newton’s law, dp/dt = F, where F is the full 
force acting on the particle, we get dT = Fdr. The integration of this equality along the particle’s 
trajectory connecting some points A and B gives the formula that is sometimes called the work-energy 
principle: 

      
B

A

AB )()(Δ rFrr dTTT ,    (1.21) 

where the integral on the right-hand side is called the work of the force F on the path from A to B. 

 The next step may be made only for a potential (also called “conservative”) force that may be 
represented as the (minus) gradient of some scalar function U(r), called the potential energy.16 The 
vector operator  (called either del or nabla) of spatial differentiation17 allows a very compact 
expression of this fact: 

         UF .      (1.22) 

For example, for the uniform gravity field (16), 

               const,  mghU      (1.23) 

where h is the vertical coordinate directed “up” – opposite to the direction of the vector g.  

 Integrating the tangential component F of the vector F given by Eq. (22), along an arbitrary path 
connecting the points A and B, we get 

            )()( BA

B

A

B

A

rrrF UUddrF    ,    (1.24) 

14 In such quantitative form, the kinetic energy was introduced (under the name “living force”) by Gottfried 
Leibniz and Johann Bernoulli (circa 1700), though its main properties (21) and (27) had not been clearly revealed 
until an 1829 work by Gaspard-Gustave de Coriolis. The modern term “kinetic energy” was coined only in 1849-
1851 by Lord Kelvin (born William Thomson). 
15 In these notes, ab denotes the scalar (or “dot-”) product of vectors a and b – see, e.g., MA Eq. (7.1). 
16 Note that because of its definition via the gradient, the potential energy is only defined up to an arbitrary 
additive constant. This notion had been used already by G. Leibniz, though the term we are using for it nowadays 
was introduced much later (in the mid-19th century) by William Rankine.   
17 Its basic properties are listed in MA Sec. 8. 

Work- 
energy  

principle 

Force vs 
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energy 
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energy 
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i.e. work of potential forces may be represented as the difference of values of the function U(r) in the 
initial and final points of the path. (Note that according to Eq. (24), the work of a potential force on any 
closed path, with rA = rB, is zero.) 

 Now returning to Eq. (21) and comparing it with Eq. (24), we see that 

     )()()()(  i.e.),()()()( AAAABAAB rrrrrrrr UTUTUUTT  ,  (1.25) 

so the total mechanical energy E, defined as 

         UTE  ,      (1.26) 

is indeed conserved: 
               )()( BA rr EE  ,     (1.27) 

but for conservative forces only. (Non-conservative forces may change E by either transferring energy 
from its mechanical form to another form, e.g., to heat in the case of friction, or by pumping the energy 
into the system under consideration from another, “external” system.) 

 Mechanical energy conservation allows us to return for just a second to the problem shown in 
Fig. 3 and solve it in one shot by writing Eq. (27) for the initial and final points:18 

      .0
2

0 2  v
m

mgR      (1.28) 

The (elementary) solution of Eq. (28) for v immediately gives us the desired answer. Let me hope that 
the reader agrees that this way of problem’s solution is much simpler, and I have earned their attention 
to discuss other conservation laws – which may be equally effective. 

 (ii) Linear momentum. The conservation of the full linear momentum of any system of particles 
isolated from the rest of the world was already discussed in the previous section, and may serve as the 
basic postulate of classical dynamics – see Eq. (8). In the case of one free particle, the law is reduced to 
the trivial result p = const, i.e. v = const. If a system of N particles is affected by external forces F(ext), 
we may write   

               



N

k
kkkk

1
'

)(ext FFF .     (1.29) 

If we sum up the resulting Eqs. (13) for all particles of the system then, due to the 3rd Newton’s law (11) 
valid for any indices k  k’, the contributions of all internal forces Fkk’ to the resulting double sum on the 
right-hand side cancel, and we get the following equation: 

           .  where,
1

(ext))ext(ext)( 



N

k
kFFFP      (1.30) 

It tells us that the translational motion of the system as a whole is similar to that of a single particle, 
under the effect of the net external force F(ext). As a simple sanity check, if the external forces have a 
zero sum, we return to the postulate (8). Just one reminder: Eq. (30), as its precursor Eq. (13),  is only 
valid in an inertial reference frame. 

18 Here the arbitrary constant in Eq. (23) is chosen so that the potential energy is zero at the final point. 
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 I hope that the reader knows numerous examples of the application of the linear momentum’s 
conservation law, including all these undergraduate problems on car collisions, where the large collision 
forces are typically not known so the direct application of Eq. (13) to each car is impracticable. 

 (iii) The angular momentum of a particle19 is defined as the following vector:20 

          ,prL        (1.31) 

where ab means the vector (or “cross-“) product of the vector operands.21 Differentiating Eq. (31) over 
time, we get 
      .prprL        (1.32) 

In the first product, r is just the velocity vector v, parallel to the particle momentum p = mv, so this term 
vanishes since the vector product of any two parallel vectors equals zero. In the second product, p  is 
equal to the full force F acting on the particle, so Eq. (32) is reduced to 

                      ,τL        (1.33) 
where the vector 
          ,Frτ        (1.34) 

is called the torque exerted by force F.22 (Note that the torque is reference-frame specific – and again, 
the frame has to be inertial for Eq. (33) to be valid, because we have used Eq. (13) for its derivation.) 
For an important particular case of  a central force F that is directed along the radius vector r of a 
particle, the torque vanishes, so (in that particular reference frame only!) the angular momentum is 
conserved: 
          const. L       (1.35) 

 For a system of N particles, the total angular momentum is naturally defined as   

          .
1




N

k
kLL       (1.36) 

Differentiating this equation over time, using Eq. (33) for each ,kL and again partitioning each force per 

Eq. (29), we get 

          .       where,
1

(ext)(ext)(ext)

'
1',

' 






N

k
kk

N

kk
kk

kkk FrττFrL    (1.37) 

The first (double) sum may be always divided into pairs of the type (rk  Fkk’ + rk’  Fk’k). With a natural 
assumption of the central forces, Fkk’  (rk – rk’), each of these pairs equals zero. Indeed, in this case, 

19 Here we imply that the internal motions of the particle, including its rotation about its axis, are negligible. 
(Otherwise, it could not be represented by a point, as was postulated in Sec. 1.)   
20 This explicit definition of angular momentum (in different mathematical forms, and under the name of 
“moment of rotational motion”) appeared in scientific publications only in the 1740s, though the fact of its 
conservation (35) in the field of central forces, in the form of the 2nd Kepler law (see Fig. 3.4 below), had been 
proved already by I. Newton in his Principia.  
21 See, e.g., MA Eq. (7.3). 
22 Alternatively, especially in mechanical engineering, torque is called the force moment. This notion may be 
traced all the way back to Archimedes’ theory of levers developed in the 3rd century BC. 
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each component of the pair is a vector perpendicular to the plane containing the positions of both 
particles and the reference frame origin, i.e. to the plane of the drawing in Fig. 4.  
 
 
 
 
 
 
 
 
 
 

 Also, due to the 3rd Newton’s law (11), these two forces are equal and opposite, and the 
magnitude of each term in the sum may be represented as Fkk’hkk’, with equal “lever arms” hkk’ = hk’k. 
As a result, each sum (rkFkk’ + rk’Fk’k), and hence the whole double sum in Eq. (37) vanish, and it is 
reduced to a very simple result, 
           (ext)τL  ,      (1.38) 

which is similar to Eq. (33) for a single particle, and is the angular analog of Eq. (30).  

 In particular, Eq. (38) shows that if the full external torque (ext) vanishes for some reason (e.g. if 
the system of particles is isolated from the rest of the Universe), the conservation law (35) is valid for 
the full angular momentum L even if its individual components Lk are not conserved due to inter-
particle interactions. 

  Please note again that since the conservation laws may be derived from Newton’s laws (as was 
done above), they do not introduce anything new to the dynamics of any system. Indeed, from the 
mathematical point of view, the conservation laws discussed above are just the first integrals of the 
second-order differential equations of motion following from Newton’s laws. However, for a physicist, 
thinking about particular systems in terms of the conserved (or potentially conserved) quantities 
frequently provides decisive clues on their dynamics. 

 

1.4. Potential energy and equilibrium 

 Another important role of the potential energy U, especially for dissipative systems whose total 
mechanical energy E is not conserved because it may be drained to the environment, is finding the 
positions of equilibrium (sometimes called the fixed points) of the system and analyzing their stability 
with respect to small perturbations. For a single particle, this is very simple: the force (22) vanishes at 
each extremum (either minimum or maximum) of the potential energy.23 (Of those fixed points, only the 
minimums of U(r) are stable – see Sec. 3.2 below for a discussion of this point.)  

 A slightly more subtle case is a particle with an internal potential energy U(r), subjected to an 
additional external force F(ext)(r). In this case, the stable equilibrium is reached at the minimum of not 
the function U(r), but of what is sometimes called the Gibbs potential energy 

23 Assuming that the additional, non-conservative forces (such as viscosity) responsible for the mechanical energy 
drain, vanish at equilibrium – as they typically do. (The static friction is one counter-example.) 

Fig. 1.4. Internal and external forces, and 
the internal torque cancellation in a system 
of two particles. 
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               ,ext
G  

r
rrFrr 'd'UU     (1.39) 

which is defined, just as U(r) is, to an arbitrary additive constant.24  The proof of Eq. (39) is very 
simple: in an extremum of this function, the total force acting on the particle, 

                G
extexttot U'd'U   

r
rrFFFF    (1.40) 

vanishes, as it is necessary for equilibrium.  

 Physically, the difference UG – U specified by Eq. (39) is the r-dependent part of the potential 
energy U(ext) of the external system responsible for the force F(ext), so UG is just the total potential energy 
U + U(ext), excluding its part that does not depend on r and hence is irrelevant for the analysis. 
According to the 3rd Newton’s law, the force exerted by the particle on the external system equals (–
F(ext)), so its work (and hence the change of U(ext) due to the change of r) is given by the second term on 
the right-hand side of Eq. (39).  Thus the condition of equilibrium, UG = 0, is just the condition of an 
extremum of the total potential energy, U + U(ext) + const, of the two interacting systems. 

 For the simplest (and very frequent) case when the applied force is independent of the particle’s 
position, the Gibbs potential energy (39) is just25 

           constext
G  rFrr UU .    (1.41) 

As the simplest example, consider a 1D deformation of the usual elastic spring providing the returning 
force (–x), where x is the deviation from its equilibrium. As follows from Eq. (22), its potential energy 
is U = x2/2 + const, so its minimum corresponds to x = 0. Now let us apply an additional external force 
F, say independent of x. Then the equilibrium deformation of the spring, x0 = F/, corresponds to the 
minimum of not U, but rather of the Gibbs potential energy (41), in our particular case taking the form 

        Fx
x

FxUU 
2

2

G


.     (1.42) 

 

1.5. OK, we’ve got it – can we go home now? 

 Sorry, not yet. In many cases, the conservation laws discussed above provide little help, even in 
systems without dissipation. As a simple example, consider a generalization of the bead-on-the-ring 
problem shown in Fig. 3, in which the ring is rotated by external forces, with a constant angular velocity 
, about its vertical diameter.26 In this problem (to which I will repeatedly return below, using it as an 

24 Unfortunately, in most textbooks, the association of the (unavoidably used) notion of UG with the glorious 
name of Josiah Willard Gibbs is postponed until a course of statistical mechanics and/or thermodynamics, where 
UG is a part of the Gibbs free energy, in contrast to U, which is a part of the Helmholtz free energy – see, e.g., SM 
Sec. 1.4. I use this notion throughout my series, because the difference between UG and U, and hence that between 
the Gibbs and Helmholtz free energies, has nothing to do with statistics or thermal motion, and belongs to the 
whole physics, including not only mechanics but also electrodynamics and quantum mechanics.  
25 Eq. (41) is a particular case of what mathematicians call the Legendre transformations. 
26 This is essentially a simplified model of the mechanical control device called the centrifugal (or “flyball”, or 
“centrifugal flyball”) governor – see, e.g., http://en.wikipedia.org/wiki/Centrifugal_governor. (Sometimes the 
device is called the “Watt’s governor”, after the famous James Watts who used it in 1788 in one of his first steam 
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analytical mechanics “testbed”), none of the three conservation laws listed in the last section, holds. In 
particular, the bead’s energy,  

      mghv
m

E  2

2
,     (1.43) 

is not constant, because the external forces rotating the ring may change it. Of course, we still can solve 
the problem using Newton’s laws, but this is even more complex than for the above case of the ring at 
rest, in particular because the force N exerted on the bead by the ring now may have three rather than 
two Cartesian components, which are not simply related. On the other hand, it is clear that the bead still 
has just one degree of freedom (say, the angle ), so its dynamics should not be too complicated. 

 This case gives us a clue on how situations like this one can be simplified: if we only could 
exclude the so-called reaction forces such as N, that take into account external constraints imposed on 
the particle motion, in advance, that should help a lot. Such a constraint exclusion may be provided by 
analytical mechanics, in particular its Lagrangian formulation, to which we will now proceed. 

 Of course, the value of the Lagrangian approach goes far beyond simple systems such as the 
bead on a rotating ring. Indeed, this system has just two externally imposed constrains: the fixed 
distance of the bead from the center of the ring, and the instant angle of rotation of the ring about its 
vertical diameter. Now let us consider the motion of a rigid body. It is essentially a system of a very 
large number, N >> 1, of particles (~1023 of them if we think about atoms in a 1-cm-scale body). If the 
only way to analyze its motion would be to write Newton’s laws for each of the particles, the situation 
would be completely hopeless. Fortunately, the number of constraints imposed on its motion is almost 
similarly huge. (At negligible deformations of the body, the distances between each pair of its particles 
should be constant.) As a result, the number of actual degrees of freedom of such a body is small (at 
negligible deformations, just six – see Sec. 4.1), so with the kind help from analytical mechanics, the 
motion of the body may be, in many important cases, analyzed even without numerical calculations.  

 One more important motivation for analytical mechanics is given by the dynamics of “non-
mechanical” systems, for example, of the electromagnetic field – possibly interacting with charged 
particles, conducting bodies, etc. In many such systems, the easiest (and sometimes the only practicable) 
way to find the equations of motion is to derive them from either the Lagrangian or Hamiltonian 
function of the system. Moreover, the Hamiltonian formulation of the analytical mechanics (to be 
reviewed in Chapter 10 below) offers a direct pathway to deriving quantum-mechanical Hamiltonian 
operators of various systems, which are necessary for the analysis of their quantum properties. 

 

1.6. Self-test problems 

 1.1. A bicycle, ridden with velocity v on wet pavement, has no mudguards on its wheels. How 
far behind should the following biker ride to avoid being splashed over? Neglect the air resistance 
effects. 

engines, though it had been used in European windmills at least since the early 1600s.) Just as a curiosity: the 
now-ubiquitous term cybernetics was coined by Norbert Wiener in 1948 from the word “governor” (or rather 
from its Ancient-Greek original ή) exactly in this meaning because the centrifugal governor had been 
the first well-studied control device. 
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 1.2. Two round disks of radius R are firmly connected with a coaxial 
cylinder of a smaller radius r, and a thread is wound on the resulting spool. 
The spool is placed on a horizontal surface, and the thread’s end is being 
pooled out at angle  – see the figure on the right. Assuming that the spool 
does not slip on the surface, what direction would it roll? 
  
 

 1.3.* Calculate the equilibrium shape of a flexible heavy rope of 
length l, with a constant mass  per unit length, if it is hung in a 
uniform gravity field between two points separated by a horizontal 
distance d – see the figure on the right.  
 

 1.4. A uniform, long, thin bar is placed horizontally on two 
similar round cylinders rotating toward each other with the same 
angular velocity  and displaced by distance d – see the figure on 
the right. Calculate the laws of relatively slow horizontal motion of 
the bar within the plane of the drawing, for both possible directions 
of cylinder rotation, assuming that the kinetic friction force 
between the slipping surfaces of the bar and each cylinder obeys 
the simple Coulomb approximation27  F  = N, where N is the normal pressure force between them, and 
  is a constant (velocity-independent) coefficient. Formulate the condition of validity of your result.  
 
  
 1.5. A small block slides, without friction, down a smooth slide 
that ends with a round loop of radius R – see the figure on the right. 
What smallest initial height h allows the block to make its way around 
the loop without dropping from the slide if it is launched with negligible 
initial velocity? 
 
 
 
 1.6. A satellite of mass m is being launched from height H over 
the surface of a spherical planet with radius R and mass M >> m – see 
the figure on the right. Find the range of initial velocities v0 (normal to 
the radius) providing closed orbits above the planet’s surface. 
  
 

 1.7. Prove that the thin-uniform-disk model of a galaxy allows for small sinusoidal (“harmonic”) 
oscillations of stars inside it, along the direction normal to the disk, and calculate the frequency of these 
oscillations in terms of Newton’s gravitational constant G and the average density  of the disk’s matter. 

27 It was suggested in 1785 by the same Charles-Augustin de Coulomb who discovered the famous Coulomb law 
of electrostatics, and hence pioneered the whole quantitative science of electricity – see EM Ch. 1. 
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 1.8. Derive differential equations of motion for small oscillations of two 
similar pendula coupled with a spring (see the figure on the right), within their 
common vertical plane. Assume that at the vertical position of both pendula, the 
spring is not stretched (d = 0). 
  

 1.9. One of the popular futuristic concepts of travel is digging a straight railway tunnel through 
the Earth and letting a train go through it, without initial velocity – driven only by gravity. Calculate the 
train’s travel time through such a tunnel, assuming that the Earth’s density  is constant, and neglecting 
the friction and planet-rotation effects. 
 
 1.10. A  small bead of mass m may slide, without friction, 
along a light string stretched with force T >> mg, between two 
points separated by a horizontal distance 2d – see the figure on the 
right. Calculate the frequency of oscillations of the bead about its 
equilibrium position, within the vertical plane.    
 
 1.11. For a rocket accelerating (in free space) due to its working jet motor (and hence spending 
the jet fuel), calculate the relation between its velocity and the remaining mass.  

 Hint: For the sake of simplicity, consider the 1D motion. 
 
 1.12. Prove the following virial theorem:28 for a set of N particles performing a periodic motion, 





N

k
kkT

12

1
rF , 

where the top bar means averaging over time – in this case over the motion period. What does the virial 
theorem say about: 

 (i) a 1D motion of a particle in the confining potential29 U(x) = ax2s, with a > 0 and s > 0, and  
 (ii) an orbital motion of a particle in the central potential U(r) = –C/r? 

 Hint: Explore the time derivative of the following scalar function of time:   



N

k
kktG

1

rp . 

 1.13. As will be discussed in Chapter 8, if a solid body moves through a fluid with a sufficiently 
high velocity v, the fluid’s drag force is approximately proportional to v2. Use this approximation 
(introduced by Sir Isaac Newton himself) to find the velocity as a function of time during the body’s 
vertical fall in the air near the Earth’s surface. 
 
 1.14. A particle of mass m, moving with velocity u, collides head-on with a particle of mass M, 
initially at rest, increasing its internal energy by E. Calculate the velocities of both particles after the 
collision, if u is barely sufficient for such an internal energy increase. 

28 It was first stated by Rudolf Clausius in 1870.  
29 Here and below I am following the (regretful) custom of using the single word “potential” for the potential 
energy of the particle – just for brevity. This custom is also common in quantum mechanics, but in 
electrodynamics, these two notions should be clearly distinguished – as they are in the EM part of this series. 
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Chapter 2. Lagrangian Analytical Mechanics 

The goal of this chapter is to describe the Lagrangian formalism of analytical mechanics, which is 
extremely useful for obtaining the differential equations of motion (and sometimes their first integrals) 
not only for mechanical systems with holonomic constraints but also for some other dynamic systems. 

 

2.1. Lagrange equations 

 In many cases, the constraints imposed on the 3D motion of a system of N particles may be 
described by N vector (i.e. 3N scalar) algebraic equations 

          ,1with  ),,,...,,...,,( 21 Nktqqqq Jjkk  rr    (2.1) 

where qj are certain generalized coordinates that (together with constraints) completely define the 
system position. Their number J ≤ 3N  is called the number of the actual degrees of freedom of the 
system. The constraints that allow such a description are called holonomic.1  

 For example, for the problem already mentioned in Section 1.5, namely, the bead sliding along a 
rotating ring (Fig. 1), J  = 1, because with the constraints imposed by the ring, the bead’s position is 
uniquely determined by just one generalized coordinate – for example, its polar angle  .  

 

 

 

 

 

 

 

 

 Indeed, selecting the reference frame as shown in Fig. 1 and using the well-known formulas for 
the spherical coordinates,2 we see that in this case, Eq. (1) has the form 

               const  where,cos,sinsin,cossin,,  tRRRzyx r , (2.2) 

with the last constant depending on the exact selection of the axes x and y and the time origin. Since the 
angle , in this case, is a fixed function of time, and R is a fixed constant, the particle’s position in space 

1 Possibly, the simplest counter-example of a non-holonomic constraint is a set of inequalities describing the hard 
walls confining the motion of particles in a closed volume. Non-holonomic constraints are better dealt with by 
other methods, e.g., by imposing proper boundary conditions on the (otherwise unconstrained) motion. 
2 See, e.g., MA Eq. (10.7). 

Fig. 2.1. A bead on a rotating ring as an 
example of a system with just one 
degree of freedom (J = 1). 
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at any instant t is completely determined by the value of its only generalized coordinate . (Note that its  
dimensionality is different from that of Cartesian coordinates!) 

 Now returning to the general case of J degrees of freedom, let us consider a set of small 
variations (alternatively called “virtual displacements”) qj allowed by the constraints. Virtual 
displacements differ from the actual small displacements (described by differentials dqj proportional to 
time variation dt) in that qj describes not the system’s motion as such, but rather its possible variation – 
see Fig. 1.  

 

 

 

 

 

  

 
 Generally, operations with variations are the subject of a special field of mathematics, the 
calculus of variations.3 However, the only math background necessary for our current purposes is the 
understanding that operations with variations are similar to those with the usual differentials, though we 
need to watch carefully what each variable is a function of. For example, if we consider the variation of 
the radius vectors (1), at a fixed time t, as functions of independent variations qj, we may use the usual 
formula for the differentiation of a function of several arguments:4 

      .j
j j

k
k q

q
  




r
r      (2.3) 

 Now let us break the force acting upon the kth particle into two parts: the frictionless, 
constraining part Nk of the reaction force and the remaining part Fk – including the forces from other 
sources and possibly the frictional part of the reaction force. Then the 2nd Newton’s law for the kth 
particle of the system may be rewritten as 

      .kkkkm NFv        (2.4) 

Since any variation of the motion has to be allowed by the constraints, its 3N-dimensional vector with N 
3D-vector components rk has to be perpendicular to the 3N-dimensional vector of the constraining 
forces, also having N 3D-vector components Nk. (For example, for the problem shown in Fig. 1, the 
virtual displacement vector rk may be directed only along the ring, while the constraining force N 
exerted by the ring, has to be perpendicular to that direction.) This condition may be expressed as 

3 For a concise introduction to the field see, e.g., either I. Gelfand and S. Fomin, Calculus of Variations, Dover, 
2000, or L. Elsgolc, Calculus of Variations,  Dover, 2007. An even shorter review may be found in Chapter 17 of 
Arfken and Weber – see MA Sec. 16. For a more detailed discussion, using many examples from physics, see R. 
Weinstock, Calculus of Variations, Dover, 2007. 
4 See, e.g., MA Eq. (4.2). Also, in all formulas of this section, summations over j are from 1 to J, while those over 
the particle number k are from 1 to N, so for the sake of brevity, these limits are not explicitly specified. 

Fig. 2.2. Actual displacement dqj vs. the 
virtual one (i.e. variation) qj. 
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      0
k

kk rN  ,     (2.5) 

where the scalar product of 3N-dimensional vectors is defined exactly like that of 3D vectors, i.e. as the 
sum of the products of the corresponding components of the operands. The substitution of Eq. (4) into 
Eq. (5) results in the so-called D’Alembert principle:5 

         0)( 
k

kkkkm rFv  .     (2.6) 

Plugging Eq. (3) into Eq. (6), we get 

              0
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v ,    (2.7) 

where the scalars Fj, called the generalized forces, are defined as follows:6 

               . 



k j

k
kj q

r
FF      (2.8) 

 Now we may use the standard argument of the calculus of variations: for the left-hand side of 
Eq. (7) to be zero for an arbitrary selection of independent variations qj, the expression in the curly 
brackets, for every j, should equal zero. This gives us the desired set of J  3N equations 
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k
kk q

m F
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v ;     (2.9)

what remains is just to recast them in a more convenient form.  

 First, using the differentiation by parts to calculate the following time derivative:  
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we may notice that the first term on the right-hand side is exactly the scalar product in the first term of 
Eq. (9).  

 Second, let us use another key fact of the calculus of variations (which is, essentially, evident 
from  Fig. 3): the differentiation of a variable over time and over the generalized coordinate variation (at 
a fixed time) are interchangeable operations. As a result, in the second term on the right-hand side of Eq. 
(10), we may write 

     .
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 vrr

    (2.11) 

 

5 It was spelled out in a 1743 work by Jean le Rond d’Alembert, though the core of this result has been traced to 
an earlier work by Jacob (Jean) Bernoulli (1667 – 1748) – not to be confused with his son Daniel Bernoulli (1700-
1782) who is credited, in particular, for the Bernoulli equation for ideal fluids, to be discussed in Sec. 8.4 below. 
6 Note that since the dimensionality of generalized coordinates may be arbitrary, that of generalized forces may 
also differ from the newton. 
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 Finally, let us differentiate Eq. (1) over time: 
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This equation shows that particle velocities vk may be considered to be linear functions of the 
generalized velocities jq  considered as independent variables, with proportionality coefficients 
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      (2.13) 

 With the account of Eqs. (10), (11), and (13), Eq. (9) turns into 
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This result may be further simplified by making, for the total kinetic energy of the system, 

     k
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2
2 ,    (2.15) 

the same commitment as for vk, i.e. considering T a function of not only the generalized coordinates qj 
and time t but also of the generalized velocities iq  – as variables independent of qj and t. Then we may 

calculate the partial derivatives of T as 

             ,,  
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and notice that they are exactly the two sums participating in Eq. (14). As a result, we get a system of J 
Lagrange equations,7  
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.    (2.17) 

Their big advantage over the initial Newton’s-law equations (4) is that the Lagrange equations do not 
include the constraining forces Nk, and thus there are only J of them – typically much fewer than 3N. 

7 They were derived in 1788 by Joseph-Louis Lagrange, who pioneered the whole field of analytical mechanics – 
not to mention his key contributions to number theory and celestial mechanics. 
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 This is as far as we can go for arbitrary forces. However, if all the forces may be expressed in a 
form similar to, but somewhat more general than Eq. (1.22): Fk = –kU(r1, r2,…, rN, t), where U is the 
effective potential energy of the system,8 and k denotes the spatial differentiation over coordinates      
of the kth particle, we may recast Eq. (8) into a simpler form:  
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Since we assume that U depends only on particle coordinates (and possibly time), but not velocities: 
,0/  jqU   with the substitution of Eq. (18), the Lagrange equation (17) may be represented in the so-

called canonical form: 

                    ,0







jj q

L

q

L

dt

d


     (2.19a) 

where L is the Lagrangian function (sometimes called just the “Lagrangian”), defined as 

         UTL  .      (2.19b) 

(It is crucial to distinguish this function from the mechanical energy (1.26), E = T + U.) 

 Note also that according to Eq. (2.18), for a system under the effect of an additional generalized 
external force Fj(t) we have to use, in all these relations, not the internal potential energy U(int) of the 
system, but its Gibbs potential energy U  U(int) – Fjqj  – see the discussion in Sec. 1.4. 

 Using the Lagrangian approach in practice, the reader should always remember, first, that each 
system has only one Lagrange function (19b), but is described by J 1 Lagrange equations (19a), with j 
taking values 1, 2,…, J, and second, that differentiating the function L, we have to consider the 
generalized velocities as its independent arguments, ignoring the fact they are actually the time 
derivatives of the generalized coordinates. 

  

2.2. Three simple examples 

 As the first, simplest example, consider a particle constrained to move along one axis (say, x): 

                ).,(,
2

2 txUUx
m

T        (2.20) 

In this case, it is natural to consider x as the (only) generalized coordinate, and x  as the generalized 
velocity, so 

       ).,(
2

2 txUx
m

UTL        (2.21) 

Considering x  and x as independent variables, we get xmxL   / , and xUxL  // , so Eq. (19)  
(the only Lagrange equation in this case of the single degree of freedom!) yields 

8 Note that due to the possible time dependence of U, Eq. (17) does not mean that the forces Fk have to be 
conservative – see the next section for more discussion. With this understanding, I will still use for function U the 
convenient name of “potential energy”. 

Canonical 
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d
      (2.22) 

evidently the same result as the x-component of the 2nd Newton’s law with Fx = –U/x. This example is 
a good sanity check, but it also shows that the Lagrange formalism does not provide too much advantage 
in this particular case. 

 Such an advantage is, however, evident in our testbed problem – see Fig. 1. Indeed, taking the 
polar angle  for the (only) generalized coordinate,  we see that in this case, the kinetic energy depends 
not only on the generalized velocity but also on the generalized coordinate:9 
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Here it is especially important to remember that at substantiating the Lagrange equation,   and   have 
to be treated as independent arguments of L, so 

       ,sincossin, 222 
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    (2.24) 

giving us the following equation of motion: 

                 .0sincossin222   mgRmRmR
dt

d     (2.25) 

As a sanity check, at  = 0, Eq. (25) is reduced to the equation (1.18) of the usual pendulum: 

           
2/1

2 Ω  where,0sinΩ 







R

g .    (2.26) 

We will explore Eq. (25) in more detail later, but please note how simple its derivation was – in 
comparison with writing the 3D Newton’s law and then excluding the reaction force. 

 Next, though the Lagrangian formalism was derived from Newton’s law for mechanical systems, 
the resulting equations (19) are applicable to other dynamic systems, especially those for which the 
kinetic and potential energies may be readily expressed via some generalized coordinates. As the 
simplest example, consider the well-known connection of a capacitor with capacitance C to an inductive 
coil with self-inductance L 10 (Electrical engineers frequently call it the LC tank circuit.)  

 

 

 

 

9 The above expression for ))(2/( 222 zyxmT    may be readily obtained either by the formal differentiation 

of Eq. (2) over time, or just by noticing that the velocity vector has two perpendicular components: one (of 

magnitude R ) along the ring, and another one (of magnitude  sinR ) normal to the ring’s plane. 
10 A fancy font is used here to avoid any chance of confusion between the inductance and the Lagrange function. 

Fig. 2.4. LC tank circuit. 
Q V
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 As the reader (hopefully :-) knows from their undergraduate studies, at relatively low frequencies 
we may use the so-called lumped-circuit approximation, in which the total energy of this system is the 
sum of two components, the electric energy Ee localized inside the capacitor, and the magnetic energy 
Em localized inside the inductance coil: 

       .
2
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2
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Q
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      (2.27) 

Since the electric current I through the coil and the electric charge Q on the capacitor are related by the 
charge continuity equation dQ/dt = I (evident from Fig. 4), it is natural to declare Q the generalized 
coordinate of the system, and the current, its generalized velocity. With this choice, the electrostatic 
energy Ee (Q) may be treated as the potential energy U of the system, and the magnetic energy Em(I), as 
its kinetic energy T. With this attribution, we get 
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so the Lagrange equation (19) becomes 

      0
1

  i.e.,0 





 QQ

C

Q
Q

dt

d

CL
L  .   (2.29) 

 Note, however, that the above choice of the generalized coordinate and velocity is not unique. 
Instead, one can use, as the generalized coordinate, the magnetic flux  through the inductive coil, 
related to the common voltage V across the circuit (Fig. 4) by Faraday’s induction law V = –d/dt. With 
this choice, (-V) becomes the generalized velocity, Em = 2/2L should be understood as the potential 
energy, and Ee = CV2/2 treated as the kinetic energy. For this choice, the resulting Lagrange equation    
of motion is equivalent to Eq. (29). If both parameters of the circuit, L and C, are constant in time, Eq. 
(29) describes sinusoidal oscillations with the frequency 

       
  2/10

1

CL
 .     (2.30) 

 This is of course a well-known result, which may be derived in a more standard way – by 
equating the voltage drops across the capacitor (V = Q/C) and the inductor (V = –LdI/dt  –Ld2Q/dt2). 
However, the Lagrangian approach is much more convenient for more complex systems – for example, 
for the general description of the electromagnetic field and its interaction with charged particles.11 

 

2.3. Hamiltonian function and energy 

 The canonical form (19) of the Lagrange equation has been derived using Eq. (18), which is 
formally similar to Eq. (1.22) for a potential force. Does this mean that the system described by Eq. (19) 
always conserves energy? Not necessarily, because the “potential energy” U that participates in Eq. 
(18), may depend not only on the generalized coordinates but on time as well. Let us start the analysis   
of this issue with the introduction of two new (and very important!) notions: the generalized momentum 
corresponding to each generalized coordinate qj,  

11 See, e.g., EM Secs. 9.7 and 9.8. 
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and the Hamiltonian function12 
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 To see whether the Hamiltonian function is conserved during the motion, let us differentiate both 
sides of its definition (32) over time: 
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If we want to make use of the Lagrange equation (19), the last derivative has to be calculated 
considering L as a function of independent arguments jq , jq , and t, so 
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     (2.34) 

where the last term is the derivative of L as an explicit function of time. We see that the last term in the 
square brackets of Eq. (33) immediately cancels with the last term in the parentheses of Eq. (34). 
Moreover, using the Lagrange equation (19a) for the first term in the square brackets of Eq. (33), we see 
that it cancels with the first term in the parentheses of Eq. (34). As a result, we arrive at a very simple 
and important result: 

        .
t

L

dt

dH




       (2.35) 

The most important corollary of this formula is that if the Lagrangian function does not depend on time 
explicitly ( ),0/  tL the Hamiltonian function is an integral of motion:  

         const.H        (2.36) 

 Let us see how this works, using the first two examples discussed in the previous section. For a 
1D particle, the definition (31) of the generalized momentum yields 

      mv
v

L
px 




 ,     (2.37) 

so it coincides with the usual linear momentum – or rather with its x-component. According to Eq. (32), 
the Hamiltonian function for this case (with just one degree of freedom) is 

             U
m
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pLvpH xx
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22

2
2 ,   (2.38) 

12 It is named after Sir William Rowan Hamilton, who developed his approach to analytical mechanics in 1833, 
on the basis of the Lagrangian mechanics. This function is sometimes called just the “Hamiltonian”, but it is 
advisable to use the full term “Hamiltonian function” in classical mechanics, to distinguish it from the 
Hamiltonian operator used in quantum mechanics, whose abbreviation to Hamiltonian is extremely common. 
(The relation of these two notions will be discussed in Sec. 10.1 below.) 

Generalized 
momentum 

Hamiltonian 
function: 
definition  

Hamiltonian 
function: 
time  
evolution 
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i.e. coincides with the particle’s mechanical energy E = T + U. Since the Lagrangian does not depend on 
time explicitly, both H and E are conserved.  

 However, it is not always that simple! Indeed, let us return again to our testbed problem (Fig. 1). 
In this case, the generalized momentum corresponding to the generalized coordinate   is 

               ,2





mR
L
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      (2.39) 

and Eq. (32) yields: 
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  (2.40) 

This means that (as soon as 0 ), the Hamiltonian function differs from the mechanical energy 

            constcossin
2

2222   mgRR
m

UTE  .   (2.41) 

The difference, E – H = mR22sin2  (besides an inconsequential constant), may change at the bead’s 
motion along the ring, so although H is an integral of motion (since L/t = 0), the energy is generally 
not conserved.  

 In this context, let us find out when these two functions, E and H, do coincide. In mathematics, 
there is a notion of a homogeneous function f(x1,x2,…) of degree , defined in the following way: for 
an arbitrary constant a,  

     ,...).,(,...),( 2121 xxfaaxaxf      (2.42) 

Such functions obey the following Euler theorem:13 

                 , 
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j

j

fx
x

f       (2.43) 

which may be simply proved by differentiating both parts of Eq. (42) over a and then setting this 
parameter to the particular value a = 1. Now, consider the case when the kinetic energy is a quadratic 
form of all generalized velocities jq : 

      ,),...,,(
,

21
j'j

j'jjj' qqtqqtT       (2.44) 

with no other terms. It is evident that such T satisfies the definition (42) of a homogeneous function      
of the velocities with  = 2,14 so the Euler theorem (43) gives 

      .2Tq
q

T
j

j j



 


     (2.45) 

13 This is just one of many theorems bearing the name of their author – the genius mathematician Leonhard Euler 
(1707-1783). 
14 Such functions are called quadratic-homogeneous. 
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But since U is independent of the generalized velocities, jj qTqL   // , and the left-hand side of 

Eq. (45) is exactly the first term in the definition (32) of the Hamiltonian function, so in this case 

       .)(22 EUTUTTLTH      (2.46) 

 So, for a system with a kinetic energy of the type (44), for example, a free particle with T  
considered as a function of its Cartesian velocities, 

             222

2 zyx vvv
m

T  ,     (2.47) 

the notions of the Hamiltonian function and mechanical energy are identical. Indeed, some textbooks, 
very regrettably, do not distinguish these notions at all! However, as we have seen from our bead-on-
the-rotating-ring example, these variables do not always coincide. For that problem, the kinetic energy, 
in addition to the term proportional to 2 , has another, velocity-independent term – see the first of Eqs. 
(23) – and hence is not a quadratic-homogeneous function of the angular velocity, giving E  H. 

 Thus, Eq. (36) expresses a new conservation law, generally different from that of mechanical 
energy conservation. 

 

2.4. Other conservation laws 

 Looking at the Lagrange equation (19), we immediately see that if L  T – U is independent of 
some generalized coordinate qj, L/qj = 0,15 then the corresponding generalized momentum is an 
integral of motion:16 

      .const
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j q
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     (2.48) 

For example, for a 1D particle with the Lagrangian (21), the momentum px is conserved if the potential 
energy is constant (and hence the x-component of force is zero) – of course. As a less obvious example, 
let us consider a 2D motion of a particle in the field of central forces. If we use polar coordinates r and 
  in the role of generalized coordinates, then the Lagrangian function17 

             )(
2

222 rUrr
m

UTL       (2.49) 

is independent of , and hence the corresponding generalized momentum,  

              
 


2mr
L
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 ,     (2.50) 

15 Such coordinates are frequently called cyclic, because in some cases (like  in Eq. (49) below) they represent 
periodic coordinates such as angles. However, this terminology is somewhat misleading, because some “cyclic” 
coordinates (e.g., x in our first example) have nothing to do with rotation.  
16 This fact may be considered a particular case of a more general mathematical statement called the Noether 
theorem – named after its author, Emmy Nöther, sometimes called the “greatest woman mathematician ever 
lived”. Unfortunately, because of time/space restrictions, for its discussion I have to refer the interested reader 
elsewhere – for example to Sec. 13.7 in H. Goldstein et al., Classical Mechanics, 3rd ed. Addison Wesley, 2002. 
17 Note that here 2r is the square of the scalar derivative ,r rather than the square of the vector r = v. 
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is conserved. This is just a particular (2D) case of the angular momentum conservation – see Eq. (1.24). 
Indeed, for the 2D motion within the [x, y] plane, the angular momentum vector,  

       

zmymxm

zyx
zyx



nnn

prL  ,     (2.51) 

has only one component different from zero, namely the component normal to the motion plane: 

            ).()( xmyymxLz        (2.52) 

Differentiating the well-known relations between the polar and Cartesian coordinates, 

      ,sin,cos  ryrx       (2.53) 

over time, and plugging the result into Eq. (52), we see that  

                .2
 pmrLz        (2.54) 

 Thus the Lagrangian formalism provides a powerful way of searching for non-evident integrals 
of motion. On the other hand, if such a conserved quantity is obvious or known a priori, it is helpful for 
the selection of the most appropriate generalized coordinates, giving the simplest Lagrange equations. 
For example, in the last problem, if we knew in advance that p had to be conserved, this could provide 
sufficient motivation for using the angle  as one of the generalized coordinates. 

 

2.5. Exercise problems 

 In each of Problems 1-11, for the given system: 

  (i) introduce a convenient set of generalized coordinates qj, 
  (ii) write down the Lagrangian L as a function of ,j jq q , and (if appropriate) time, 

  (iii) write down the Lagrange equation(s) of motion, 
  (iv) calculate the Hamiltonian function H; find out whether it is conserved, 
  (v) calculate the mechanical energy E; is E = H?; is the energy conserved? 
  (vi) any other evident integrals of motion? 

 2.1. A double pendulum – see the figure on the right. Consider only the motion 
within the vertical plane containing the suspension point. 

 

 
 
 

 2.2. A stretchable pendulum (i.e. a massive particle hung on an elastic cord that 
exerts force F = –(l – l0), where  and l0 are positive constants), also confined to the 
vertical plane: 
 

m g 

l 

l

l

m

m

g
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 2.3. A fixed-length pendulum hanging from a point whose motion law x0(t) in the 
horizontal direction is fixed. (No vertical plane constraint here.) 
 
  
 
  
 2.4. A pendulum of mass m, hung on another point mass m’ that may slide, without 
friction, along a straight horizontal rail – see the figure on the right. The motion is confined 
to the vertical plane that contains the rail.  
 
 
  
 2.5. A point-mass pendulum of length l, attached to the rim of a disk of 
radius R, which is rotated in a vertical plane with a constant angular velocity  
– see the figure on the right. (Consider only the motion within the disk’s plane.) 
  
 
  
 2.6. A bead of mass m, sliding without friction along a light 
string with a fixed tension T, hung between two horizontally 
displaced supports – see the figure on the right. Here, in contrast to 
the similar Problem 1.10, the tension T  may be comparable with the 
bead’s weight mg, and the motion is not restricted to the vertical 
plane. 
 

 2.7. A bead of mass m, sliding without friction along a light string of a 
fixed length 2l, that is hung between two support points displaced horizontally 
by distance 2d < 2l – see the figure on the right. As in the previous problem, 
the motion is not restricted to the vertical plane. 
 
 
 2.8. A block of mass m that can slide, without friction, along the 
inclined plane surface of a heavy wedge with mass m’. The wedge is free to 
move, also without friction, along a horizontal surface – see the figure on the 
right. (Both motions are within the vertical plane containing the steepest slope 
line.) 
  
 
 2.9. The two-pendula system that was the subject of Problem 1.8 – see 
the figure on the right. 
   
 

 

x0(t) 

g m 

l 

g 
l 

m 

m' 

R
l



g
m

g

T

d2

m

T

g

d2

m

l2

m

l l

g


m


m' 

m

g 




Essential Graduate Physics                 CM: Classical Mechanics 

 

Chapter 2             Page 13 of 14 

 

 2.10. A system of two similar, inductively coupled LC circuits – 
see the figure on the right. 
 

 2.11.*A small Josephson junction – the system consisting of two 
superconductors (S) weakly coupled by Cooper-pair tunneling through a 
thin insulating layer (I) that separates them – see the figure on the right. 

 Hints:   

 (i) At not very high frequencies (whose quantum  is lower than the binding energy 2 of the 
Cooper pairs), the Josephson effect in a sufficiently small junction may be described by the following 
coupling energy:  

  constcosJ   EU , 

where the constant EJ describes the coupling strength, while the variable  (called the Josephson phase 
difference) is connected to the voltage V across the junction by the famous frequency-to-voltage relation 

   ,
2

V
e

dt

d





 

where e  1.60210-19 C is the fundamental electric charge and   1.05410-34 Js is the Planck 
constant.18  

 (ii) The junction (as any system of two close conductors) has a substantial electric capacitance C. 

18 More discussion of the Josephson effect and the physical sense of the variable  may be found, for example, in 
EM Sec. 6.5 and QM Secs. 1.6 and 2.8, but the given problem may be solved without that additional information. 
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Chapter 3. A Few Simple Problems 

The objective of this chapter is to solve a few simple but very important particle dynamics problems that 
may be reduced to 1D motion. They notably include the famous “planetary” problem of two particles 
interacting via a spherically symmetric potential, and the classical particle scattering problem. In the 
process of solution, several methods that will be very essential for the analysis of more complex systems 
are also discussed. 

   

3.1. One-dimensional and 1D-reducible systems 

 If a particle is confined to motion along a straight line (say, axis x), its position is completely 
determined by this coordinate. In this case, as we already know, the particle’s Lagrangian function is 
given by Eq. (2.21): 

                  2

2
),,( x

m
xTtxUxTL   ,     (3.1) 

so the Lagrange equation of motion given by Eq. (2.22), 

      
x

txU
xm





),(

      (3.2) 

is just the x-component of the 2nd Newton’s law.  

 It is convenient to discuss the dynamics of such really-1D systems as a part of a more general 
class of effectively-1D systems. This is a system whose position, due to either holonomic constraints 
and/or conservation laws, is also fully determined by one generalized coordinate q, and whose 
Lagrangian  may be represented in a form similar to Eq. (1): 

        2ef
efefef 2

),,()( q
m

TtqUqTL   ,    (3.3) 

where mef is some constant which may be considered as the effective mass of the system, and the 
function Uef, its effective potential energy. In this case, the Lagrange equation (2.19), describing the 
system’s dynamics, has a form similar to Eq. (2): 

              .
),(ef

ef q

tqU
qm




      (3.4) 

 As an example, let us return to our testbed system shown in Fig. 2.1. We have already seen that 
for this system, having one degree of freedom, the genuine kinetic energy T, expressed by the first of 
Eqs. (2.23), is not a quadratically-homogeneous function of the generalized velocity. However, the 
system’s Lagrangian function (2.23) still may be represented in the form (3), 

            ,const  cossin
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provided that we take 

Effectively- 
1D system 
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In this new partitioning of the function L, which is legitimate because Uef depends only on the 
generalized coordinate , but not on the corresponding generalized velocity, Tef includes only a part of 
the genuine kinetic energy T of the bead, while Uef includes not only its real potential energy U in the 
gravity field but also an additional term related to ring rotation. (As we will see in Sec. 4.6, this term 
may be interpreted as the effective potential energy due to the inertial centrifugal “force” arising at the 
problem’s solution in the non-inertial reference frame rotating with the ring.) 

 Returning to the general case of effectively-1D systems with Lagrangians of the type (3), let us 
calculate their Hamiltonian function, using its definition (2.32): 

    .)( efefefef
2

ef UTUTqmLq
q

L
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   (3.7) 

So, H is expressed via Tef and Uef exactly as the energy E is expressed via genuine T and U. 

 

3.2. Equilibrium and stability 

 Autonomous systems are defined as dynamic systems whose equations of motion do not depend 
on time explicitly. For the effectively-1D (and in particular the really-1D) systems obeying Eq. (4), this 
means that their function Uef, and hence the Lagrangian function (3) should not depend on time 
explicitly. According to Eqs. (2.35), in such systems, the Hamiltonian function (7), i.e. the sum Tef + Uef, 
is an integral of motion. However, be careful! Generally, this conclusion is not valid for the genuine 
mechanical energy E of such a system; for example, as we already know from Sec. 2.2, for our testbed 
problem, with the generalized coordinate q =   (Fig. 2.1), E is not conserved. 

 According to Eq. (4), an autonomous system, at appropriate initial conditions, may stay in 
equilibrium at one or several stationary (alternatively called fixed) points qn, corresponding to either the 
minimum or a maximum of the effective potential energy (see Fig. 1): 

        .0ef nq
dq

dU
      (3.8) 

  

 

 

 

 

 

 In order to explore the stability of such fixed points, let us analyze the dynamics of small 
deviations 
      nqtqtq  )()(~      (3.9) 

from one of such points. For that, let us expand the function Uef(q)  in the Taylor series at qn: 

Fig. 3.1. An example of the effective 
potential energy profile near stable (q0, q2) 
and unstable (q1) fixed points, and its 
quadratic approximation (10) near point q0. 
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The first term on the right-hand side, Uef(qn), is an arbitrary constant and does not affect motion. The 
next term, linear in the deviation q~ , equals zero – see the fixed point’s definition (8). Hence the fixed 
point’s stability is determined by the next term, quadratic in q~ , more exactly by its coefficient, 

               )(
2
ef

2

ef nq
dq

Ud
 ,     (3.11) 

which is frequently called the effective spring constant. Indeed, neglecting the higher terms of the 
Taylor expansion (10),1 we see that Eq. (4) takes the familiar form: 

               .0~~
efef  qqm       (3.12) 

 I am confident that the reader of these notes knows everything about this equation, but since we 
will soon run into similar but more complex equations, let us review the formal procedure of its 
solution. From the mathematical standpoint, Eq. (12) is an ordinary linear differential equation of the 
second order, with constant coefficients. The general theory of such equations tells us that its general 
solution (for any initial conditions) may be represented as 

           
tt

ecectq 
  

)(~ ,     (3.13) 

where the constants c are determined by initial conditions, while the so-called characteristic exponents 
 are completely defined by the equation itself. To calculate these exponents, it is sufficient to plug just 
one partial solution, et, into the equation.  In our simple case (12), this yields the following 
characteristic equation: 
                0ef

2
ef m .     (3.14) 

 If the ratio kef/mef is positive, i.e. the fixed point corresponds to the minimum of potential energy 
(e.g., see points q0 and q2 in Fig. 1), the characteristic equation yields  
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 m
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 ,    (3.15) 

(where i  is the imaginary unit, i2 = –1), so Eq. (13) describes harmonic (sinusoidal) oscillations of the 
system,2  

            tctcecectq sc

titi
00

00 sincos)(~   
 ,   (3.16) 

1 Those terms may be important only in very special cases when ef is exactly zero, i.e. when a fixed point is also 
an inflection point of the function Uef(q). 
2 The reader should not be scared of the first form of (16), i.e. of the representation of a real variable (the 
deviation from equilibrium) via a sum of two complex functions. Indeed, any real initial conditions give c–* = c+, 
so the sum is real for any t. An even simpler way to deal with such complex representations of real functions will 
be discussed in the beginning of Chapter 5, and then used throughout this series. 
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with the frequency 0, about the fixed point – which is thereby stable.3 On the other hand, at the 
potential energy maximum (kef < 0, e.g., at point q1 in Fig. 1), we get 

          .)(~ that  so,  where,

2/1

ef

ef tt ecectq
m


 

 







   (3.17) 

Since the solution has an exponentially growing part,4 the fixed point is unstable. 

 Note that the quadratic expansion of function Uef(q), given by the truncation of Eq. (10) to the 
three displayed terms, is equivalent to a linear Taylor expansion of the effective force: 

      ,~
ef

ef
ef q

dq

dU
F       (3.18) 

immediately resulting in the linear equation (12). Hence, to analyze the stability of a fixed point qn, it is 
sufficient to linearize the equation of motion with respect to small deviations from the point, and study 
possible solutions of the resulting linear equation. This linearization procedure is typically simpler to 
carry out than the quadratic expansion (10). 

 As an example, let us return to our testbed problem (Fig. 2.1) whose function Uef we already 
know – see the second of Eqs. (6). With it, the equation of motion (4) becomes 

                ,sinΩcos  i.e.,sinΩcos 22222ef2 


   mR
d

dU
mR  (3.19) 

where   (g/R)1/2 is the frequency of small oscillations of the system at  = 0 – see Eq. (2.26).5 From 
Eq. (8), we see that on any 2-long segment of the angle , 6 the system may have four fixed points; for 
example, on the half-open segment (-, +] these points are 

                  
2

2
1

3,210

Ω
cos,,0


  .    (3.20) 

The last two fixed points, corresponding to the bead shifted to either side of the rotating ring, exist only 
if the angular velocity  of the rotation exceeds . (In the limit of very fast rotation,  >> , Eq. (20) 
yields 2,3  /2, i.e. the stationary positions approach the horizontal diameter of the ring – in 
accordance with our physical intuition.)  

 To analyze the fixed point stability, we may again use Eq. (9), in the form  ~
 n , plug it 

into Eq. (19), and Taylor-expand both trigonometric functions of   up to the term linear in ~ : 

             ~
cossin

~
sincos

~ 22
nnnn  .   (3.21) 

3 This particular type of stability, when the deviation from the equilibrium oscillates with a constant amplitude, 
neither growing nor decreasing in time, is called either orbital, or “neutral”, or “indifferent” stability.   
4 Mathematically, the growing part vanishes at some special (exact) initial conditions which give c+ = 0. However, 
the futility of this argument for real physical systems should be obvious to anybody who has ever tried to balance 
a pencil on its sharp point. 
5 Note that Eq. (19) coincides with Eq. (2.25). This is a good sanity check illustrating that the procedure (5)-(6) of 
moving a term from the potential to the kinetic energy within the Lagrangian function is indeed legitimate. 
6 For this particular problem, the values of   that differ by a multiple of 2, are physically equivalent.
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Generally, this equation may be linearized further by purging its right-hand side of the term proportional 

to 2~ ; however in this simple case, Eq. (21) is already convenient for analysis. In particular, for the 
fixed point 0 = 0 (corresponding to the bead’s position at the bottom of the ring), we have cos 0 = 1 
and sin0 = 0, so Eq. (21) is reduced to a linear differential equation 

               ~
Ω–

~ 22  ,     (3.22) 

whose characteristic equation is similar to Eq. (14) and yields 

        0
222 for ,Ω–   .     (3.23a) 

This result shows that if 2 < 2, both roots  are imaginary, so this fixed point is orbitally stable.
However, if the rotation speed is increased so that 2 < 2, the roots become real:  = (2 – 2)1/2, 
with one of them positive, so the fixed point becomes unstable beyond this threshold, i.e. as soon as 
fixed points 2,3 exist. Absolutely similar calculations for other fixed points yield   

               








.for ,Ω

,for ,0Ω

3,2
22

1
22

2




     (3.23b) 

These results show that the fixed point 1 (the bead on the top of the ring) is always unstable – just as 
we could foresee, while the side fixed points 2,3 are orbitally stable as soon as they exist – at 2 < 2. 

 Thus, our fixed-point analysis may be summarized very simply: an increase of the ring rotation 
speed   beyond a certain threshold value, equal to  given by Eq. (2.26), causes the bead to move to 
one of the ring sides, oscillating about one of the fixed points 2,3. Together with the rotation about the 
vertical axis, this motion yields quite a complex (generally, open) spatial trajectory as observed from a 
lab frame, so it is fascinating that we could analyze it quantitatively in such a simple way. 

 Later in this course, we will repeatedly use the linearization of the equations of motion for the 
analysis of the stability of more complex dynamic systems, including those with energy dissipation. 

 

3.3. Hamiltonian 1D systems 

 Autonomous systems that are described by time-independent Lagrangians are frequently called 
Hamiltonian ones because their Hamiltonian function H (again, not necessarily equal to the genuine 
mechanical energy E!) is conserved. In our current 1D case, described by Eq. (3),  

     const)(
2 ef

2ef  qUq
m

H  .    (3.24) 

From a mathematical standpoint, this conservation law is just the first integral of motion. Solving Eq. 
(24) for q , we get the first-order differential equation, 
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which may be readily integrated: 
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  .    (3.26) 

Since the constant H (as well as the proper sign before the integral – see below) is fixed by initial 
conditions, Eq. (26) gives the reciprocal form, t = t(q), of the desired law of system motion, q(t). Of 
course, for any particular problem, the integral in Eq. (26) still has to be worked out, either analytically 
or numerically, but even the latter procedure is typically much easier than the numerical integration of 
the initial, second-order differential equation of motion, because at the addition of many values (to 
which any numerical integration is reduced7) the rounding errors are effectively averaged out. 

 Moreover, Eq. (25) also allows a general classification of 1D system motion. Indeed: 

 (i) If H > Uef(q) in the whole range of our interest, the effective kinetic energy Tef (3) is always 
positive. Hence the derivative dq/dt cannot change its sign, so this effective velocity retains the sign it 
had initially. This is an unbound motion in one direction (Fig. 2a). 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 (ii) Now let the particle approach a classical turning point A where H = Uef(q)  – see Fig. 2b.8 
According to Eq. (25), at that point, the particle velocity vanishes, while its acceleration, according to 
Eq. (4), is still finite. This means that the particle’s velocity sign changes its sign at this point, i.e. it is 
reflected from it. 

7 See, e.g., MA Eqs. (5.2) and (5.3). 
8 This terminology comes from quantum mechanics, which shows that a particle (or rather its wavefunction) 
actually can, to a certain extent, penetrate “classically forbidden” regions where H < Uef(q). 
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Fig. 3.2. Graphical representations of Eq. (25) for three different cases: (a) an unbound motion, with the 
velocity sign conserved, (b) a reflection from a “classical turning point”, accompanied by the velocity 
sign change, and (c) bound, periodic motion between two turning points – schematically. (d) The 
effective potential energy (6) of the bead on the rotating ring (Fig. 2.1) for a particular case with 2 < 2.
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 (iii) If, after the reflection from some point A, the particle runs into another classical turning 
point B (Fig. 2c), the reflection process is repeated again and again, so the particle is bound to a periodic 
motion between two turning points. 

 The last case of periodic oscillations presents a large conceptual and practical interest, and the 
whole of Chapter 5 will be devoted to a detailed analysis of this phenomenon and numerous associated 
effects. Here I will only note that for an autonomous Hamiltonian system described by Eq. (4), Eq. (26) 
immediately enables the calculation of the oscillation period: 

             ,
)]([2

2
2/1

ef

2/1

ef  








A

B qUH

dqm
T     (3.27) 

where the additional front factor 2 accounts for two time intervals: of the motion from B to A and back – 
see Fig. 2c. Indeed, according to Eq. (25), at each classically allowed point q, the velocity’s magnitude 
is the same, so these time intervals are equal to each other. 

 (Note that the dependence of points A and B on H is not necessarily continuous. For example, for 
our testbed problem, whose effective potential energy is plotted in Fig. 2d for a particular value of  > 
, a gradual increase of H  leads to a sudden jump, at H = H1, of the point B to a new position B’, 
corresponding to a sudden switch from oscillations about one fixed point 2,3 to oscillations about two 
adjacent fixed points – before the beginning of a persistent rotation around the ring at H > H2.) 

 Now let us consider a particular, but a very important limit of Eq. (27). As Fig. 2c shows, if H is 
reduced to approach Umin, the periodic oscillations take place at the very bottom of this potential well, 
about a stable fixed point q0. Hence, if the potential energy profile is smooth enough, we may limit the 
Taylor expansion (10) to the displayed quadratic term. Plugging it into Eq. (27), and using the mirror 
symmetry of this particular problem about the fixed point q0, we get 
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T  (3.28) 

where Aq /~ , with A  (2/ef)
1/2(H – Umin)

1/2 being the classical turning point, i.e. the oscillation 

amplitude, and 0 the frequency given by Eq. (15). Taking into account that the elementary integral I in 
that equation equals /2,9 we finally get 

           ,
2

0


T       (3.29) 

as it should be for the harmonic oscillations (16). Note that the oscillation period does not depend on the 
oscillation amplitude A, i.e. on the difference (H – Umin) – while it is sufficiently small. 

 

3.4. Planetary problems 

Leaving a more detailed study of oscillations for Chapter 5, let us now discuss the so-called 
planetary systems10 whose description, somewhat surprisingly, may be also reduced to an effectively 1D 

9 Indeed, introducing a new variable   as   sin , we get d = cos  d = (1–2)1/2 d, so that the function under 
the integral is just d, and its limits are   = 0 and  = /2. 

Oscillation 
period 
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problem. Indeed, consider two particles that interact via a conservative central force F21 = –F12 = nrF(r), 
where r and nr are, respectively, the magnitude and the direction of the distance vector r  r1 – r2 
connecting the two particles (Fig. 3).  

 

 

 

 

 
 
Generally, two particles moving without constraints in 3D space, have 3 + 3 = 6 degrees of 

freedom, which may be described, e.g., by their Cartesian coordinates {x1, y1, z1, x2, y2, z2} However, for 
this particular form of interaction, the following series of tricks allows the number of essential degrees 
of freedom to be reduced to just one. 

First, the conservative force of particle interaction may be described by a time-independent 
potential energy U(r), such that F(r) = –U(r)/r.11 Hence the Lagrangian function of the system is 

           ).(
22

2
2

22
1

1 rU
mm

rUTL  rr      (3.30) 

Let us perform the transfer from the initial six scalar coordinates of the particles to the following six 
generalized coordinates: three Cartesian components of the distance vector  

      r  r1 – r2,      (3.31) 

and three scalar components of the following vector: 

        ,with  , 21
2211 mmM

M

mm





rr
R     (3.32) 

which defines the position of the center of mass of the system, with the total mass M. Solving the system 
of two linear equations (31) and (32) for r1 and r2, we get  

              ., 1
2

2
1 rRrrRr

M

m

M

m
     (3.33) 

Plugging these relations into Eq. (30), we see that it is reduced to 

         ),(
22

22 rU
mM

L  rR       (3.34) 

where m is the so-called reduced mass: 

           
21

21 111
 that  so, 

mmmM

mm
m  .    (3.35) 

10 This name is very conditional, because this group of problems includes, for example, charged particle scattering 
(see Sec. 3.7 below). 
11 See, e.g., MA Eq. (10.8) with / = / = 0. 
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Fig. 3.3. Vectors in the planetary problem. 
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Note that according to Eq. (35), the reduced mass is lower than that of the lightest component of the 
two-body system. If one of m1,2 is much less than its counterpart (like it is in most star-planet or planet-
satellite systems), then with a good precision m  min [m1, m2]. 

 Since the Lagrangian function (34) depends only on R  rather than R  itself, according to our 
discussion in Sec. 2.4, all Cartesian components of R are cyclic coordinates, and the corresponding 
generalized momenta are conserved: 

        3. 2, 1,const, 



 jRM
R

L
P j

j
j




    (3.36) 

Physically, this is just the conservation law for the full momentum P  MR of our system, due to the 
absence of external forces. Actually, in the axiomatics used in Sec. 1.3 this law is postulated – see Eq. 
(1.10) – but now we may attribute the momentum P to a certain geometric point, with the center-of-mass 
radius vector R. In particular, since according to Eq. (36) the center moves with a constant velocity in 
the inertial reference frame used to write Eq. (30), we may consider a new inertial frame with the origin 
at point R. In this new frame, R  0, so the vector r (and hence the scalar r) remain the same as in the 
old frame (because the frame transfer vector adds equally to r1 and r2, and cancels in r = r1 – r2), and 
the Lagrangian (34) is now reduced to 

                ).(
2

2 rU
m

L  r      (3.37) 

 Thus our initial problem has been reduced to just three degrees of freedom – three scalar 
components of the vector r. In other words, Eq. (37) shows that the dynamics of the vector r of our 
initial, two-particle system is identical to that of the radius vector of a single particle with the effective 
mass m, moving in the central potential field ).(rU   

 Two more degrees of freedom may be excluded from the planetary problem by noticing that 
according to Eq. (1.35), the angular momentum L = rp of our effective single particle of mass m is also 
conserved, both in magnitude and direction. Since the direction of L is, by its definition, perpendicular 
to both r and v = p/m, this means that the particle’s motion is confined to the plane whose orientation is 
determined by the initial directions of the vectors r and v. Hence we can completely describe the 
particle’s position by just two coordinates in that plane, for example by the distance r to the origin, and 
the polar angle    In these coordinates, Eq. (37) takes the form identical to Eq. (2.49): 

  )(
2

222 rUrr
m

L   .     (3.38) 

Moreover, the latter coordinate, polar angle , may be also eliminated by using the conservation           
of angular momentum’s magnitude, in the form of Eq. (2.50): 12 

             .const2  mrLz      (3.39) 

 A direct corollary of this conservation is the so-called 2nd Kepler’s law:13 the radius vector r 
sweeps equal areas A in equal time periods. Indeed, in the linear approximation in dA << A, the area 

12 Here index z stands for the coordinate perpendicular to the motion plane. Since other components of the angular 
momentum equal zero, this index is not really necessary, but I will still use it – just to make a clear distinction 
between the angular momentum Lz and the Lagrangian function L. 
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differential dA is equal to the area of a narrow right triangle with the base being the arc differential rd, 
and the height equal to r – see Fig. 4. As a result, according to Eq. (39), the time derivative of the area, 

              ,
22

12/)( 2

m

L
r

dt

rdr

dt

dA z 
     (3.40) 

remains constant. Since the factor Lz/2m is constant, integration of this equation over an arbitrary (not 
necessarily small!) time interval t proves the 2nd Kepler’s law: A   t. 

 

 

 

 

   

Now note that since L/t = 0, the Hamiltonian function H is also conserved, and since, 
according to Eq. (38), the kinetic energy of the system is a quadratic-homogeneous function of the 
generalized velocities r and  , we have H = E, so the system’s energy E, 

)(
22

222 rUr
m

r
m

E   ,     (3.41) 

is also the first integral of motion.14 However, according to Eq. (39), the second term on the right-hand 
side of Eq. (41) may be represented as 

         ,
22 2

2
22

mr

L
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m z      (3.42) 

so the energy (41) may be expressed as that of a 1D particle moving along axis r, 

            ),(
2 ef

2 rUr
m

E        (3.43) 

in the following effective potential: 

        
2

2

ef 2
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mr

L
rUrU z .     (3.44) 

So the planetary motion problem has been reduced to the study of an effectively-1D system.15 

13 This is one of the three laws deduced, from the extremely detailed astronomical data collected by Tycho Brahe 
(1546-1601), by Johannes Kepler in the early 17th century. In turn, the three Kepler’s laws have become the main 
basis for Newton’s discovery, a few decades later, of the gravity law (1.15). That relentless march of physics… 
14 One may argue that this fact should have been evident earlier because the effective particle of mass m moves in 
a potential field U(r), which conserves energy. 
15 Note that this reduction has been done in a way different from that used for our testbed problem (Fig. 
2.1) in Sec. 2 above. (The reader is encouraged to analyze this difference.) To emphasize this fact, I will 
keep writing E instead of H here, though for the planetary problem we are discussing now, these two 
notions coincide.  
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Fig. 3.4. The area differential dA in 
the polar coordinates.
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 Now we may proceed just like we did in Sec. 3, with due respect to the very specific effective 
potential (44) which, in particular, diverges at r  0 – besides the very special case of an exactly radial 
motion, Lz = 0. In particular, we may solve Eq. (43) for dr/dt to get 
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      (3.45) 

This equation enables us not only to get a direct relation between time t and distance r, similarly to Eq. 
(26), 
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but also do a similar calculation of the angle  of the effective particle. Indeed, integrating Eq. (39), 

         
2r
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m

L
dt z  ,     (3.47) 

and plugging dt from Eq. (45), we get an explicit expression for the particle’s trajectory  (r):  
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Note that according to Eq. (39), the derivative d/dt does not change sign at the reflection from any 
classical turning point r  0, so, in contrast to Eq. (46), the sign on the right-hand side of Eq. (48) is 
uniquely determined by the initial conditions and cannot change during the motion.  

Let us use these results, valid for any interaction law U(r), for the planetary motion’s 
classification. (Following a good tradition, in what follows I will select the arbitrary constant in the 
potential energy in the way to provide U  0 and hence Uef  0, at r  .) The following cases should 
be distinguished. 

If U(r) < 0, i.e. the particle interaction is attractive (as it always is in the case of gravity), and the 
divergence of the attractive potential at r  0 is faster than 1/r2, then Uef(r)  – at r  0, so at 
appropriate initial conditions the particle may drop on the center even if Lz  0 – the event called the 
capture.16 On the other hand, with U(r) either converging or diverging slower than 1/r2, at r  0, the 
effective energy profile Uef(r) has the shape shown schematically in Fig. 5. This is true, in particular, for 
the very important case   

             ,0with  ,)(  
r

rU      (3.49) 

which describes, in particular, the Coulomb (electrostatic) interaction of two particles with electric 
charges of opposite signs, and Newton’s gravity law (1.15). This particular case will be analyzed in 
detail below, but for now, let us return to the analysis of an arbitrary attractive potential U(r) < 0 leading 
to the effective potential shown in Fig. 5 when the angular-momentum term in Eq. (44) dominates at 
small distances r. 

16 In order to analyze what exactly happens at the capture, i.e. at r = 0, we would need a model more specific than 
Eq. (30). 
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 According to the analysis in Sec. 3, such potential profile, with a minimum at some distance r0, 
may sustain two types of motion, depending on the energy E (determined by initial conditions):  

 (i) If E > 0, there is only one classical turning point where E = Uef, so the distance r either grows 
with time from the very beginning or (if the initial value of r  was negative) first decreases and then, 
after the reflection from the increasing potential Uef, starts to grow indefinitely. The latter case, of 
course, describes the scattering of the effective particle by the attractive center.17 

  (ii) On the opposite, if the energy is within the range 

      ,0)( 0ef  ErU      (3.50) 

the system moves periodically between two classical turning points rmin and rmax – see Fig. 5. These 
oscillations of the distance r correspond to the bound orbital motion of our effective particle about the 
attracting center.  

 Let us start with the discussion of the bound motion, with the energy within the range (50). If the 
energy has its minimal possible value, 

      )],([min)( ef0ef rUrUE       (3.51) 

the distance cannot change, r = r0 = const, so the particle’s orbit is circular, with the radius r0 satisfying 
the condition dUef/dr = 0. Using Eq. (44), we see that the condition for r0 may be written as 

        .
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dU

mr
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      (3.52) 

Since at circular motion, the velocity v is perpendicular to the radius vector r, Lz is just mr0v, the left-
hand side of Eq. (52) equals mv2/r0, while its right-hand side is just the magnitude of the attractive force, 
so this equality expresses the well-known 2nd Newton’s law for the circular motion. Plugging this result 
into Eq. (47), we get a linear law of angle change, ,const t  with the angular velocity 
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2
0 r

v

mr

Lz   ,     (3.53) 

and hence the rotation period T    2/ obeys the elementary relation 

17 In the opposite case when the interaction is repulsive, U(r) > 0, the addition of the positive angular energy term 
only increases the trend, and the scattering scenario is the only one possible. 

Fig. 3.5. Effective potential profile of an attractive 
central field, and two types of motion in it. 
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 Now let the energy be above its minimum value (but still negative). Using Eq. (46) just as in 
Sec. 3, we see that the distance r oscillates with the period  
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This period is not necessarily equal to another period, T, that corresponds to the 2-change of the angle.  

Indeed, according to Eq. (48), the change of the angle   between two sequential points of the nearest 
approach, 
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is generally different from 2. Hence, the general trajectory of the bound motion has a spiral shape – 
see, e.g., an illustration in Fig. 6. 

  

 

 

 

 

 

 

 

 

  

 The situation is special, however, for a very important particular case, namely that of the 
Coulomb potential described by Eq. (49).18 Indeed, plugging this potential into Eq. (48), we get 
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This is a table integral,19 giving 
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18 For the power-law interaction, U  r, the orbits are closed curves only if either  = –1 (the Coulomb potential) 
or  = +2 (the 3D harmonic oscillator) – the so-called Bertrand theorem, proved by J. Bertrand only in 1873. 
19 See, e.g., MA Eq. (6.3a). 
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Fig. 3.6. A typical open orbit of a particle 
moving in a non-Coulomb central field. 
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Hence the reciprocal function, r(), is 2-periodic:  

         
)constcos(1 
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r ,      (3.59) 

so at E < 0, the orbit is a closed line characterized by the following parameters:20 
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 The physical meaning of these parameters is very simple. Indeed, the general Eq. (52), in the 
Coulomb potential for which dU/dr = /r2, shows that p is just the circular orbit radius21 for the given 
Lz: r0 = Lz

2/m    p, so 
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Using this equality together with the second of Eqs. (60), we see that the parameter e (called the 
eccentricity) may be represented just as 
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  Analytical geometry tells us that Eq. (59), with e < 1, is one of the canonical representations of 
an ellipse, with one of its two focuses located at the origin. The fact that planets have such trajectories is 
known as the 1st Kepler’s law. Figure 7 shows the relations between the dimensions of the ellipse and 
the parameters p and e.22 

 

 

 

 

 

 

 
 In particular, the major semi-axis a and the minor semi-axis b are simply related to p and e and 
hence, via Eqs. (60), to the motion integrals E and Lz: 
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   (3.63) 

20 Let me hope that the difference between the parameter p and the particle momentum’s magnitude is absolutely 
clear from the context, so using the same (traditional) notation for both notions cannot lead to confusion. 
21 Mathematicians prefer a more solemn terminology: the parameter 2p is called the latus rectum of the ellipse. 
22 In this figure, the constant participating in Eqs. (58)-(59) is assumed to be zero. A different choice of the 
constant corresponds just to a different origin of , i.e. a constant turn of the ellipse about the origin. 

Fig. 3.7. Ellipse, and its special 
points and dimensions. 
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 As was mentioned above, at E  min [Uef(r)] the orbit is almost circular, with r()  r0  p. On 
the contrary, as E is increased to approach zero (its maximum value for the closed orbit), then e  1, so 
that the aphelion point rmax = p/(1 – e) tends to infinity, i.e. the orbit becomes extremely extended – see 
the magenta lines in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 The above relations enable, in particular, a ready calculation of the rotation period T   Tr = T.  
(In the case of a closed trajectory, Tr and T coincide.) Indeed, it is well known that the ellipse’s area A = 

ab. But according to the 2nd Kepler’s law (40), dA/dt = Lz/2m = const. Hence 

           
mL

ab

dtdA

A

z 2//


T .     (3.64a) 

Using Eqs. (60) and (63), this important result may be represented in several other forms: 

       
2/1

2/3

2/1

32/32

2

2
2)2/()1(




























 m

a
E

m

mLe

p

z

T .  (3.64b) 

 Since for the Newtonian gravity (1.15),  = Gm1m2 = GmM, at m1 << m2 (i.e. m << M),          
this constant is proportional to m, and the last form of Eq. (64b) yields the 3rd Kepler’s law: the periods 
of motion of different planets in the same central field, say that of our Sun, scale as T   a3/2. Note that 
in contrast to the 2nd Kepler’s law (which is valid for any central field), the 1st and the 3rd Kepler’s laws 
are potential-specific. 

 Now reviewing the above derivation of Eqs. (59)-(60), we see that they are also valid in the case 
of E  0 – see the top horizontal line in Fig. 5 and its discussion above, if we limit the results to the 

Fig.3.8.(a) Zoom-in and (b) zoom-out on the Coulomb-
field trajectories corresponding to the same parameter p 
(i.e., the same Lz) but different values of the eccentricity 
parameter e, i.e. of the energy E – see Eq. (60): ellipses 
(e < 1, red lines), a parabola (e = 1, magenta line), and 
hyperbolas (e > 1, blue lines). Note that the transition 
from closed to open trajectories at e = 1 is dramatic only 
at very large distances, r >> p. 
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physically meaningful range r  0. This means that if the energy is exactly zero, Eq. (59) (with 1e ) is 
still valid for all values of   (except for one special point   =   where r becomes infinite) and 
describes a parabolic (i.e. open) trajectory – see the magenta lines in Fig. 8.  

 Moreover, if E > 0, Eq. (59) is still valid within a certain sector of angles ,  

               0for  ,
2

1cos2
1

cos2
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2

2
11 
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m
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e
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 ,  (3.65) 

and describes an open, hyperbolic trajectory (see the blue lines in Fig. 8). As was mentioned earlier, 
such trajectories are typical, in particular, for particle scattering. 

 

3.5. Elastic scattering 

 If E > 0, the motion is unbound for any realistic interaction potential. In this case, the two most 
important parameters of the particle trajectory are the impact parameter b and the scattering angle  
(Fig. 9), and the main task of the theory is to find the relation between them in the given potential U(r).  

 

 

 

 

 

 

 

 For that, it is convenient to note that b is related to the two conserved quantities, the particle’s 
energy23 E and its angular momentum Lz, in a simple way. Indeed, at r >> b, the definition L = r(mv) 
yields Lz = bmv, where v = (2E/m)1/2 is the initial (and hence the final) speed of the particle, so 

        .2 2/1mEbLz       (3.66) 

Hence the angular contribution to the effective potential (44) may be represented as 

      .
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 Next, according to Eq. (48), the trajectory sections going from infinity to the nearest approach 
point (r = rmin) and from that point to infinity, have to be similar, and hence correspond to equal angle 
changes 0  – see Fig. 9. Hence we may apply the general Eq. (48) to just one of the sections, say [rmin, 
], to find the scattering angle: 

23 The energy conservation law is frequently emphasized by calling such process elastic scattering.  

Fig. 3.9. Main geometric parameters of the scattering problem. 
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In particular, for the Coulomb potential (49), now with an arbitrary sign of , we can use the same table 
integral as in the previous section to get24 

              .
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      (3.69a) 

This result may be more conveniently rewritten as 

        .
22

tan
Eb


      (3.69b) 

Very clearly, the scattering angle’s magnitude increases with the potential strength , and decreases as 
either the particle energy or the impact parameter (or both) are increased. 

 The general result (68) and the Coulomb-specific relations (69) represent a formally complete 
solution of the scattering problem. However, in a typical experiment on elementary particle scattering, 
the impact parameter b of a single particle is unknown. In this case, our results may be used to obtain the 
statistics of the scattering angle , in particular, the so-called differential cross-section25 

       ,
1




 d

dN

nd

d
      (3.70) 

where n is the average number of the incident particles per unit area, and dN is the average number of 
the particles scattered into a small solid angle interval d. For a uniform beam of initial particles, 
d/d may be calculated by counting the average number of incident particles that have the impact 
parameters within a small range db: 
      .2 bdbndN       (3.71) 

Scattered by a spherically-symmetric center, which provides an axially-symmetric scattering pattern, 
these particles are scattered into the corresponding small solid angle interval d = 2sin d . 
Plugging these two equalities into Eq. (70), we get the following general geometric relation: 
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.     (3.72) 

 In particular, for the Coulomb potential (49), a straightforward differentiation of Eq. (69) yields 
the so-called Rutherford scattering formula (reportedly, derived by R. H. Fowler): 
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     (3.73) 

24 Alternatively, this result may be recovered directly from the first form of Eq. (65), with the eccentricity e 
expressed via the same dimensionless parameter (2Eb/): e = [1 + (2Eb/)2]1/2 > 1. 
25 This terminology stems from the fact that an integral (74) of d/d over the full solid angle, called the total 
cross-section , has the dimension of the area:  = N/n, where N is the total number of scattered particles. 

Differential 
cross- 

section 

Rutherford 
scattering 

formula 



Essential Graduate Physics                 CM: Classical Mechanics 

 

Chapter 3             Page 18 of 22 

 This result, which shows very strong scattering to small angles (so strong that the integral that 
expresses the total cross-section  

      


  d
d

d




4

      (3.74) 

is diverging at   0)26 and very weak backscattering (to angles   ), was historically extremely 
significant: in the early 1910s, its good agreement with -particle scattering experiments carried out by 
Ernest Rutherford’s group gave a strong justification for his introduction of the planetary model of 
atoms, with electrons moving around very small nuclei – just as planets move around stars. 

 Note that elementary particle scattering is frequently accompanied by electromagnetic radiation 
and/or other processes leading to the loss of the initial mechanical energy of the system. Such inelastic 
scattering may give significantly different results. (In particular, the capture of an incoming particle 
becomes possible even for a Coulomb attracting center.) Also, quantum-mechanical effects may be 
important at the scattering of light particles with relatively low energies,27 so the above results should be 
used with caution. 

 

3.6. Exercise problems 
  

 3.1. For the system considered in Problem 2.6 (a bead 
sliding along a string with fixed tension T, see the figure on the 
right), analyze small oscillations of the bead near the equilibrium. 
 
 
 3.2. For the system considered in Problem 2.7 (a bead sliding along a 
string of a fixed length 2l, see the figure on the right), analyze small 
oscillations near the equilibrium. 
 
 
 3.3. A bead is allowed to slide, without friction, along an 
inverted cycloid in a vertical plane – see the figure on the right. 
Calculate the frequency of its free oscillations as a function of 
their amplitude. 

 Hint: The simplest way to describe a cycloid is to 
express the Cartesian coordinates of its arbitrary point as functions of some parameter .28 For the 
inverted cycloid shown in the figure on the right, such parametric representation is 

            .cos1,sin   RyRx   

26 This divergence, which persists at the quantum-mechanical treatment of the problem (see, e.g., QM Chapter 3), 
is due to particles with very large values of b, and disappears at an account, for example, of any non-zero 
concentration of the scattering centers. 
27 Their discussion may be found in QM Secs. 3.3 and 3.8. 
28 This parameter may be understood as the angle of rotation of a circle of the radius R, rolled along a horizontal 
rail with y = 0 (see the dashed lines in the figure above), whose point moves along the cycloid.. 
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 3.4. Illustrate the changes of the fixed point set of our testbed system (Fig. 2.1), which was 
analyzed at the end of Sec. 3.2 of the lecture notes, on the so-called phase plane [  , ]. 
 
 3.5. For a 1D particle of mass m, placed into the potential well U(q) = q2n (where  > 0, and n 
is a positive integer), calculate the functional dependence of the particle’s oscillation period T  on its 

energy E. Explore the limit n  .  
 
 3.6. Two small masses m1 and m2  m1 may slide without friction over a horizontal surface. They 
are connected with a spring with an equilibrium length l and an elastic constant , and at t < 0 are at rest. 
At t = 0, the mass m1 gets a very short kick with impulse P  F(t)dt in a direction different from the 
spring’s line. Calculate the largest and smallest magnitude of its velocity at t > 0. 
 
 3.7. Explain why the term ,2/22mr  recast in accordance with Eq. (42), cannot be merged with 
U(r) in Eq. (38), to form an effective 1D potential energy U(r) – Lz

2/2mr2, with the second term’s sign 
opposite to that given by Eq. (44). We have done an apparently similar thing for our testbed bead-on-
rotating-ring problem at the very end of Sec. 1 – see Eq. (6); why cannot the same trick work for the 
planetary problem? Besides a formal explanation, discuss the physics behind this difference. 
 
 
 3.8. A system of two equal masses m on a light rod of a fixed length l 
(frequently called a dumbbell) can slide without friction along a vertical ring of 
radius R, rotated about its vertical diameter with a constant angular velocity  – 
see the figure on the right. Derive the condition of stability of the lower horizontal 
position of the dumbbell. 
   

 3.9. Analyze the dynamics of the so-called spherical pendulum – a point 
mass hung, in a uniform gravity field g, on a light cord of length l, with no motion’s confinement to a 
vertical plane. In particular:  

(i) find the integrals of motion and reduce the problem to a 1D one, 
(ii) calculate the time period of the possible circular motion around the vertical axis, and 
(iii) explore small deviations from the circular motion. (Are the pendulum’s orbits closed?)29 

 
 3.10. If our planet Earth was suddenly stopped in its orbit around the Sun, how long would it 
take it to fall on our star? Solve this problem using two different approaches, neglecting the Earth’s orbit 
eccentricity and the Sun’s size. 
 
 3.11. The orbits of Mars and Earth around the Sun may be well approximated as coplanar 
circles,30 with a radii ratio of 3/2. Use this fact, and the Earth’s year duration, to calculate the time of 
travel to Mars when spending the least energy on the spacecraft’s launch. Neglect the planets' size and 
the effects of their own gravitational fields. 
 

29 Solving this problem is very good preparation for the analysis of the symmetric top’s rotation in Sec. 4.5. 
30 Indeed, their eccentricities are close to, respectively, 0.093 and 0.0167. 
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 3.12. Derive first-order and second-order differential equations for the reciprocal distance u  1/r 
as a function of , describing the trajectory of a particle’s motion in a central potential U(r). Spell out 
the latter equation for the particular case of the Coulomb potential (49) and discuss the result. 
 
 3.13. For the motion of a particle in the Coulomb attractive field (U(r) = –/r, with  > 0), 
calculate and sketch the so-called hodograph31 – the trajectory followed by the head of the velocity 
vector v, provided that its tail is kept at the origin. 
 
 3.14. Prove that for an arbitrary motion of a particle of mass m in the Coulomb field U = –/r, 
the vector A  pL – mnr (where nr  r/r) is conserved.32 After that: 

 (i) spell out the scalar product rA and use the result for an alternative derivation of Eq. (59), and 
for a geometric interpretation of the vector A; 
 (ii) spell out (A – pL)2 and use the result for an alternative derivation of the hodograph diagram 
discussed in the previous problem.  
 
 3.15. For a particle moving in the following central potential: 

,)(
2rr

rU


   

 (i) for positive  and , and all possible ranges of energy E, calculate the orbit r();  
 (ii) prove that in the limit   0, for energy E < 0, the orbit may be represented as a slowly 
rotating ellipse; 
 (iii) express the angular velocity of this slow rotation via the parameters  and , the particle’s 
mass m, its energy E, and the angular momentum Lz.  
 
 3.16. A star system contains a much lighter planet and an even much smaller mass of dust. 
Assuming that the attractive gravitational potential of the dust is spherically symmetric and proportional 
to the square of the distance from the star,33 calculate the slow precession it gives to a circular orbit of 
the planet. 
  

3.17. A particle is moving in the field of an attractive central force with the potential 

  0  where,  n
r

rU
n


. 

For what values of n, the circular orbits are stable? 

3.18. Determine the condition for a particle of mass m, moving under the effect of a central 
attractive force 

31 The use of this notion for the characterization of motion may be traced back at least to an 1846 treatise by W. 
Hamilton. Nowadays, it is most often used in applied fluid mechanics, in particular meteorology. 
32 This fact, first proved in 1710 by Jacob Hermann, was repeatedly rediscovered during the next two centuries. 
As a result, the most common name of A is, rather  unfairly, the Runge-Lenz vector. 
33 As may be readily shown from the gravitation version of the Gauss law (see, e.g., the model solution of 
Problem 1.7), this approximation is exact if the dust density is constant between the star and the planet. 
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where  and R are positive constants, to have a stable circular orbit. 

3.19. A particle of mass m, with an angular momentum Lz, moves in the field of an attractive 
central force with a distance-independent magnitude F. If the particle's energy E is slightly higher than 
the value Emin corresponding to its circular orbit, what is the time period of its radial oscillations? 
Compare the period with that of the circular orbit at E = Emin. 
 

 3.20. A particle may move without friction, in the uniform gravity field g = –gnz, over an 
axially-symmetric surface that is described, in the cylindrical coordinates 
{, , z}, by a smooth function Z() – see the figure on the right. Derive the 
condition of stability of circular orbits of the particle around the symmetry 
axis z, with respect to small perturbations. For the cases when the condition 
is fulfilled, find out whether the weakly perturbed orbits are open or closed. 
Spell out your results for the following particular cases:  

 (i) a conical surface with Z = ,  
 (ii) a paraboloid with  Z = 2/2, and 
 (iii) a spherical surface with Z2 + 2 = R2, for  < R. 
 

 3.21. The gravitational potential (i.e. the gravitational energy of a unit probe mass) of our Milky 
Way galaxy, averaged over interstellar distances, is reasonably well approximated by the following 
axially symmetric function: 

   ,ln
2

, 22
2

zr
V

zr    

where r is the distance from the galaxy’s symmetry axis and z is the distance from its central plane, 
while V and  > 0 are constants.34 Prove that circular orbits of stars in this gravity field are stable, and 
calculate the frequencies of their small oscillations near such orbits, in the r- and z-directions. 
 
 3.22. For particle scattering by a repulsive Coulomb field, calculate the minimum approach 
distance rmin and the velocity vmin at that point, and analyze their dependence on the impact parameter b 
(see Fig. 9) and on the initial velocity v of the particle. 
 
 3.23. A particle is launched from afar, with an impact parameter b, toward an attracting center 
creating the potential 

.0  and  2with  ,)(  
n

r
rU

n
 

 (i) For the case when the initial kinetic energy E of the particle is barely sufficient for escaping 
its capture by this attracting center, express the minimum approach distance via b and n. 
 (ii) Calculate the capture’s total cross-section and explore its limit at n  2. 

 

34 Just for the reader’s reference, these constants are close to, respectively, 2.2105 m/s and 6. 
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3.24. A small body with an initial velocity v approaches an atmosphere-free planet of mass M 
and radius R.  

(i) Find the condition on the impact parameter b for the body to hit the planet’s surface. 
(ii) If the body barely avoids the collision, what is its scattering angle? 
 
3.25. Calculate the differential and total cross-sections of the classical elastic scattering of small 

particles by a hard sphere of radius R. 
 
3.26. The most famous35 confirmation of Einstein’s general relativity theory has come from the 

observation, by A. Eddington and his associates, of star light’s deflection by the Sun, during the May 
1919 solar eclipse. Considering light photons as classical particles propagating with the speed of light, 
v0  c  3.00108m/s, and using the astronomic data for the Sun’s mass (MS  1.991030kg) and radius 
(RS  6.96108m), calculate the non-relativistic mechanics’ prediction for the angular deflection of the 
light rays grazing the Sun’s surface. 

 

 3.27. Generalize the expression for the small angle of scattering, obtained in the solution of the 
previous problem, to a spherically symmetric but otherwise arbitrary potential U(r). Use the result to 
calculate the differential cross-section of small-angle scattering by the potential U = C/rn, with integer n 
> 0. 

Hint: You may like to use the following table integral: 
 

 
 2/

2/12/

1

2/1

1
2/121 nn

nd
n 














. 

35 It was not the first confirmation, though. The first one came four years earlier from Albert Einstein himself, 
who showed that his theory may qualitatively explain the difference between the rate of Mercury orbit’s 
precession, known from earlier observations, and the non-relativistic theory of that effect. 
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Chapter 4. Rigid Body Motion 

This chapter discusses the motion of rigid bodies, with a heavy focus on its most nontrivial part: 
rotation. Some byproducts of this analysis enable a discussion, at the end of the chapter, of the motion 
of point particles as observed from non-inertial reference frames.  

 

4.1. Translation and rotation 

 It is natural to start a discussion of many-particle systems from a (relatively :-) simple limit when 
the changes of distances rkk’  rk –rk’ between the particles are negligibly small. Such an abstraction is 
called the (absolutely) rigid body; it is a reasonable approximation in many practical problems, 
including the motion of solid samples. In other words, this model neglects deformations – which will be 
the subject of the next chapters. The rigid-body approximation reduces the number of degrees of 
freedom of the system of N particles from 3N to just six – for example, three Cartesian coordinates of 
one point (say, 0), and three angles of the system’s rotation about three mutually perpendicular axes 
passing through this point – see Fig. 1.1 

 

 

 

 

 

 

 

 As it follows from the discussion in Secs. 1.1-1.3, any purely translational motion of a rigid 
body, at which the velocity vectors v of all points are equal, is not more complex than that of a point 
particle. Indeed, according to Eqs. (1.8) and (1.30), in an inertial reference frame, such a body moves 
exactly as a point particle upon the effect of the net external force F(ext). However, the rotation is a bit 
more tricky. 

 Let us start by showing that an arbitrary elementary displacement of a rigid body may be always 
considered as a sum of the translational motion and of what is called a pure rotation. For that, consider a 
“moving” reference frame {n1, n2, n3}, firmly bound to the body, and an arbitrary vector A (Fig. 1). The 
vector may be represented by its Cartesian components Aj in that moving frame: 

 



3

1j
jjA nA .      (4.1) 

1 An alternative way to arrive at the same number six is to consider three points of the body, which uniquely 
define its position. If movable independently, the points would have nine degrees of freedom, but since three 
distances rkk’ between them are now fixed, the resulting three constraints reduce the number of degrees of freedom 
to six. 

Fig. 4.1. Deriving Eq. (8). 
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 Let us calculate the time derivative of this vector as observed from a different (“lab”) frame, 
taking into account that if the body rotates relative to this frame, the directions of the unit vectors nj, as 
seen from the lab frame, change in time. Hence, in each product contributing to the sum (1), we have to 
differentiate both operands: 

               



3

1

3

1
labin 

j

j
j

j
j

j

dt

d
A

dt

dA

dt

d n
n

A
.    (4.2) 

On the right-hand side of this equality, the first sum obviously describes the change of vector A as 
observed from the moving frame. In the second sum, each of the infinitesimal vectors dnj may be 
represented by its Cartesian components: 

   



3

1j'
j'jj'j dd nn  ,     (4.3) 

where djj’  are some dimensionless scalar coefficients. To find out more about them, let us scalar-
multiply each side of Eq. (3) by an arbitrary unit vector nj”, and take into account the obvious 
orthonormality condition: 
        j'j"j"j' nn ,     (4.4) 

where j’j” is the Kronecker delta symbol.2 As a result, we get 

jj"j"j dd nn .     (4.5) 

Now let us use Eq. (5) to calculate the first differential of Eq. (4): 

       022   ,particularin ;0  jjjjj"j'j'j"j"j'j"j' dddddd  nnnnnn . (4.6) 

 These relations, valid for any choice of indices j, j’, and j” of the set {1, 2, 3}, show that the 
matrix with elements djj’ is antisymmetric with respect to the swap of its indices; this means that there 
are not nine just three non-zero independent coefficients djj’, all with j  j’. Hence it is natural to 
renumber them in a simpler way: djj’ = –dj’j   dj”, where the indices j, j’, and j” follow in the 
“correct” order –  either {1,2,3}, or {2,3,1}, or {3,1,2}. It is straightforward to verify (either just by a 
component-by-component comparison or by using the Levi-Civita permutation symbol3) that in this new 
notation, Eq. (3) may be represented just as a vector product: 

 jj dd nφn  ,      (4.7) 

where d is the infinitesimal vector defined by its Cartesian components dj in the rotating reference 
frame {n1, n2, n3}. 

 This relation is the basis of all rotation kinematics. Using it, Eq. (2) may be rewritten as 

                      .  where,
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 (4.8) 

To reveal the physical sense of the vector , let us apply Eq. (8) to the particular case when A is the 
radius vector r of a point of the body, and the lab frame is selected in a special way: its origin has the 

2 See, e.g., MA Eq. (13.1). 
3 See, e.g., MA Eq. (13.2). Using this symbol, we may write djj’ = –dj’j  jj’j”dj” for any choice of j, j’, and j”. 
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same position and moves with the same velocity as that of the moving frame, in the particular instant 
under consideration. In this case, the first term on the right-hand side of Eq. (8) is zero, and we get  

         rω
r

frame lab specialin dt

d
,     (4.9) 

were vector r itself is the same in both frames. According to the vector product definition, the particle 
velocity described by this formula has a direction perpendicular to the vectors  and r (Fig. 2), and 
magnitude rsin. As Fig. 2 shows, the last expression may be rewritten as , where  = rsin is the 
distance from the line that is parallel to the vector  and passes through point 0. This is of course just 
the pure rotation about that line (called the instantaneous axis of rotation), with the angular velocity . 
According to Eqs. (3) and (8), the angular velocity vector  is defined by the time evolution of the 
moving frame alone, so it is the same for all points r, i.e. for the rigid body as a whole. Note that nothing 
in our calculations forbids not only the magnitude but also the direction of the vector , and thus of the 
instantaneous axis of rotation, to change in time; hence the name. 

 

 

 

 

 

 

 
 Now let us generalize our result a step further, considering two reference frames that do not 
rotate versus each other: one (“lab”) frame is arbitrary, and another one is selected in the special way 
described above, so Eq. (9) is valid in it. Since the relative motion of these two reference frames is 
purely translational, we can use the simple velocity addition rule given by Eq. (1.6) to write 

         ,labin 0frame  lab  specialin  labin 0labin rωvvvv     (4.10) 

where r is the radius vector of a point is measured in the body-bound (“moving”) frame 0.  

 

4.2. Inertia tensor 

Since the dynamics of each point of a rigid body is strongly constrained by the conditions rkk’ = 
const, this is one of the most important fields of application of the Lagrangian formalism discussed in 
Chapter 2. For using this approach, the first thing we need to calculate is the kinetic energy of the body 
in an inertial reference frame. Since it is just the sum of the kinetic energies (1.19) of all its points, we 
can use Eq. (10) to write:4 

    .)(
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T  (4.11) 

4 Actually, all symbols for particle masses, coordinates, and velocities should carry the particle’s index, over 
which the summation is carried out. However, in this section, for the notation simplicity, this index is just implied. 

Fig. 4.2. The instantaneous axis and 
the angular velocity of rotation. 
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Let us apply to the right-hand side of Eq. (11) two general vector analysis formulas listed in the Math 
Appendix: the so-called operand rotation rule MA Eq. (7.6) to the second term, and MA Eq. (7.7b) to 
the third term. The result is 

          222
0

2
0 )(

2
)(

2
rωωvr r

m
mv

m
T  .   (4.12) 

This expression may be further simplified by making a specific choice of the point 0 (from which the 
radius vectors r of all particles are measured), namely by using for this point the center of mass of the 
body. As was already mentioned in Sec. 3.4 for the two-point case, the radius vector R of this point is 
defined as 
                mMmM with ,rR ,    (4.13) 

so M  is the total mass of the body. In the reference frame centered at this point, we have R = 0, so that 
the second sum in Eq. (12) vanishes, and the kinetic energy is a sum of just two terms: 

                 222
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tranrottran )(
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, rωr
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TTTT  ,  (4.14) 

where V  dR/dt is the center-of-mass velocity in our inertial reference frame, and all particle positions 
r are measured in the center-of-mass frame. Since the angular velocity vector  is common for all points 
of a rigid body, it is more convenient to rewrite the rotational part of the energy in a form in that the 
summation over the components of this vector is separated from the summation over the points of the 
body: 
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1',
''rot ,

2

1

jj
jjjjIT       (4.15) 

where the 33 matrix with elements 

            ''
2

' jjjjjj rrrmI       (4.16) 

represents, in the selected reference frame, the inertia tensor of the body.5  

 Actually, the term “tensor” for the construct described by this matrix has to be justified, because 
in physics it implies a certain reference-frame-independent notion, whose matrix elements have to obey 
certain rules at the transfer between reference frames. To show that the matrix (16) indeed describes 
such a notion, let us calculate another key quantity, the total angular momentum L of the same body.6 
Summing up the angular momenta of each particle, defined by Eq. (1.31), and then using Eq. (10) again, 
in our inertial reference frame we get 

               rωrvrrωvrvrprL mmmm 00 . (4.17) 

 We see that the momentum may be represented as a sum of two terms. The first one, 

5 While the ABCs of the rotational dynamics were developed by Leonhard Euler in 1765, an introduction of the 
inertia tensor’s formalism had to wait very long – until the invention of the tensor analysis by Tullio Levi-Civita 
and Gregorio Ricci-Curbastro in 1900 – soon popularized by its use in Einstein’s general relativity. 
6 Hopefully, there is very little chance of confusing the angular momentum L (a vector) and its Cartesian 
components Lj (scalars with an index) on one hand, and the Lagrangian function L (a scalar without an index) on 
the other hand. 
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      ,000 vRvrL   Mm      (4.18) 

describes the possible rotation of the center of mass about the inertial frame’s origin. This term vanishes 
if the moving reference frame’s origin 0 is positioned at the center of mass (where R = 0). In this case, 
we are left with only the second term, which describes a pure rotation of the body about its center         
of mass: 
          rωrLL mrot .     (4.19) 

Using one more vector algebra formula, the “bac minis cab” rule,7 we may rewrite this expression as  

            ωrrωL 2rm .     (4.20) 

Let us spell out an arbitrary Cartesian component of this vector:  
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By changing the summation order and comparing the result with Eq. (16), the angular momentum may 
be conveniently expressed via the same matrix elements Ijj’ as the rotational kinetic energy: 
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1'
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j
j'jjj IL  .     (4.22) 

 Since L and  are both legitimate vectors (meaning that they describe physical vectors 
independent of the reference frame choice), the matrix of elements Ijj’ that relates them is a legitimate 
tensor. This fact, and the symmetry of the tensor (Ijj’ = Ij’j), evident from its definition (16), allow the 
tensor to be further simplified. In particular, mathematics tells us that by a certain choice of the 
coordinate axes’ orientations, any symmetric tensor may be reduced to a diagonal form 

         ,' jj'jjj II        (4.23) 

where in our case 

                    22222
jj"j'jj mrrmrrmI  ,    (4.24) 

j being the distance of the particle from the jth axis, i.e. the length of the perpendicular dropped from 
the point to that axis. The axes of such a special coordinate system are called the principal axes, while 
the diagonal elements Ij given by Eq. (24), the principal moments of inertia of the body. In such a 
special reference frame,  Eqs. (15) and (22) are reduced to very simple forms: 
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T  ,     (4.25) 

         .jjj IL        (4.26) 

Both these results remind the corresponding relations for the translational motion, Ttran = MV2/2 and P = 
MV, with the angular velocity  replacing the linear velocity V, and the tensor of inertia playing the role 
of scalar mass M. However, let me emphasize that even in the specially selected reference frame, with 

7 See, e.g., MA Eq. (7.5). 
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its axes pointing in principal directions, the analogy is incomplete, and rotation is generally more 
complex than translation, because the measures of inertia, Ij, are generally different for each principal 
axis.  

 Let me illustrate the last fact on a simple but instructive system of three similar massive particles 
fixed in the vertices of an equilateral triangle (Fig. 3).  

 

 

 

 

  

 

Due to the symmetry of the configuration, one of the principal axes has to pass through the center of 
mass 0 and be normal to the plane of the triangle. For the corresponding principal moment of inertia, Eq. 
(24) readily yields I3 = 3m2. If we want to express this result in terms of the triangle’s side a, we may 
notice that due to the system’s symmetry, the angle marked in Fig. 3 equals /6, and from the shaded 
right triangle, a/2 = cos(/6)  3/2, giving  = a/3, so, finally, I3 = ma2. 

 Let me use this simple case to illustrate the following general axis shift theorem, which may be 
rather useful – especially for more complex systems. For that, let us relate the inertia tensor elements Ijj’ 
and I’jj’, calculated in two reference frames – one with its origin at the center of mass 0, and another one 
(0’) translated by a certain vector d (Fig. 4a), so for an arbitrary point, r’ = r + d. Plugging this relation 
into Eq. (16), we get 
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  (4.27) 

Since in the center-of-mass frame, all sums mrj equal zero, we may use Eq. (16) to finally obtain 

               )( '
2

'' jjjjjjjj' dddMII'   .    (4.28) 

In particular, this equation shows that if the shift vector d is perpendicular to one (say, jth) of the 
principal axes (Fig. 4b), i.e. dj = 0, then Eq. (28) is reduced to a very simple formula: 

                        .2MdII' jj       (4.29) 

 

 

 

 

 

 

Fig. 4.4. (a) A general coordinate 
frame’s shift from the center of 
mass, and (b) a shift perpendicular 
to one of the principal axes.  
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 Now returning to the particular system shown in Fig. 3, let us perform such a shift to the new 
(“primed”) axis passing through the location of one of the particles, still perpendicular to their common 
plane. Then the contribution of that particular mass to the primed moment of inertia vanishes, and I’3 = 
2ma2. Now, returning to the center of mass and applying Eq. (29), we get I3 = I’3 – M2 = 2ma2 – 
(3m)(a/3)2 = ma2, i.e. the same result as above. 

 The symmetry situation inside the triangle’s plane is somewhat less obvious, so let us start by 
calculating the moments of inertia for the axes shown vertical and horizontal in Fig. 3. From Eq. (24), 
we readily get: 
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  ,    (4.30) 

where h is the distance from the center of mass and any side of the triangle: h =  sin(/6) = /2 = 
a/23. We see that I1 = I2, and mathematics tells us that in this case, any in-plane axis (passing through 
the center-of-mass 0) may be considered as principal, and has the same moment of inertia. A rigid body 
with this property, I1 = I2  I3, is called the symmetric top. (The last direction is called the main principal 
axis of the system.)  

 Despite the symmetric top’s name, the situation may be even more symmetric in the so-called 
spherical tops, i.e.  highly symmetric systems whose principal moments of inertia are all equal, 

                IIII  321 ,     (4.31) 

Mathematics says that in this case, the moment of inertia for rotation about any axis (but still passing 
through the center of mass) is equal to the same I. Hence Eqs. (25) and (26) are further simplified for 
any direction of the vector : 

         ωL I
I

T  ,
2

2
rot  ,     (4.32) 

thus making the analogy of rotation and translation complete. (As will be discussed in the next section, 
this analogy is also complete if the rotation axis is fixed by external constraints.)   

 Evident examples of a spherical top are a uniform sphere and a uniform spherical shell; its less 
obvious example is a uniform cube – with masses either concentrated in vertices, or uniformly spread 
over the faces, or uniformly distributed over the volume. Again, in this case any axis passing through the 
center of mass is a principal one and has the same principal moment of inertia. For a sphere, this is 
natural; for a cube, rather surprising – but may be confirmed by a direct calculation. 

 

4.3. Fixed-axis rotation 

 Now we are well equipped for a discussion of the rigid body’s rotational dynamics. The general 
equation of this dynamics is given by Eq. (1.38), which is valid for dynamics of any system of particles 
– either rigidly connected or not: 
           τL  ,       (4.33) 

where  is the net torque of external forces. Let us start exploring this equation from the simplest case 
when the axis of rotation, i.e. the direction of vector , is fixed by some external constraints. Directing 
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the z-axis along this vector, we have x = y = 0. According to Eq. (22), in this case, the z-component of 
the angular momentum,  
         ,zzzz IL        (4.34) 

where Izz, though not necessarily one of the principal moments of inertia. still may be calculated using 
Eq. (24): 

        222 yxmmI zzz  ,    (4.35) 

with z being the distance of each particle from the rotation axis z. According to Eq. (15), in this case the 
rotational kinetic energy is just 

                  2
rot 2 z

zzI
T  .      (4.36) 

Moreover, it is straightforward to show that if the rotation axis is fixed, Eqs. (34)-(36) are valid even if 
the axis does not pass through the center of mass – provided that the distances z are now measured 
from that axis. (The proof is left for the reader’s exercise.) 

 As a result, we may not care about other components of the vector L,8 and use just one 
component of Eq. (33), 
           ,zzL        (4.37) 

because it, when combined with Eq. (34), completely determines the dynamics of rotation: 

               ,  i.e., zzzzzzzz II        (4.38) 

where z is the angle of rotation about the axis, so z = . The scalar relations (34), (36), and (38), 
describing rotation about a fixed axis, are completely similar to the corresponding formulas of 1D 
motion of a single particle, with z corresponding to the usual (“linear”) velocity, the angular 
momentum component Lz – to the linear momentum, and Iz  – to the particle’s mass. 

 The resulting motion about the axis is also frequently similar to that of a single particle. As a 
simple example, let us consider what is called the physical (or “compound”) pendulum (Fig. 5) – a rigid 
body free to rotate about a fixed horizontal axis that does not pass through the center of mass 0, in a 
uniform gravity field g.  

 

 

 

 

 

 

 

8 Note that according to Eq. (22), other Cartesian components of the angular momentum, Lx and Ly, may be 
different from zero, and even evolve in time. The corresponding torques x and y, which obey Eq. (33), are 
automatically provided by the external forces that keep the rotation axis fixed. 

Fig. 4.5. Physical pendulum: a rigid 
body with a fixed (horizontal) rotation 
axis  0’ that does not pass through the 
center of mass 0. (The plane of 
drawing is normal to that axis.) 
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 Let us drop the perpendicular from point 0 to the rotation axis, and call the oppositely directed 
vector l – see the dashed arrow in Fig. 5. Then the torque (relative to the rotation axis 0’) of the forces 
keeping the axis fixed is zero, and the only contribution to the net torque is due to gravity alone:  

            glgrglgrlFrτ   Mmmm 0in 0in '0in '0in . (4.39) 

(The last step used the facts that point 0 is the center of mass, so the second term on the right-hand side 
equals zero, and that the vectors l and g are the same for all particles of the body.) 

 This result shows that the torque is directed along the rotation axis, and its (only) component z 
is equal to –Mglsin, where   is the angle between the vectors l and g, i.e. the angular deviation of the 
pendulum from the position of equilibrium – see Fig. 5 again. As a result, Eq. (38) takes the form,  

                ,sin MglI'       (4.40) 

where I’ is the moment of inertia for rotation about the axis 0’ rather than about the center of mass. This 
equation is identical to Eq. (1.18) for the point-mass (sometimes called “mathematical”) pendulum, with 
small-oscillation frequency 
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      (4.41) 

As a sanity check, in the simplest case when the linear size of the body is much smaller than the 
suspension length l, Eq. (35) yields I’ = Ml2, i.e. lef = l, and Eq. (41) reduces to the well-familiar formula 
 = (g/l)1/2 for the point-mass pendulum. 

 Now let us discuss the situations when a rigid body not only rotates but also moves as a whole. 
As was mentioned in the introductory chapter, the total linear momentum of the body, 

                rrvP m
dt

d
mm  ,    (4.42) 

satisfies the 2nd Newton’s law in the form (1.30). Using the definition (13) of the center of mass, the 
momentum may be represented as  
                ,MM VRP        (4.43) 
so Eq. (1.30) may be rewritten as  
           FV M ,      (4.44) 

where F is the vector sum of all external forces. This equation shows that the center of mass of the body 
moves exactly like a point particle of mass M, under the effect of the net force F. In many cases, this 
fact makes the translational dynamics of a rigid body absolutely similar to that of a point particle.  

 The situation becomes more complex if some of the forces contributing to the vector sum F 
depend on the rotation of the same body, i.e. if its rotational and translational motions are coupled. 
Analysis of such coupled motion is rather straightforward if the direction of the rotation axis does not 
change in time, and hence Eqs. (34)-(36) are still valid. Possibly the simplest example is a round 
cylinder (say, a wheel) rolling on a surface without slippage (Fig. 6). Here the no-slippage condition 
may be represented as the requirement to the net velocity of the particular wheel’s point A that touches 
the surface to equal zero – in the reference frame bound to the surface. For the simplest case of plane 
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surface (Fig. 6a), this condition may be spelled out using Eq. (10), giving the following relation between 
the angular velocity   of the wheel and the linear velocity V of its center: 

         .0 rV       (4.45) 

 

  

 

 

 
  
 
 Such kinematic relations are essentially holonomic constraints, which reduce the number of 
degrees of freedom of the system. For example, without the no-slippage condition (45), the wheel on a 
plane surface has to be considered as a system with two degrees of freedom, making its total kinetic 
energy (14) a function of two independent generalized velocities, say V  and  : 

                22
rottran 22
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M
TTT  .    (4.46) 

Using Eq. (45) we may eliminate, for example, the linear velocity and reduce Eq. (46) to  

        .  where,
222
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T      (4.47) 

This result may be interpreted as the kinetic energy of pure rotation of the wheel about the instantaneous 
rotation axis A, with Ief being the moment of inertia about that axis, satisfying Eq. (29). 

 Kinematic relations are not always as simple as Eq. (45). For example, if a wheel is rolling on a 
concave surface (Fig. 6b), we need to relate the angular velocities of the wheel’s rotation about its axis 
0’ (say, ) and that (say, ) of its axis’ rotation about the center 0 of curvature of the surface. A popular 
error here is to write  = –(r/R) [WRONG!]. A prudent way to derive the correct relation is to note 
that Eq. (45) holds for this situation as well, and on the other hand, the same linear velocity of the 
wheel’s center may be expressed as V = (R – r). Combining these formulas, we get the correct relation 

      .
rR

r


      (4.48) 

 Another famous example of the relation between translational and rotational motion is given by 
the “sliding-ladder” problem (Fig. 7). Let us analyze it for the simplest case of negligible friction, and 
the ladder’s thickness being small in comparison with its length l. 

 

 

 

 

 
Fig. 4.7. The sliding-ladder problem. 
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 To use the Lagrangian formalism, we may write the kinetic energy of the ladder as the sum (14) 
of its translational and rotational parts: 

             ,
22

222  I
YX

M
T       (4.49) 

where X and Y are the Cartesian coordinates of its center of mass in an inertial reference frame, and I is 
the moment of inertia for rotation about the z-axis passing through the center of mass. (For the 
uniformly distributed mass, an elementary integration of Eq. (35) yields I = Ml2/12). In the reference 
frame with the center in the corner 0, both X and Y may be simply expressed via the angle  : 
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(The easiest way to obtain these relations is to notice that the dashed line in Fig. 7 has length l/2, and the 
same slope  as the ladder.) Plugging these expressions into Eq. (49), we get 
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  .    (4.51) 

Since the potential energy of the ladder in the gravity field may be also expressed via the same angle, 

        ,sin
2

l
MgMgYU       (4.52) 

  may be conveniently used as the (only) generalized coordinate of the system. Even without writing 
the Lagrange equation of motion for that coordinate, we may notice that since the Lagrangian function L 
 T – U does not depend on time explicitly, and the kinetic energy (51) is a quadratic-homogeneous 
function of the generalized velocity  , the full mechanical energy, 
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is conserved, giving us the first integral of motion. Moreover, Eq. (53) shows that the system’s energy 
(and hence dynamics) is identical to that of a physical pendulum with an unstable fixed point 1 = /2, a 
stable fixed point at  2  = –/2, and frequency  
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l

g
     (4.54) 

of small oscillations near the latter point. (Of course, this fixed point cannot be reached in the simple 
geometry shown in Fig. 7, where the ladder’s fall on the floor would change its equations of motion. 
Moreover, even before that, the left end of the ladder may detach from the wall. The analysis of this 
issue is left for the reader’s exercise.) 

 

4.4. Free rotation 

 Now let us proceed to more complex situations when the rotation axis is not fixed. A good 
illustration of the complexity arising in this case comes from the case of a rigid body left alone, i.e. not 
subjected to external forces and hence with its potential energy U constant. Since in this case, according 
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to Eq. (44), the center of mass (as observed from any inertial reference frame) moves with a constant 
velocity, we can always use a convenient inertial reference frame with the origin at that point. From the 
point of view of such a frame, the body’s motion is a pure rotation, and Ttran = 0. Hence, the system’s 
Lagrangian function is just its rotational energy (15), which is, first, a quadratic-homogeneous function 
of the components j (which may be taken for generalized velocities), and, second, does not depend on 
time explicitly. As we know from Chapter 2, in this case the mechanical energy, here equal to Trot alone, 
is conserved. According to Eq. (15), for the principal-axes components of the vector , this means 
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2j
j

jI
T  .     (4.55) 

Next, as Eq. (33) shows, in the absence of external forces, the angular momentum L of the body is 
conserved as well. However, though we can certainly use Eq. (26) to represent this fact as  

          const 
3

1

 
j

jjjI nL  ,     (4.56) 

where nj are the principal axes, this does not mean that all components j are constant, because the 
principal axes are fixed relative to the rigid body, and hence may rotate with it. 

 Before exploring these complications, let us briefly mention two conceptually easy, but 
practically very important cases. The first is a spherical top (I1 = I2 = I3 = I). In this case, Eqs. (55) and 
(56) imply that all components of the vector  = L/I, i.e. both the magnitude and the direction of the 
angular velocity are conserved, for any initial spin. In other words, the body conserves its rotation speed 
and axis direction, as measured in an inertial frame. The most obvious example is a spherical planet. For 
example, our Mother Earth, rotating about its axis with angular velocity  = 2/(1 day)  7.310-5 s-1, 
keeps its axis at a nearly constant angle of 2327’ to the ecliptic pole, i.e. to the axis normal to the plane 
of its motion around the Sun. (In Sec. 6 below, we will discuss some very slow motions of this axis, due 
to gravity effects.) 

 Spherical tops are also used in the most accurate gyroscopes, usually with gas-jet or magnetic 
suspension in vacuum. If done carefully, such systems may have spectacular stability. For example, the 
gyroscope system of the Gravity Probe B satellite experiment, flown in 2004-2005, was based on quartz 
spheres – round with a precision of about 10 nm and covered with superconducting thin films (which 
enabled their magnetic suspension and monitoring). The whole system was stable enough to measure the 
so-called geodetic effect in general relativity (essentially, the space curving by the Earth’s mass), 
resulting in the axis’ precession by only 6.6 arc seconds per year, i.e. with an angular velocity of just 
~10-11s-1, with experimental results agreeing with theory with a record ~0.3% accuracy.9 

 The second simple case is that of the symmetric top (I1 = I2  I3) with the initial vector L aligned 
with the main principal axis. In this case,  = L/I3 = const, so the rotation axis is conserved.10 Such tops, 
typically in the shape of a flywheel (heavy, flat rotor), and supported by gimbal systems (also called the 
“Cardan suspensions”) that allow for virtually torque-free rotation about three mutually perpendicular 

9 Still, the main goal of this rather expensive (~$750M) project, an accurate measurement of a more subtle 
relativistic effect, the so-called frame-dragging drift (also called “the Schiff precession”), predicted to be about 
0.04 arc seconds per year, has not been achieved. 
10 This is also true for an asymmetric top, i.e. an arbitrary body (with, say, I1 < I2 < I3), but in this case the 
alignment of the vector L with the axis n2 corresponding to the intermediate moment of inertia, is unstable. 
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axes,11 are broadly used in more common gyroscopes. Invented by Léon Foucault in the 1850s and made 
practical later by H. Anschütz-Kaempfe, such gyroscopes have become core parts of automatic guidance 
systems, for example, in ships, airplanes, missiles, etc. Even if its support wobbles and/or drifts, the 
suspended gyroscope sustains its direction relative to an inertial reference frame.12 

 However, in the general case with no such special initial alignment, the dynamics of symmetric 
tops is more complicated. In this case, the vector L is still conserved, including its direction, but the 
vector  is not. Indeed, let us direct the n2-axis normally to the common plane of the vector L and the 
current instantaneous direction n3 of the main principal axis (in Fig. 8 below, the plane of the drawing); 
then, in that particular instant, L2 = 0. Now let us recall that in a symmetric top, the axis n2 is a principal 
one. According to Eq. (26) with j = 2, the corresponding component 2 has to be equal to L2/I2, so it is 
equal to zero. This means that in the particular instant we are considering, the vector  lies in this plane 
(the common plane of vectors L and n3) as well – see Fig. 8a. 

    

 

 

 

  

 

 

  

 Now consider some point located on the main principal axis n3, and hence on the plane [n3, L]. 
Since  is the instantaneous axis of rotation, according to Eq. (9), the point’s instantaneous velocity v = 
r  is directed normally to that plane. This is true for each point of the main axis (besides only one, 
with r = 0, i.e. the center of mass, which does not move), so the axis as a whole has to move normally to 
the common plane of the vectors L, , and n3, while still passing through point 0. Since this conclusion 
is valid for any moment of time, it means that the vectors  and n3 rotate about the space-fixed vector L 
together, with some angular velocity pre, at each moment staying within one plane. This effect is called 
the free (or “torque-free”, or “regular”) precession, and has to be clearly distinguished it from the 
completely different effect of the torque-induced precession, which will be discussed in the next section. 

To calculate pre, let us represent the instant vector  as a sum of not its Cartesian components 
(as in Fig. 8a), but rather of two non-orthogonal vectors directed along n3 and L (Fig. 8b):  

             .,pre3rot LLL

L
nnnω       (4.57) 

11 See, for example, a nice animation available online at http://en.wikipedia.org/wiki/Gimbal. 
12 Currently, optical gyroscopes are becoming more popular for all but the most precise applications. Much more 
compact but also much less accurate gyroscopes used, for example, in smartphones and tablet computers, are 
based on the effect of rotation on 2D mechanical oscillators (whose analysis is left for the reader’s exercise), and 
are implemented as micro-electro-mechanical systems (MEMS) – see, e.g., Chapter 22 in V. Kaajakari, Practical 
MEMS, Small Gear Publishing, 2009. 

(a)            (b) 

Fig. 4.8. Free rotation of a symmetric top: 
(a) the general configuration of vectors, 
and (b) calculating the free precession 
frequency. 

0

rotpre


1

L
ω

1n

3n

Ln

0

L
ω

3

1

3L

1L

3n

1n







Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 4             Page 14 of 32

Fig. 8b shows that rot has the meaning of the angular velocity of rotation of the body about its main 
principal axis, while pre is the angular velocity of rotation of that axis about the constant direction of 
the vector L, i.e. is exactly the frequency of precession that we are trying to find. Now pre may be 
readily calculated from the comparison of two panels of Fig. 8, by noticing that the same angle  
between the vectors L and n3 participates in two relations: 

               .sin
pre

11




 
L

L
     (4.58) 

Since the n1-axis is a principal one, we may use Eq. (26) for j = 1, i.e. L1 = I11, to eliminate 1 from 
Eq. (58), and get a very simple formula 

          
1

pre I

L
 .      (4.59) 

This result shows that the precession frequency is constant and independent of the alignment of the 
vector L with the main principal axis n3, while its amplitude (characterized by the angle ) does depend 
on the initial alignment, and vanishes if L is parallel to n3.13 Note also that if all principal moments of 
inertia are of the same order, pre is of the same order as the total angular speed     of the rotation. 

 Now let us briefly discuss the free precession in the general case of an “asymmetric top”, i.e. a 
body with arbitrary I1  I2  I3. In this case, the effect is more complex because here not only the 
direction but also the magnitude of the instantaneous angular velocity  may evolve in time. If we are 
only interested in the relation between the instantaneous values of j and Lj, i.e. the “trajectories” of the 
vectors  and L as observed from the reference frame {n1, n2, n3} of the principal axes of the body, 
rather than in the explicit law of their time evolution, they may be found directly from the conservation 
laws. (Let me emphasize again that the vector L, being constant in an inertial reference frame, generally 
evolves in the frame rotating with the body.) Indeed, Eq. (55) may be understood as the equation of an 
ellipsoid in the Cartesian coordinates {1, 2, 3 }, so for a free body, the vector  has to stay on the 
surface of that ellipsoid.14  On the other hand, since the reference frame’s rotation preserves the length 
of any vector, the magnitude (but not the direction!) of the vector L is also an integral of motion in the 
moving frame, and we can write 

     const 
3

1

22
3

1

22  
 j

jj
j

j ILL  .    (4.60) 

Hence the trajectory of the vector  follows the closed curve formed by the intersection of two 
ellipsoids, (55) and (60) – the so-called Poinsot construction. It is evident that this trajectory is generally 
“taco-edge-shaped”, i.e. more complex than a planar circle, but never very complex either.15 

 The same argument may be repeated for the vector L, for whom the first form of Eq. (60) 
describes a sphere, and Eq. (55), another ellipsoid: 

13 For our Earth, free precession’s amplitude is so small (corresponding to sub-10-m linear deviations of the 
symmetry axis from the vector L at the surface) that this effect is of the same order as other, more irregular 
motions of the axis, resulting from turbulent fluid flow effects in the planet’s interior and its atmosphere. 
14 It is frequently called the Poinsot’s ellipsoid, named after Louis Poinsot (1777-1859) who has made several 
important contributions to rigid body mechanics. 
15 Curiously, the “wobbling” motion along such trajectories was observed not only for macroscopic rigid bodies 
but also for heavy atomic nuclei – see, e.g., N. Sensharma et al., Phys. Rev. Lett. 124, 052501 (2020). 
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On the other hand, if we are interested in the trajectory of the vector  as observed from an 
inertial frame (in which the vector L stays still), we may note that the general relation (15) for the same 
rotational energy Trot may also be rewritten as 
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3
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''rot 2

1

j j
jjjj IT  .     (4.62) 

But according to the Eq. (22), the second sum on the right-hand side is nothing more than Lj, so 

       Lω  
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1
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1 3

1
rot

j
jj LT  .     (4.63) 

This equation shows that for a free body (Trot = const, L = const), even if the vector  changes in time, 
its endpoint should stay on a plane normal to the angular momentum L. Earlier, we have seen that for 
the particular case of the symmetric top – see Fig. 8b, but for an asymmetric top, the trajectory of the 
endpoint may not be circular. 

 If we are interested not only in the trajectory of the vector  but also in the law of its evolution 
in time, it may be calculated using the general Eq. (33) expressed in the principal components j. For 
that, we have to recall that Eq. (33) is only valid in an inertial reference frame, while the frame {n1, n2, 
n3} may rotate with the body and hence is generally not inertial. We may handle this problem by 
applying, to the vector L, the general kinematic relation (8): 

       .movin labin Lω
LL


dt

d

dt

d
     (4.64) 

Combining it with Eq. (33), in the moving frame we get 

      τLω
L


dt

d
,     (4.65) 

where  is the external torque. In particular, for the principal-axis components Lj, related to the 
components j by Eq. (26), the vector equation (65) is reduced to a set of three scalar Euler equations 

                 jjjjjjj III   "''" )( ,     (4.66) 

where the set of indices { j, j’ , j” } has to follow the usual “right” order – e.g., {1, 2, 3}, etc.16   

 In order to get a feeling of how the Euler equations work, let us return to the particular case of a 
free symmetric top (1 = 2 = 3 = 0, I1 = I2  I3). In this case, I1 – I2 = 0, so Eq. (66) with j = 3 yields 3 
= const, while the equations for j = 1 and j = 2 take the following simple form: 

               ,Ω,Ω 1pre22pre1        (4.67) 

where pre is a constant determined by both the system parameters and the initial conditions: 

16 These equations are of course valid in the simplest case of the fixed rotation axis as well. For example, if  = 
nz, i.e. x = y = 0, Eq. (66) is reduced to Eq. (38). 

Euler 
equations 
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3preΩ
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II 
  .     (4.68) 

 The system of two equations (67) has a sinusoidal solution with frequency pre, and describes a 
uniform rotation of the vector , with that frequency, about the main axis n3. This is just another 
representation of the free precession analyzed above, but this time as observed from the rotating body. 
Evidently, pre is substantially different from the frequency pre (59) of the precession as observed from 
the lab frame; for example, pre vanishes for the spherical top (with I1 = I2 = I3), while pre, in this case, 
is equal to the rotation frequency.17  

 Unfortunately, for the rotation of an asymmetric top (i.e., an arbitrary rigid body) the Euler 
equations (66) are substantially nonlinear even in the absence of external torque, and may be solved 
analytically only in just a few cases. One of them is a proof of the already mentioned fact: the free top’s 
rotation about one of its principal axes is stable if the corresponding principal moment of inertia is either 
the largest or the smallest one of the three. (This proof is easy, and is left for the reader’s exercise.)  

 

 4.5. Torque-induced precession 

 The dynamics of rotation becomes even more complex in the presence of external forces. Let us 
consider the most counter-intuitive effect of torque-induced precession, for the simplest case of an 
axially-symmetric body (which is a particular case of the symmetric top, I1 = I2  I3), supported at some 
point A of its symmetry axis, that does not coincide with the center of mass 0 – see Fig. 9.  

 

 

 

 

   

  

 

  
 
 

 The uniform gravity field g creates bulk-distributed forces that, as we know from the analysis of 
the physical pendulum in Sec. 3, are equivalent to a single force Mg applied in the center of mass – in 
Fig. 9, point 0. The torque of this force relative to the support point A is  

     gngrτ  30 Ain MlM .     (4.69) 

Hence the general equation (33) of the angular momentum evolution (valid in any inertial frame, for 
example the one with its origin at point A) becomes 

17 For our Earth with its equatorial bulge (see Sec. 6 below), the ratio (I3 – I1)/I1 is ~1/300, so that 2/pre is about 
10 months. However, due to the fluid flow effects mentioned above, the observed precession is not very regular. 

Fig. 4.9. Symmetric top in the gravity field: 
(a) a side view at the system and (b) the top 
view at the evolution of the horizontal 
component of the angular momentum vector. 
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       gnL  3Ml .     (4.70) 

Despite the apparent simplicity of this (exact!) equation, its analysis is straightforward only in the limit 
when the top is spinning about its symmetry axis n3 with a very high angular velocity rot. In this case, 
we may neglect the contribution to L due to a relatively small precession velocity pre (still to be 
calculated), and use Eq. (26) to write 

                .3rot33 nωL II       (4.71) 

Then Eq. (70) shows that the vector L is perpendicular to both n3 (and hence L) and g, i.e. lies within a 
horizontal plane and is perpendicular to the horizontal component Lxy of the vector L – see Fig. 9b. 
Since, according to Eq. (70), the magnitude of this vector is constant,  L  = Mgl sin, the vector L (and 
hence the body’s main axis) rotates about the vertical axis with the following angular velocity: 

            
rot3

pre sin
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.    (4.72) 

 Thus, rather counter-intuitively, the fast-rotating top does not follow the external, vertical force 
and, in addition to fast spinning about the symmetry axis n3, performs a revolution, called the torque-
induced precession, about the vertical axis.18 Note that, similarly to the free-precession frequency (59), 
the torque-induced precession frequency (72) does not depend on the initial (and sustained) angle . 
However, the torque-induced precession frequency is inversely (rather than directly) proportional to rot. 
This fact makes the above simple theory valid in many practical cases. Indeed, Eq. (71) is quantitatively 
valid if the contribution of the precession into L is relatively small: Ipre << I3rot, where I is a certain 
effective moment of inertia for the precession – to be calculated below. Using Eq. (72), this condition 
may be rewritten as 

                           .

2/1

2
3

rot 









I

MglI      (4.73) 

According to Eq. (16), for a body of not too extreme proportions, i.e. with all linear dimensions of the 
same length scale l, all inertia moments are of the order of Ml2, so the right-hand side of Eq. (73) is      
of the order of (g/l)1/2, i.e. comparable with the frequency of small oscillations of the same body as the 
physical pendulum at the absence of its fast rotation. 

 To develop a quantitative theory that would be valid beyond such approximate treatment, the 
Euler equations (66) may be used, but are not very convenient. A better approach, suggested by the 
same L. Euler, is to introduce a set of three independent angles between the principal axes {n1, n2, n3} 
bound to the rigid body, and the axes {nx, ny, nz} of an inertial reference frame (Fig. 10), and then 
express the basic equation (33) of rotation, via these angles. There are several possible options for the 
definition of such angles; Fig. 10 shows the set of Euler angles, most convenient for analyses of fast 
rotation.19 As one can see, the first Euler angle, , is the usual polar angle measured from the nz-axis to 
the n3-axis. The second one is the azimuthal angle , measured from the nx-axis to the line of nodes 
formed by the intersection of planes [nx, ny] and [n1, n2]. The last Euler angle, , is measured within the 

18 A semi-quantitative interpretation of this effect is a very useful exercise, highly recommended to the reader. 
19 Of the several choices more convenient in the absence of fast rotation, the most common is the set of so-called 
Tait-Brian angles (called the yaw, pitch, and roll), which are broadly used for aircraft and maritime navigation.  
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plane [n1, n2], from the line of nodes to the n1-axis. For example, in the simple picture of slow force-
induced precession of a symmetric top, that was discussed above, the angle  is constant, the angle  
changes rapidly, with the rotation velocity rot, while the angle  evolves with the precession frequency 
pre (72). 

 

 

 

 

 

 

 

 

  
 Now we can express the principal-axes components of the instantaneous angular velocity vector, 
1, 2, and 3, as measured in the lab reference frame, in terms of the Euler angles. This may be readily 
done by calculating, from Fig. 10, the contributions of the Euler angles’ evolution to the rotation about 
each principal axis, and then adding them up: 

      

.cos

,sincossin

,cossinsin

3

2

1

















     (4.74)   

 These relations enable the expression of the kinetic energy of rotation (25) and the angular 
momentum components (26) via the generalized coordinates , , and  and their time derivatives (i.e. 
the corresponding generalized velocities), and then using the powerful Lagrangian formalism to derive 
their equations of motion. This is especially simple to do in the case of symmetric tops (with I1 = I2), 
because plugging Eqs. (74) into Eq. (25) we get an expression, 

        232221
rot cos

2
sin

2
  

II
T ,    (4.75) 

which does not include explicitly either  or .  (This reflects the fact that for a symmetric top we can 
always select the n1-axis to coincide with the line of nodes, and hence take   = 0 at the considered 
moment of time. Note that this trick does not mean we can take 0 , because the n1-axis, as observed 
from an inertial reference frame, moves!) Now we should not forget that at the torque-induced 
precession, the center of mass moves as well (see, e.g., Fig. 9), so according to Eq. (14), the total kinetic 
energy of the body is the sum of two terms, 

                 22222
trantranrot sin

22
,   l

M
V

M
TTTT ,   (4.76) 

while its potential energy is just 

           constcos  MglU .     (4.77) 

Fig. 4.10. Definition of 
the Euler angles. 
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 Now we could readily use Eqs. (2.19) to write the Lagrange equations of motion for the Euler 
angles, but it is simpler to immediately notice that according to Eqs. (75)-(77), the Lagrangian function, 
T – U, does not depend explicitly on the “cyclic” coordinates   and , so the corresponding generalized 
momenta (2.31) are conserved:  

       const,cos)cos(sin 3
2
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II
T

p    (4.78) 
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p     (4.79) 

where IA  I1 +Ml2. (According to Eq. (29),  IA is just the body’s moment of inertia for rotation about a 
horizontal axis passing through the support point A.) According to the last of Eqs. (74), p is just L3, i.e. 
the angular momentum’s component along the precessing axis n3. On the other hand, by its very 
definition (78), p is Lz, i.e. the same vector L’s component along the stationary axis z. (Actually, we 
could foresee in advance the conservation of both these components of L for our system, because the 
vector (69) of the external torque is perpendicular to both n3 and nz.) Using this notation, and solving 
the simple system of two linear equations (78)-(79) for the angle derivatives, we get 
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 One more conserved quantity in this problem is the full mechanical energy20  
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Plugging Eqs. (80) into Eq. (81), we get a first-order differential equation for the angle , which may be 
represented in the following physically transparent form: 
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 Thus, similarly to the planetary problems considered in Sec. 3.4, the torque-induced precession 
of a symmetric top has been reduced (without any approximations!) to a 1D problem of the motion of 
just one of its degrees of freedom, the polar angle , in the effective potential Uef(). According to Eq. 
(82), very similar to Eq. (3.44) for the planetary problem, this potential is the sum of the actual potential 
energy U given by Eq. (77), and a contribution from the kinetic energy of motion along two other 
angles. In the absence of rotation about the axes nz and n3 (i.e., Lz = L3 = 0), Eq. (82) is reduced to the 
first integral of the equation (40) of motion of a physical pendulum, with I’ = IA. If the rotation is 
present, then (besides the case of very special initial conditions when  (0) = 0 and Lz = L3),21 the first 
contribution to Uef() diverges at   0 and , so the effective potential energy has a minimum at some 
non-zero value 0 of the polar angle    – see Fig. 11. 

20 Indeed, since the Lagrangian does not depend on time explicitly, H = const, and since the full kinetic energy  T  
(75)-(76) is a quadratic-homogeneous function of the generalized velocities, we have E = H. 
21 In that simple case, the body continues to rotate about the vertical symmetry axis: (t) = 0. Note, however, that 
such motion is stable only if the spinning speed is sufficiently high – see Eq. (85) below.  
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 If the initial angle  (0) is equal to this value 0, i.e. if the initial effective energy is equal to its 
minimum value Uef(0), the polar angle remains constant through the motion: (t) = 0. This corresponds 
to the pure torque-induced precession whose angular velocity is given by the first of Eqs. (80): 
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The condition for finding 0, dUef/d = 0, is a transcendental algebraic equation that cannot be solved 
analytically for arbitrary parameters. However, in the high spinning speed limit (73), this is possible. 
Indeed, in this limit the Mgl-proportional contribution to Uef is small, and we may analyze its effect by 
successive approximations. In the 0th approximation, i.e. at Mgl = 0, the minimum of Uef is evidently 
achieved at cos0  = Lz/L3, turning the precession frequency (83) to zero. In the next, 1st approximation, 
we may require that at  = 0, the derivative of the first term of Eq. (82) for Uef over cos, equal to –
Lz(Lz – L3cos)/IAsin2,22 is canceled with that of the gravity-induced term, equal to Mgl. This 
immediately yields pre = (Lz – L3cos0)/IAsin20  = Mgl/L3, so by identifying rot with 3  L3/I3 (see 
Fig. 8), we recover the simple expression (72).  

 The second important result that may be readily obtained from Eq. (82) is the exact expression 
for the threshold value of the spinning speed for a vertically rotating top ( = 0, Lz = L3). Indeed, in the 
limit   0 this expression may be readily simplified:  
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This formula shows that if rot  L3/I3 is higher than the following threshold value,  
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22 Indeed, the derivative of the fraction 1/2IAsin2, taken at the point cos  = Lz/L3, is multiplied by the numerator, 
(Lz – L3cos)2, which turns to zero at this point. 
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Fig. 4.11. The effective potential energy 
Uef of the symmetric top, given by Eq. 
(82), as a function of the polar angle , 
for a particular value (0.95) of the ratio r 
 Lz/L3 (so that at rot >> th, 0 = cos-1r 
 0.1011), and several values of the 
ratio rot/th – see Eq. (85). 
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then the coefficient at  2 in Eq. (84) is positive, so Uef has a stable minimum at 0 = 0. On the other 
hand, if 3 is decreased below th, the fixed point becomes unstable, so the top falls. As the plots in Fig. 
11 show, Eq. (85) for the threshold frequency works very well even for non-zero but small values of the 
precession angle 0. Note that if we take I = IA in the condition (73) of the approximate treatment, it 
acquires a very simple sense: rot >> th. 

 Finally, Eqs. (82) give a natural description of one more phenomenon. If the initial energy is 
larger than Uef(0), the angle  oscillates between two classical turning points on both sides of the fixed 
point 0 – see Fig. 11 again. The law and frequency of these oscillations may be found exactly as in Sec. 
3.3 – see Eqs. (3.27) and (3.28). At 3 >> th, this motion is a fast rotation of the body’s symmetry axis 
n3 about its average position performing the slow torque-induced precession. Historically, these 
oscillations are called nutations, but their physics is similar to that of the free precession that was 
analyzed in the previous section, and the order of magnitude of their frequency is given by Eq. (59). 

 It may be proved that small friction (not taken into account in the above analysis) leads first to a 
decay of these nutations, then to a slower drift of the precession angle 0 to zero, and finally, to a 
gradual decay of the spinning speed rot until it reaches the threshold (85) and the top falls.  

 

4.6. Non-inertial reference frames 

 Now let us use the results of our analysis of the rotation kinematics in Sec. 1 to complete the 
discussion of the transfer between two reference frames, which was started in the introductory Chapter 
1. As Fig. 12 (which reproduces Fig. 1.2 in a more convenient notation) shows, even if the “moving” 
frame 0 rotates relative to the “lab” frame 0’, the radius vectors observed from these two frames are still 
related, at any moment of time, by the simple Eq. (1.5). In our new notation: 

               rrr  0' .      (4.86) 

  

 

 

 

 

 

 However, as was mentioned in Sec. 1, the general addition rule for velocities is already more 
complex. To find it, let us differentiate Eq. (86) over time: 
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      (4.87) 

The left-hand side of this relation is evidently the particle’s velocity as measured in the lab frame, and 
the first term on the right-hand side is the velocity v0 of point 0, as measured in the same lab frame. The 
last term is more complex: due to the possible mutual rotation of the frames 0 and 0’, that term may not 
vanish even if the particle does not move relative to the rotating frame 0 – see Fig. 12. 

Fig. 4.12. The general case of transfer 
between two reference frames.
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 Fortunately, we have already derived the general Eq. (8) to analyze situations exactly like this 
one. Taking A = r in it, we may apply the result to the last term of Eq. (87), to get  

      ),(labin 0labin rωvvv       (4.88) 

where  is the instantaneous angular velocity of an imaginary rigid body connected to the moving 
reference frame (or we may say, of this frame as such), as measured in the lab frame 0’, while v is dr/dt 
as measured in the moving frame 0. The relation (88), on one hand, is a natural generalization of Eq. 
(10) for v  0; on the other hand, if  = 0, it is reduced to simple Eq. (1.8) for the translational motion of 
the frame 0.  

 To calculate the particle’s acceleration, we may just repeat the same trick: differentiate Eq. (88) 
over time, and then use Eq. (8) again, now for the vector A = v + r. The result is 

            ).()(labin 0labin rωvωrωvaa 
dt

d
   (4.89) 

Carrying out the differentiation in the second term, we finally get the goal relation, 

            )(2labin 0labin rωωvωrωaaa   ,   (4.90) 

where a is the particle’s acceleration as measured in the moving frame. This result is a natural 
generalization of the simple Eq. (1.9) to the rotating frame case. 

 Now let the lab frame 0’ be inertial; then the 2nd Newton’s law for a particle of mass m is 

        Fa labin m ,      (4.91) 

where F is the vector sum of all forces exerted on the particle. This is simple and clear; however, in 
many cases it is much more convenient to work in a non-inertial reference frame. For example, when 
describing most phenomena on the Earth’s surface, it is rather inconvenient to use a reference frame 
bound to the Sun (or to the galactic center, etc.). In order to understand what we should pay for the 
convenience of using a moving frame, we may combine Eqs. (90) and (91) to write 

       .2)(labin 0 rωvωrωωaFa  mmmmm     (4.92) 

This result means that if we want to use an analog of the 2nd Newton’s law in a non-inertial reference 
frame, we have to add, to the actual net force F exerted on a particle, four pseudo-force terms, called 
inertial forces, all proportional to the particle’s mass. Let us analyze them one by one, always 
remembering that these are just mathematical terms, not actual physical forces. (In particular, it would 
be futile to seek a 3rd-Newton’s-law counterpart for any inertial force.)  

 The first term, –ma0in lab, is the only one not related to rotation and is well known from 
undergraduate mechanics. (Let me hope the reader remembers all these weight-in-the-accelerating-
elevator problems.) However, despite its simplicity, this term has more subtle consequences. As an 
example, let us consider, semi-qualitatively, the motion of a planet, such as our Earth, orbiting a star and 
also rotating about its own axis – see Fig. 13. The bulk-distributed gravity forces, acting on a planet 
from its star, are not quite uniform,  because they obey the 1/r2 gravity law (1.15), and hence are 
equivalent to a single force applied to a point A slightly offset from the planet’s center of mass 0, toward 
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the star. For a spherically symmetric planet, the direction from 0 to A would be exactly aligned with the 
direction toward the star. However, real planets are not absolutely rigid, so due to the centrifugal “force” 
(to be discussed momentarily), the rotation about their own axis makes them slightly ellipsoidal – see 
Fig. 13. (For our Earth, this equatorial bulge is about 10 km.) As a result, the net gravity force is slightly 
offset from the direction toward the center of mass 0. On the other hand, repeating all the arguments     
of this section for a body (rather than a point), we may see that, in the reference frame moving with the 
planet, the inertial force –Ma0 (with the magnitude of the total gravity force, but directed from the star) 
is applied exactly to the center of mass. As a result, this pair of forces creates a torque  perpendicular to 
both the direction toward the star and the vector 0A. (In Fig. 13, the torque vector is perpendicular to the 
plane of the drawing). If the angle  between the planet’s “polar” axis of rotation and the direction 
towards the star was fixed, then, as we have seen in the previous section, this torque would induce a 
slow axis precession about that direction. 

 

 

 

 

 

 

 

 

 However, as a result of the orbital motion, the angle  oscillates in time much faster (once a 
year) between values (/2 + ) and  (/2 – ), where  is the axis tilt, i.e. angle between the polar axis 
(the direction of vectors L and rot) and the normal to the ecliptic plane of the planet’s orbit. (For the 
Earth,   23.4.) A straightforward averaging over these fast oscillations23 shows that the torque leads 
to the polar axis’ precession about the axis perpendicular to the ecliptic plane, keeping  constant – see 
Fig. 13. For the Earth, the period  Tpre = 2/pre of this precession of the equinoxes, corrected for a 
substantial effect of the Moon’s gravity, is close to 26,000 years.24 

 Returning to Eq. (92), the direction of the second term of its right-hand side,  

               rωωF  mcf ,     (4.93) 

called the centrifugal force, is always perpendicular to, and directed out of the instantaneous rotation 
axis – see Fig. 14. Indeed, the vector r is perpendicular to both   and r (in Fig. 14, normal to the 
drawing plane and directed from the reader) and has the magnitude rsin = , where  is the distance 
of the particle from the rotation axis. Hence the outer vector product, with the account of the minus sign, 
is normal to the rotation axis , directed from this axis, and is equal to 2rsin  = 2. The centrifugal 
“force” is of course just the result of the fact that the centripetal acceleration 2, explicit in the inertial 
reference frame, disappears in the rotating frame. For a typical location of the Earth ( ~ RE  6106 m), 

23 Details of this calculation may be found, e.g., in Sec. 5.8 of the textbook by H. Goldstein et al., Classical 
Mechanics, 3rd ed., Addison Wesley, 2002. 
24 This effect is known from antiquity, apparently discovered by Hipparchus of Rhodes (190-120 BC). 
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with its angular velocity E  10-4 s-1,  the acceleration is rather considerable, of the order of 3 cm/s2, i.e. 
~0.003 g, and is responsible, in particular, for the largest part of the equatorial bulge mentioned above. 

              

 

 

 

 

 As an example of using the centrifugal force concept, let us return again to our “testbed” 
problem on the bead sliding along a rotating ring – see Fig. 2.1. In the non-inertial reference frame 
attached to the ring, we have to add, to the actual forces mg and N exerted on the bead, the horizontal 
centrifugal force25 directed from the rotation axis, with the magnitude m2. Its component tangential to 
the ring equals (m2)cos = m2Rsincos, and hence the component of Eq. (92) along this direction 
is ma = –mgsin + m2Rsincos. With Ra  , this gives us an equation of motion equivalent to Eq. 
(2.25), which had been derived in Sec. 2.2 (in the inertial frame) using the Lagrangian formalism.  

 The third term on the right-hand side of Eq. (92), 

                vωF  m2C ,     (4.94) 

is the so-called Coriolis force,26 which is different from zero only if the particle moves in a rotating 
reference frame. Its physical sense may be understood by considering a projectile fired horizontally, say 
from the North Pole – see Fig. 15.  

 

 

 

 

 

 
  

 From the point of view of an Earth-based observer, the projectile will be affected by an 
additional Coriolis force (94), directed westward, with the magnitude 2mEv, where v is the main, 
southward component of the velocity. This force would cause the westward acceleration a = 2Ev, and 
hence the westward deviation growing with time as d = at2/2 = Evt2.  (This formula is exact only if d is 
much smaller than the distance r = vt passed by the projectile.) On the other hand, from the point of 

25 For this problem, all other inertial “forces”, besides the Coriolis force (see below) vanish, while the latter force 
is directed normally to the ring and does not affect the bead’s motion along it. 
26 Named after G.-G. de Coriolis (already reverently mentioned in Chapter 1) who described its theory and 
applications in detail in 1835, though the first semi-quantitative analyses of this effect were given by Giovanni 
Battista Riccioli and Claude François Dechales already in the mid-1600s, and all basic components of the Coriolis 
theory may be traced to a 1749 work by Leonard Euler. 

Fig. 4.14. The centrifugal force. 
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view of an inertial-frame observer, the projectile’s trajectory in the horizontal plane is a straight line. 
However, during the flight time t, the Earth’s surface slips eastward from under the trajectory by the 
distance d = r = (vt)(Et) = Evt2, where  = Et is the azimuthal angle of the Earth’s rotation during 
the flight). Thus, both approaches give the same result – as they should. 

 Hence, the Coriolis “force” is just a fancy (but frequently very convenient!) way of describing a 
purely geometric effect pertinent to the rotation, from the point of view of the observer participating in 
it. This force is responsible, in particular, for the higher right banks of rivers in the Northern 
hemisphere, regardless of the direction of their flow – see Fig. 16. Despite the smallness of the Coriolis 
force (for a typical velocity of the water in a river,  v ~ 1 m/s, it is equivalent to acceleration aC ~ 10-2 
cm/s2 ~ 10-5 g), its multi-century effects may be rather prominent.27  

 

  

 

 

 

  

  

 

  
 

 Finally, the last, fourth term of Eq. (92), rω m , exists only when the rotation frequency 
changes in time, and may be interpreted as a local-position-specific addition to the first term. 

 The key relation (92), derived above from Newton’s equation (91), may be alternatively obtained 
from the Lagrangian approach. Indeed, let us use Eq. (88) to represent the kinetic energy of the particle 
in an inertial “lab” frame in terms of v and r measured in a rotating frame: 

      2labin 0 )(
2

rωvv 
m

T ,    (4.95) 

and use this expression to calculate the Lagrangian function. For the relatively simple case of a 
particle’s motion in the field of potential forces, measured from a reference frame that performs a pure 
rotation (so v0in lab = 0)28 with a constant angular velocity , we get 

             ef
222 )(

22
)(

2
Umv

m
U

m
mv

m
UTL  rωvrωrωv , (4.96a) 

where the effective potential energy,29 

27 The same force causes the counterclockwise circulation in the “Nor’easter” storms on the US East Coast, with 
the radial component of the air velocity directed toward the cyclone’s center, due to lower pressure in its middle. 
28 A similar analysis of the cases with v0in lab  0, for example, of a translational relative motion of the reference 
frames, is left for the reader’s exercise. 

Fig. 4.16. Coriolis forces due to the 
Earth’s rotation, in the Northern 
hemisphere. 
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       ,
2

with  , 2
cfcfef rω

m
UUUU    (4.96b) 

is just the sum of the actual potential energy U of the particle and the so-called centrifugal potential 
energy, associated with the centrifugal “force” (93): 

             ).(
2

2
cfcf rωωrωF 



  m

m
U      (4.97) 

It is straightforward to verify that the Lagrange equations (2.19), derived from Eqs. (96) considering the 
Cartesian components of r and v as generalized coordinates and velocities, coincide with Eq. (92) (with 
a0in lab = 0, ω  = 0, and F = –U).  

 Now it is very informative to have a look at a by-product of this calculation, the generalized 
momentum (2.31) corresponding to the particle’s coordinate r as measured in the rotating reference 
frame,30 

            rωv
v





 m
L

p .     (4.98) 

According to Eq. (88) with v0in lab = 0, the expression in the parentheses is just vin lab.  However, from 
the point of view of the moving frame, i.e. not knowing about the simple physical sense of the vector p, 
we would have a reason to speak about two different linear momenta of the same particle, the so-called 
kinetic momentum p = mv and the canonical momentum p = p + mr.31  Let us calculate the 
Hamiltonian function H defined by Eq. (2.32), and the energy E as functions of the same moving-frame 
variables: 
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These expressions clearly show that E and H are not equal.32 In hindsight, this is not surprising, because 
the kinetic energy (95), expressed in the moving-frame variables, includes a term linear in v, and hence 

29 For the attentive reader who has noticed the difference between the negative sign in the expression for Ucf, and 
the positive sign before the similar second term in Eq. (3.44): as was already discussed in Chapter 3, it is due to 
the difference of assumptions. In the planetary problem, even though the angular momentum L and hence its 
component Lz are fixed, the corresponding angular velocity   is not. On the opposite, in our current discussion, 

the angular velocity  of the reference frame is assumed to be fixed, i.e. is independent of r and v.  
30 Here L/v is just a shorthand for a vector with Cartesian components L/vj. In a more formal language, this is 
the gradient of the scalar function L in the velocity space.  
31 A very similar situation arises at the motion of a particle with electric charge q in magnetic field B. In that case, 
the role of the additional term p – p = mr is played by the product qA, where A  is the vector potential of the 

field B = A – see, e.g., EM Sec. 9.7, and in particular Eqs. (9.183) and (9.192). 
32 Please note the last form of Eq. (99), which shows the physical sense of the Hamiltonian function of a particle 
in the rotating frame very clearly, as the sum of its kinetic energy (as measured in the moving frame), and the 
effective potential energy (96b), including that of the centrifugal “force”. 
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is not a quadratic-homogeneous function of this generalized velocity. The difference between these 
functions may be represented as 

      )()()( labin 
2 rωvrωrωvrωrωv  mmmmHE .  (4.101)  

Now using the operand rotation rule again, we may transform this expression into a simpler form:33 

                      labin labin Lωrωvrω  pmHE .   (4.102) 

 As a sanity check, let us apply this general expression to the particular case of our testbed 
problem – see Fig. 2.1. In this case, the vector  is aligned with the z-axis, so that of all Cartesian 
components of the vector L, only the component Lz is important for the scalar product in Eq. (102). This 
component evidently equals Iz = m2 = m(Rsin)2, so that 

          222 sinRmHE  ,     (4.103) 

i.e. the same result that follows from the subtraction of Eqs. (2.40) and (2.41).  

  

4.7. Exercise problems 

 4.1. Calculate the principal moments of inertia for the following uniform rigid bodies: 
 
 
 
 
 
 
  

(i) a thin, planar, round hoop, (ii) a flat round disk, (iii) a thin spherical shell, and (iv) a solid sphere. 

 Compare the results, assuming that all the bodies have the same radius R and mass M, and give 
an interpretation of their difference. 
 
 4.2. Calculate the principal moments of inertia for the rigid bodies shown in the figure below: 

 
 
 
 
 
 
 

(i) an equilateral triangle made of thin rods with a constant linear mass density , 
 (ii) a thin plate in the shape of an equilateral triangle, with a constant areal mass density , and 

(iii) a tetrahedron with a constant bulk mass density . 

33 Note that by the definition (1.36), the angular momenta L of particles merely add up. As a result, the final form 
of Eq. (102) is valid for an arbitrary system of particles. 
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Assuming that the total mass of the three bodies is the same, compare the results and give an 
interpretation of their difference. 
 
 4.3. Calculate the principal moments of inertia of a thin uniform plate cut in the form of a right 
triangle with two /4 angles. 
 
 4.4. Prove that Eqs. (34)-(36) are valid for the rotation of a rigid body about the fixed z-axis, 
even if it does not pass through its center of mass. 
 
 4.5. Calculate the kinetic energy of a right circular cone with height H, 
base radius R, and a constant mass density , that rolls over a horizontal 
surface without slippage, making f turns per second about the vertical axis – 
see the figure on the right. 
 
 4.6. External forces exerted on a rigid body 
rotating with an angular velocity , have zero 
vector sum but a non-vanishing net torque  about 
its center of mass.  

 (i) Calculate the work of the forces on the 
body per unit time, i.e. their instantaneous power. 
 (ii) Prove that the same result is valid for a 
body rotating about a fixed axis and the torque’s 
component along this axis.  
 (iii) Use the last result to prove that at 
negligible friction, the gear assembly shown in the 
figure on the right distributes the external torque, 
applied to its satellite-carrier axis to rotate it about 
the common axis of two axle shafts, equally to both 
shafts, even if they rotate with different angular 
velocities. 
  
 4.7. The end of a uniform thin rod of length 2l and mass m, initially at 
rest, is hit by a bullet of mass m', flying with a velocity v0 perpendicular to the 
rod (see the figure on the right), which gets stuck in it. Use two different 
approaches to calculate the velocity of the opposite end of the rod right after 
the collision. 
 
 4.8. A ball of radius R, initially at rest on a horizontal surface, is hit 
with a billiard cue in the horizontal direction, at height h above the table – 
see the figure on the right. Using the Coulomb approximation for the 
kinetic friction force between the ball and the surface ( Ff  = N), calculate 
the final linear velocity of the rolling ball as a function of h. Would it 
matter if the hit point is shifted horizontally (normally to the plane of the 
drawing)? 

 Hint: As in most solid body collision problems, during the short 

f
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(2014), adapted with permission. Both satellite gears 
may rotate freely about their common carrier axis.

l2

m'
0vm



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 4             Page 29 of 32

time of the cue hit, all other forces exerted on the ball may be considered negligibly small. 

4.9. A round cylinder of radius R and mass M may roll, without slippage, over a horizontal 
surface. The mass density distribution inside the cylinder is not uniform, so its center of mass is at some 
distance l  0 from its geometrical axis, and the moment of inertia I (for rotation about the axis parallel 
to the symmetry axis but passing through the center of mass) is different from MR2/2, where M is the 
cylinder’s mass. Derive the equation of motion of the cylinder under the effect of the uniform vertical 
gravity field, and use it to calculate the frequency of small oscillations of the cylinder near its stable 
equilibrium position. 
 
 4.10. A body may rotate about a fixed horizontal axis – see Fig. 5. Find the frequency of its small 
oscillations in a uniform gravity field, as a function of the distance l of the axis from the body’s center 
of mass 0, and analyze the result. 
 

4.11. Calculate the frequency, and sketch the mode of oscillations34 
of a round uniform cylinder of radius R and the mass M, that may roll, 
without slippage, on a horizontal surface of a block of mass M’. The block, 
in turn, may move in the same direction, without friction, on an immobile 
horizontal surface, being connected to it with an elastic spring – see the figure on the right.  
 
 
 4.12. A thin uniform bar of mass M  and length l is hung on a light thread of length 
l’ (like a “chime” bell – see the figure on the right). Derive the equations of the system’s 
motion within a vertical plane passing through the suspension point. 
 
 
 4.13. A uniform round solid cylinder of mass M can roll, 
without slippage, over a concave round cylindrical surface of a block 
of mass M’, in a uniform gravity field – see the figure on the right. 
The block can slide without friction on a horizontal surface. Using the 
Lagrangian formalism, 

(i) find the frequency of small oscillations of the system near the equilibrium, and 
(ii) sketch the oscillation mode for the particular case M’ = M, R’ = 2R. 

  
4.14. A uniform solid hemisphere of radius R and mass M is 

placed on a horizontal surface – see the figure on the right. Find the 
frequency of its small oscillations within a vertical plane, for two ultimate 
cases: 

 (i) there is no friction between the sphere and the horizontal 
surface;  
 (ii) the static friction between them is so strong that there is no slippage. 
 

34 The term mode usually refers to the spatial pattern of oscillations; it will be much discussed in later chapters. 
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 4.15. For the “sliding ladder” problem started in Sec. 3 (see Fig. 7), find the critical value c of 
the angle  at that the ladder loses its contact with the vertical wall, assuming that it starts sliding from 
the vertical position, with a negligible initial velocity.  
 
 4.16. Six similar, uniform rods of length l and mass m are connected by 
light joints so that they may rotate, without friction, versus each other, forming 
a planar polygon. Initially, the polygon was at rest, and had the correct hexagon 
shape – see the figure on the right. Suddenly, an external force F is applied to 
the middle of one rod, in the direction of the hexagon’s symmetry center. 
Calculate the accelerations: of the rod to which the force is applied (a), and of 
the opposite rod (a’), immediately after the application of the force. 
  
 
 4.17. A rectangular cuboid (parallelepiped) with sides a1, a2, and a3, 
made of a material with a constant mass density , is rotated with a constant 
angular velocity  about one of its space diagonals – see the figure on the 
right. Calculate the torque  necessary to sustain this rotation.  
 
 
 4.18. A uniform round ball rolls, without slippage, over a “turntable”: a horizontal plane rotated 
about a vertical axis with a time-independent angular velocity . Derive a self-consistent equation of 
motion of the ball’s center, and discuss its solutions. 
 
 4.19. Calculate the free precession frequency of a uniform thin round disk rotating with an 
angular velocity  about a direction very close to its symmetry axis, from the point of view of: 

 (i) an observer rotating with the disk, and 
 (ii) a lab-based observer. 
 
 4.20. Use the Euler equations to prove the fact mentioned in Sec. 4: free rotation of an arbitrary 
body (“asymmetric top”) about its principal axes with the smallest and largest moments of inertia is 
stable, while that about the intermediate-Ij axis is not. Illustrate the same fact using the Poinsot 
construction. 
 
 4.21. Give an interpretation of the torque-induced precession, that would explain its direction, by 
using a simple system exhibiting this effect, as a model. 
 
 4.22. One end of a light shaft of length l is firmly 
attached to the center of a thin uniform solid disk of radius R and 
mass M, whose plane is perpendicular to the shaft. Another end 
of the shaft is attached to a vertical axis (see the figure on the 
right) so that the shaft may rotate about the axis without friction. 
The disk rolls, without slippage, over a horizontal surface so that 
the whole system rotates about the vertical axis with a constant angular velocity . Calculate the 
(vertical) supporting force N exerted on the disk by the surface. 
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 4.23. A coin of radius r is rolled over a horizontal surface, without 
slippage. Due to its tilt , it rolls around a circle of radius R – see the figure on 
the right. Modeling the coin as a very thin round disk, calculate the time period 
of its motion around the circle. 
 
 4.24. Solve the previous problem in the limit when the coin tilt angle  
and the ratio r/R are small, by simpler means, using  

 (i) an inertial ("lab") reference frame, and 
 (ii) the non-inertial reference frame moving with the coin's center but not rotating with it. 
 
 4.25. A symmetric top on a point support (as shown see, e.g., Fig. 9), rotating around its 
symmetry axis with a high angular velocity rot, is subjected to not only its weight Mg but also an 
additional force also applied to the top’s center of mass, with its vector rotating in the horizontal plane 
with a constant angular velocity  << rot. Derive the system of equations describing the top’s motion. 
Analyze their solution for the simplest case when  is exactly equal to the frequency (72) of the torque-
induced precession in the gravity field alone. 
 
 4.26. Analyze the effect of small friction on a fast rotation of a symmetric top around its axis, 
using a simple model in that the lower end of the body is a right cylinder of radius R.  
 
 4.27. An air-filled balloon is placed inside a water-filled container, which moves by inertia in 
free space, at negligible gravity. Suddenly, force F is applied to the container, pointing in a certain 
direction. What direction does the balloon move relative to the container? 
 
 4.28. Two planets are in a circular orbit around their common center of mass. Calculate the 
effective potential energy of a much lighter body (say, a spacecraft) rotating with the same angular 
velocity, on the line connecting the planets. Sketch the radial dependence of Uef and find out the number 
of so-called Lagrange points in which the potential energy has local maxima. Calculate their position 
explicitly in the limit when one of the planets is much more massive than the other one. 
 
 4.29. Besides the three Lagrange points L1, L2, and L3 discussed in the previous problem, which 
are located on the line connecting two planets on circular orbits about their mutual center of mass, there 
are two off-line points L4 and L5 – both within the plane of the planets’ rotation. Calculate their 
positions. 
 
 4.30. The following simple problem may give additional clarity to the physics of the Coriolis 
“force”. A bead of mass m may slide, without friction, along a straight rod that is rotated within a 
horizontal plane with a constant angular velocity  – see the figure on the right. Calculate the bead’s 
acceleration and the force N exerted on it by the rod, in: 

 (i) an inertial (“lab”) reference frame, and 
 (ii) the non-inertial reference frame rotating with the rod (but not moving with the bead),  

and compare the results. 
 
 4.31. Analyze the dynamics of the famous Foucault pendulum used for spectacular 
demonstrations of the Earth’s rotation. In particular, calculate the angular velocity of the rotation of its 
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oscillation plane relative to the Earth’s surface, at a location with a polar angle (“colatitude”) . Assume 
that the pendulum oscillation amplitude is small enough to neglect nonlinear effects and that its 
oscillation period is much shorter than 24 hours. 
 
 4.32. A small body is dropped down to the surface of Earth from a height h << RE, without initial 
velocity. Calculate the magnitude and direction of its deviation from the vertical, due to the Earth’s 
rotation. Estimate the effect’s magnitude for a body dropped from the Empire State Building. 
 
 4.33. Calculate the height of solar tides on a large ocean, using the following simplifying 
assumptions: the tide period (½ of the Earth's day) is much longer than the period of all ocean waves, 
the Earth (of mass ME) is a sphere of radius RE, and its distance rS from the Sun (of mass MS) is constant 
and much larger than RE.  
 
 4.34. A satellite is on a circular orbit of radius R, around the Earth. Neglecting the gravity field 
of the satellite, 

 (i) write the equations of motion of a small body as observed from the satellite and simplify them 
for the case when the motion is limited to the satellite’s close vicinity; 
 (ii) use these equations to prove that a body may be placed on an elliptical trajectory around the 
satellite’s center of mass, within its plane of rotation around the Earth. Calculate the ellipse’s orientation 
and eccentricity. 
  
 4.35. A non-spherical shape of an artificial satellite may ensure its stable angular orientation 
relative to the Earth’s surface, advantageous for many practical goals. By modeling a satellite as a 
strongly elongated, axially-symmetric body moving around the Earth on a circular orbit of radius R, find 
its stable orientation. 
   
 4.36. A rigid, straight, uniform rod of length l, with the lower end on a pivot, falls 
in a uniform gravity field – see the figure on the right. Neglecting friction, calculate the 
distribution of the bending torque   along its length, and analyze the result. 

 Hint: As will be discussed in detail in Sec. 7.5 of the lecture notes, the bending 
torque’s gradient along the rod’s length is equal to the rod-normal (“shear”) component of 
the total force between two parts of the rod, mentally separated by its cross-section.  
  
 4.37. Let r be the radius vector of a particle, as measured in a possibly non-inertial but certainly 
non-rotating reference frame. Taking its Cartesian components for the generalized coordinates, calculate 
the corresponding generalized momentum p of the particle and its Hamiltonian function H. Compare p 
with mv, and H with the particle’s energy E. Derive the Lagrangian equation of motion in this approach, 
and compare it with Eq. (92). 
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Chapter 5. Oscillations 

In this course, oscillations and waves are discussed in detail, because of their importance for 
fundamental and applied physics. This chapter starts with a discussion of the harmonic oscillator, 
whose differential equation of motion is linear and hence allows the full analytical solution, and then 
proceeds to so-called “nonlinear” and “parametric” systems whose dynamics may be only explored by 
either approximate analytical or numerical methods. 

 

5.1. Free and forced oscillations 

 In Sec. 3.2 we briefly discussed oscillations in a keystone Hamiltonian system – a 1D harmonic 
oscillator described by a very simple Lagrangian1 

                              ,
22

)()( 22 qq
m

qUqTL


      (5.1) 

whose Lagrange equation of motion,2 
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0

2
0 

m
qqqqm

  ,   (5.2) 

is a linear homogeneous differential equation. Its general solution is given by Eq. (3.16), which is 
frequently recast into another, amplitude-phase form: 

                    tAtvtutq 000 cossincos)( ,   (5.3a) 

where A is the amplitude and   is the phase of the oscillations, which are determined by the initial 
conditions. Mathematically, it is frequently easier to work with sinusoidal functions as complex 
exponents, by rewriting the last form of Eq. (3a) in one more form:3 

      







  titi
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,    (5.3b) 

where a is the complex amplitude of the oscillations: 

       .sinIm,cosRe,, vAauAaAaAea i     (5.4) 

1 For the notation brevity, in this chapter, I will drop indices “ef” in the energy components T and U, and in 
parameters like m, , etc. However, the reader should still remember that T and U do not necessarily coincide with 
the actual kinetic and potential energies (even if those energies may be uniquely identified) – see Sec. 3.1. 
2 0 is usually called the own frequency of the oscillator. In quantum mechanics, the Germanized version of the 
same term, eigenfrequency, is used more. In this series, I will use either of the terms, depending on the context.    
3 Note that this is the so-called physics convention. Most engineering texts use the opposite sign in the imaginary 
exponent, exp{-it}  exp{it}, with the corresponding sign implications for intermediate formulas but identical 
final results for real variables. 

For an autonomous, Hamiltonian oscillator, Eqs. (3) give the full classical description of its dynamics. 
However, it is important to understand that this free-oscillation solution, with a constant amplitude A, 
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means the conservation of the energy E  T + U = A2/2 of the oscillator. If its energy changes for any 
reason, the description needs to be generalized. 

 First of all, if the energy leaks out of the oscillator to its environment (the effect usually called 
energy dissipation), the free oscillations decay with time. The simplest model of this effect is 
represented by an additional linear drag (or “kinematic friction”) force, proportional to the generalized 
velocity and directed opposite to it: 
          qFv  ,      (5.5) 

where constant  is called the drag coefficient.4 The inclusion of this force modifies the equation of 
motion (2) to become 
               0 qqqm   .     (5.6a) 

 This equation is frequently rewritten in the form 

          
m

qqq
2

with  ,02 2
0

   ,    (5.6b) 

where the parameter  is called the damping coefficient (or just “damping”). Note that Eq. (6) is still a 
linear homogeneous second-order differential equation, and its general solution still has the form of the 
sum (3.13) of two exponents of the type exp{t}, with arbitrary pre-exponential coefficients. Plugging 
such an exponent into Eq. (6), we get the following algebraic characteristic equation for :  

      .02 2
0

2        (5.7) 

Solving this quadratic equation, we get 

      ,  where,
2/122

000   ''i    (5.8) 

so for not very high damping (  < 0) we get the following generalization of Eq. (3):5 

                      .cossincos)( 0000000free    
 'teAe'tv'tuecectq tttt

 (5.9) 

The result shows that, besides a certain correction to the free oscillation frequency (which is very small 
in the most interesting low damping limit,  << 0), the energy dissipation leads to an exponential decay 
of oscillation amplitude with the time constant  = 1/: 

4 Here Eq. (5) is treated as a phenomenological model, but in statistical mechanics, such dissipative term may be 
derived as an average force exerted upon a system by its environment, at very general assumptions. As will be 
discussed in detail later in this series (QM Chapter 7 and SM Chapter 5), due to the numerous degrees of freedom 
of a typical environment (think about the molecules of air surrounding a macroscopic pendulum), its force also 
has a random component; as a result, the dissipation is fundamentally related to fluctuations. The latter effect may 
be neglected (as it is in this course) only if the oscillator’s energy E is much higher than the energy scale of its 
random fluctuations – in the thermal equilibrium at temperature T, the larger of kBT and 0/2.  
5 Systems with high damping ( > 0) can hardly be called oscillators, and though they are used in engineering 
and physical experiment (e.g., for shock and sound isolation), due to the lack of time/space, for their detailed 
discussion I have to refer the interested reader to special literature – see, e.g., C. Harris and A. Piersol, Shock and 
Vibration Handbook, 5th ed., McGraw Hill, 2002. Let me only note that according to Eq. (8), the dynamics of 
systems with very high damping ( >> 0) has two very different time scales: a relatively short “momentum 
relaxation time” 1/-  1/2 = m/, and a much longer “coordinate relaxation time” 1/+. 2/0

2 = /-. 
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  where,/
0   .    (5.10) 

 A very popular dimensionless measure of damping is the so-called quality factor Q (or just the 
Q-factor) which is defined as 0/2, and may be rewritten in several other useful forms: 

                      
 

,
22
0

2/1
00 











T

mm
Q     (5.11) 

where T  2π/0 is the oscillation period in the absence of damping – see Eq. (3.29). Since the 

oscillation energy E is proportional to A2, i.e. decays as exp{-2t/}, i.e. with the time constant /2, the 
last form of Eq. (11) may be used to rewrite the Q-factor in one more form: 

               P

E

E

E
Q 00  





,     (5.12) 

where P  is the energy dissipation rate. (Other practical ways to measure Q will be discussed below.) 
The range of Q-factors of mechanical oscillators is very broad, from Q ~ 10 for a human leg (with 
relaxed muscles), to Q ~ 104 of the quartz crystals used in electronic clocks and watches, and all the way 
up to Q > 1010 for nanoparticles suspended (by electrostatic forces) in high vacuum.  

 In contrast to the decaying free oscillations, forced oscillations induced by an external force F(t), 
may maintain their amplitude (and hence energy) infinitely, even at non-zero damping.  This process 
may be described using a still linear but now inhomogeneous differential equation  

           ),(tFqqqm         (5.13a) 

or, more usually, the following generalization of Eq. (6b): 

             mtFtftfqqq /)()(  where),(2 2
0    .   (5.13b) 

For a mechanical linear, dissipative 1D oscillator (6), under the effect of an additional external force 
F(t), Eq. (13a) is just an expression of the 2nd Newton law. However, according to Eq. (1.41), Eq. (13) is 
valid for any dissipative, linear6 1D system whose Gibbs potential energy (1.39) has the form UG(q, t) = 
κq2/2 – F(t)q. 

 The forced-oscillation solutions to Eq. (13) may be analyzed by two mathematically equivalent 
methods whose relative convenience depends on the character of function f(t). 

 (i) Frequency domain. Representing the function f(t) as a Fourier sum of sinusoidal harmonics:7 

            ,)(  



tieftf        (5.14) 

and using the linearity of Eq. (13), we may represent its general solution as a sum of the decaying free 
oscillations (9) with the frequency 0’, that are independent of the function f(t), and forced oscillations 
due to each of the Fourier components of the force:8  

6 This is a very unfortunate, but common jargon, meaning “the system described by linear equations of motion”. 
7 Here, in contrast to Eq. (3b), we may drop the operator Re, assuming that f- = f*, so that the imaginary 
components of the sum compensate for each other. 
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                              tieatqtqtqtq 




 )(),()()( forcedforcedfree .    (5.15) 

Plugging Eq. (15) into Eq. (13), and requiring the factors before each e-it on both sides to be equal, we 
get 
                  ),( fa       (5.16) 

where the complex function (), in our particular case equal to 

         ,
2

1
)(

22
0 


i

      (5.17) 

is called either the response function or (especially for non-mechanical oscillators) the generalized 
susceptibility. From here, and Eq. (4), the amplitude of the oscillations under the effect of a sinusoidal 
force is 

         2/12222
0 )2()(

1
)(with  ,)(





 faA .  (5.18)  

 This formula describes, in particular, an increase of the oscillation amplitude A at   0 – see 
the left panel of Fig. 1. In particular, at the exact equality of these two frequencies,  

               


 
0

0 2

1
)(  ,     (5.19) 

so, according to Eq. (11), the ratio of the response magnitudes at  = 0 and  = 0 (()=0 = 1/0
2) is 

exactly equal to the Q-factor of the oscillator. Thus, the response increase is especially strong in the 
low-damping limit ( << 0, i.e. Q >> 1); moreover, at Q   and   0, the response diverges. (This 
mathematical fact is very useful for the methods to be discussed later in this section.) This is the 
classical description of the famous phenomenon of resonance, so ubiquitous in physics.  

  

 

 

 

 

 

 

 

 

 

8 In physics, this mathematical property of linear equations is frequently called the linear superposition principle. 
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Fig. 5.1. Resonance in the linear 
oscillator, for several values of Q. 
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Due to the increase of the resonance peak height, its width is inversely proportional to Q. 
Quantitatively, in the most interesting low-damping limit, i.e. at Q >> 1, the reciprocal Q-factor gives 
the normalized value of the so-called full-width at half-maximum (FWHM) of the resonance curve:9 

           .
1

0 Q






      (5.20) 

Indeed, this  is defined as the difference (+ – –) between such two values of  at that the modulus 
squared of the oscillator response function, ()2 (which is proportional to the oscillation energy), 
equals a half of its resonance value (19). In the low damping limit, these points are very close to 0, so 
in the linear approximation in   – 0  << 0, we may write (0

2 – 2)  –( +0)( – 0)  –2 –
20, where  
        0        (5.21) 

is a convenient parameter called detuning, which will be repeatedly used later in this chapter, and 
beyond it. In this approximation, the second of Eqs. (18) is reduced to10 

          222
0

2

4

1
)(





 .     (5.22) 

As a result, the points  correspond to 2 = δ2, i.e. ω = ω0 ± δ = ω0(1 ± 1/2Q), so    ω+ – ω- = 
ω0/Q,  thus proving Eq. (20). 

 (ii) Time domain. Returning to an arbitrary external force f(t), one may argue that Eqs. (9), (15)-
(17) provide a full solution of the forced oscillation problem even in this general case. This is formally 
correct, but this solution may be very inconvenient if the external force is far from a sinusoidal function 
of time, especially if it is not periodic at all. In this case, we should first calculate the complex 
amplitudes f participating in the Fourier sum (14). In the general case of a non-periodic f(t), this is 
actually the Fourier integral,11  

            




 dteftf ti
)( ,     (5.23) 

so f should be calculated using the reciprocal Fourier transform, 

          




 dt'et'ff t'i
 )(

2

1
.     (5.24) 

Now we may use Eq. (16) for each Fourier component of the resulting forced oscillations, and rewrite 
the last of Eqs. (15) as 

9 Note that the phase shift    arg[()] between the oscillations and the external force (see the right panel in Fig. 
1) makes its steepest change, by /2, within the same frequency interval . 
10 Such function of frequency may be met in many branches of science, frequently under special names, including 
the “Cauchy distribution”, “the Lorentz function” (or “Lorentzian line”, or “Lorentzian distribution”), “the Breit-
Wigner function” (or “the Breit-Wigner distribution”), etc. 
11 Let me hope that the reader knows that Eq. (23) may be used for periodic functions as well; in such a case, f is 
a set of equidistant delta functions. (A reminder of the basic properties of the Dirac δ-function may be found, for 
example, in MA Sec. 14.) 
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with the response function (ω) given, in our case, by Eq. (17). Besides requiring two integrations, Eq. 
(25) is conceptually uncomforting: it seems to indicate that the oscillator’s coordinate at time t depends 
not only on the external force exerted at earlier times t’ < t, but also at future times. This would 
contradict one of the most fundamental principles of physics (and indeed, science as a whole), causality: 
no effect may precede its cause. 

 Fortunately, a straightforward calculation (left for the reader’s exercise) shows that the response 
function (17) satisfies the following rule:12 

           0.for      ,0)( 




   de i (5.26) 

This fact allows the last form of Eq. (25) to be rewritten in either of the following equivalent forms: 

            dGtfdt't'tGt'ftq
t

)()()()()(
0

forced 




 ,   (5.27) 

where G(τ), defined as the Fourier transform of the response function, 

  




 


  deG iω)(
2

1
,    (5.28) 

is called the (temporal) Green’s function of the system. According to Eq. (26), G(τ) = 0 for all τ < 0. 

  While the second form of Eq. (27) is frequently more convenient for calculations, its first form is 
more suitable for physical interpretation of the Green’s function. Indeed, let us consider the particular 
case when the force is a delta function  

            0  i.e.   ,with ),()(  t'ttt't'ttf  ,   (5.29) 

representing an ultimately short pulse at the moment t’, with unit “area” f(t)dt. Substituting Eq. (29a) 
into Eq. (27),13 we get  
         t'tGtq  .     (5.30) 

Thus Green’s function G(t – t’) is just the oscillator’s response, as measured at time t, to a short force 
pulse of unit “area”, exerted at time t’. Hence Eq. (27) expresses the linear superposition principle in the 
time domain: the full effect of the force f(t) on a linear system is a sum of the effects of short pulses of 
duration dt’ and magnitude f(t’), each with its own “weight” G(t – t’) – see Fig. 2. 

12 Eq. (26) is true for any linear physical system in which f(t) represents a cause, and q(t) its effect. Following 
tradition, I discuss the frequency-domain expression of this causality relation (called the Kramers-Kronig 
relations) in the Classical Electrodynamics part of this lecture series – see EM Sec. 7.2. 
13 Technically, for this integration, t’ in Eq. (27) should be temporarily replaced with another letter, say t”. 
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 This picture may be used for the calculation of Green’s function for our particular system. 
Indeed, Eqs. (29)-(30) mean that G() is just the solution of the differential equation of motion of the 
system, in our case, Eq. (13), with the replacement t  , and a δ-functional right-hand side: 

         )()(
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 G
d

dG
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Gd
.    (5.31) 

Since Eqs. (27) describes only the second term in Eq. (15), i.e. only the forced, rather than free 
oscillations, we have to exclude the latter by solving Eq. (31) with zero initial conditions: 

              ,000 
d

dG
G       (5.32) 

where  = – 0 means the instant immediately preceding  = 0.  

 This problem may be simplified even further. Let us integrate both sides of Eq. (31) over an 
infinitesimal interval including the origin, e.g. [–d /2, +d /2], and then follow the limit d  0. Since 
Green’s function has to be continuous because of its physical sense as the (generalized) coordinate, all 
terms on the left-hand side but the first one vanish, while the first term yields dG/d+0 – dG/d–0. Due 
to the second of Eqs. (32), the last of these two derivatives has to equal zero, while the right-hand side 
of Eq. (31) yields 1 upon the integration. Thus, the function G() may be calculated for   > 0 (i.e. for all 
times when it is different from zero) by solving the homogeneous version of the system’s equation of 
motion for   > 0, with the following special initial conditions: 

             .10,00 
d

dG
G      (5.33) 

 This approach gives us a convenient way for the calculation of Green’s functions of linear 
systems. In particular for the oscillator with not very high damping ( < 0, i.e. Q > ½), imposing the 
boundary conditions (33) on the homogeneous equation’s solution (9), we immediately get 

         


  'e
'

G 0
0

sin
1

)(  .     (5.34) 

(The same result may be obtained directly from Eq. (28) with the response function () given by Eq. 
(19). This way is, however, a little bit more cumbersome, and is left for the reader’s exercise.)  

 Relations (27) and (34) provide a very convenient recipe for solving many forced oscillations 
problems. As a very simple example, let us calculate the transient process in an oscillator under the 
effect of a constant force being turned on at t = 0, i.e. proportional to the Heaviside step function: 

Oscillator’s 
Green’s 
function 

. . . . . . 

Fig. 5.2. A schematic, finite-interval 
representation of a force f(t) as a sum of 
short pulses at all times t’ < t, and their 
contributions to the linear system’s 
response q(t), as given by Eq. (27). 
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provided that at t < 0 the oscillator was at rest, so in Eq. (15), qfree(t)  0. Then the second form of Eq. 
(27), together with Eq. (34), yield 
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The simplest way to work out such integrals is to represent the sine function under it as the imaginary 
part of exp{i0’t}, and merge the two exponents, getting 
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 This result, plotted in Fig. 3, is rather natural: it describes nothing more than the transient from 
the initial position q = 0 to the new equilibrium position q0 = f0/0

2 = F0/, accompanied by decaying 
oscillations. For this particular simple function f(t), the same result might be also obtained by 
introducing a new variable  tq~  q(t) – q0 and solving the resulting homogeneous equation for q~  (with 
appropriate initial condition q~ (0) = –q0). However, for more complicated functions f(t), Green’s 
function approach is irreplaceable.  

  

 

 

 

 

 

 

 
 Note that for any particular linear system, its Green’s function should be calculated only once, 
and then may be repeatedly used in Eq. (27) to calculate the system response to various external forces – 
either analytically or numerically. This property makes Green’s function approach very popular in many 
other fields of physics – with the corresponding generalization or re-definition of the function.14 

 

5.2. Weakly nonlinear oscillations  

 In comparison with systems discussed in the last section, which are described by linear 
differential equations with constant coefficients and thus allow a complete and exact analytical solution, 
oscillations in nonlinear systems (very unfortunately but commonly called nonlinear oscillations) 
present a complex and, generally, analytically intractable problem. However, much insight into possible 

14 See, e.g., Sec. 6.6, and also EM Sec. 2.7 and QM Sec. 2.2. 
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Fig. 5.3. The transient process in a linear 
oscillator, induced by a step-like force f(t), for 
the particular case /0 = 0.1 (i.e., Q = 5).  
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processes in such systems may be gained from a discussion of an important case of weakly nonlinear 
systems, which may be explored analytically. An important example of such systems is given by an 
anharmonic oscillator – a 1D system whose higher terms in the potential’s expansion (3.10) cannot be 
neglected, but are small and may be accounted for approximately. If, in addition, damping is low (or 
negligible), and the external harmonic force exerted on the system is not too large, the equation            
of motion is a slightly modified version of Eq. (13): 

            ,...),,(2 qqtfqq   ,     (5.38) 

where   0 is the anticipated frequency of oscillations (whose choice may be to a certain extent 
arbitrary – see below), and the right-hand side f  is small (say, scales as some small dimensionless 
parameter  << 1), and may be considered as a small perturbation.  

 Since at   = 0, this equation has the sinusoidal solution given by Eq. (3), one might naïvely think 
that at a nonzero but small ,  the approximate solution to Eq. (38) should be sought in the form 

    nnqqqqtq  )()2()1()0(   where...,)( ,      (5.39) 

with q(0) = A cos(0t – )  0. This is a good example of apparently impeccable mathematical 
reasoning that would lead to a very inefficient procedure. Indeed, let us apply it to the problem we 
already know the exact solution for, namely free oscillations in a linear but damped oscillator, for this 
occasion assuming the damping to be very low, /0 ~   << 1. The corresponding equation of motion, 
Eq. (6), may be represented in form (38) if we take  = 0 and 

                    with  ,2 qf  .     (5.40) 

The naïve perturbation theory based on Eq. (39) would allow us to find small corrections, of the order of 
, to the free, non-decaying oscillations Acos(0t – ). However, we already know from Eq. (9) that the 
main effect of damping is a gradual decrease of the free oscillation amplitude to zero, i.e. a very large 
change of the amplitude, though at low damping,   << 0, this decay takes large time t ~   >> 1/0. 
Hence, if we want our approximate method to be productive (i.e. to work at all time scales, in particular 
for forced oscillations with stationary amplitude and phase), we need to account for the fact that even a 
small right-hand side of Eq. (38) may eventually lead to large changes of oscillation’s amplitude A (and 
sometimes, as we will see below, also of oscillation’s phase ) at large times, because of the slowly 
accumulating effects of the small perturbation.15  

 This goal may be achieved16 by the account of these slow changes already in the “0th 
approximation”, i.e. the basic part of the solution in the expansion (39):  

15 The same flexible approach is necessary for approximations used in quantum mechanics.  The method 
discussed here is closer in spirit (though not completely identical) to the WKB approximation (see, e.g., QM Sec. 
2.4) rather than most perturbative approaches (QM Ch. 6). 
16 This approach has a long history and, unfortunately, does not have a commonly accepted name. It had been 
gradually developed in celestial mechanics, but its application to 1D systems (on which I am focusing) was 
clearly spelled out only in 1926 by Balthasar van der Pol. So, I will follow several authors who call it the van der 
Pol method. Note, however, that in optics and quantum mechanics, this method is commonly called the Rotating 
Wave Approximation (RWA). In math-oriented texts, this approach, and especially its extensions to higher 
approximations, is usually called either the small parameter method or the asymptotic method. The list of other 
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       0at   0,with )],(cos[)()0(   AtttAq .   (5.41) 

(It is evident that Eq. (9) is a particular case of this form.) Let me discuss this approach using a simple 
but representative example of a dissipative (but high-Q) pendulum driven by a weak sinusoidal external 
force with a nearly resonant frequency: 

     ,cossin2 0
2
0 tfqqq        (5.42) 

with |ω – ω0|, δ << ω0, and the force amplitude f0 so small that | q | << 1 at all times. From what we 
know about the forced oscillations from Sec. 1, in this case, it is natural to identify  on the left-hand 
side of Eq. (38) with the force’s frequency. Expanding sin q into the Taylor series in small q, keeping 
only the first two terms of this expansion, and moving all small terms to the right-hand side, we can 
rewrite Eq. (42) in the following popular form (38):17 

         ),,(cos22 0
32 qqtftfqqqqq    .   (5.43) 

Here  = 0
2/6 in the case of the pendulum (though the calculations below will be valid for any α), and 

the second term on the right-hand side was obtained using the approximation already employed in Sec. 
1: (2 – 0

2) q  2 ( – 0) q = 2q, where    – 0 is the detuning parameter that was already 
used earlier – see Eq. (21).  

 Now, following the general recipe expressed by Eqs. (39) and (41), in the 1st approximation in f 
   we may look for the solution to Eq. (43) in the following form: 

      ~,Ψ  where),(Ψcos)( )1()1( qttqAtq  .   (5.44) 

Let us plug this solution into both parts of Eq. (43), keeping only the terms of the first order in . Thanks 
to our (smart :-) choice of  on the left-hand side of that equation, the two zero-order terms in that part 
cancel each other. Moreover, since each term on the right-hand side of Eq. (43) is already of the order of 
, we may drop q(1)    from the substitution into that part at all, because this would give us only terms 
O(2) or higher. As a result, we get the following approximate equation: 

            .coscoscos2)cos(2 0
3)0()1(2)1( tfAAA

dt

d
tfqq    (5.45) 

 According to Eq. (41), generally, A and  should be considered (slow) functions of time. 
However, let us leave the analyses of the transient process and system’s stability until the next section, 
and use Eq. (45) to find stationary oscillations in the system, that are established after an initial transient 
process.  For that limited task, we may take A = const,  = const, so q(0) represents sinusoidal 
oscillations of frequency . Sorting the terms on the right-hand side according to their time 
dependence,18 we see that it has terms with frequencies  and 3: 

scientists credited for the development of this method, its variations, and extensions includes, most notably, N. 
Krylov, N. Bogolyubov, and Yu. Mitroplolsky.  
17 This equation is frequently called the Duffing equation (or the equation of the Duffing oscillator), after Georg 
Duffing who carried out its first  (rather incomplete) analysis in 1918. 
18 Using the second of Eqs. (44), cos t may be rewritten as cos ( + )   cos  cos   – sin sin . Then using 
the identity given, for example, by MA Eq. (3.4): cos3 = (3/4)cos  + (1/4)cos 3, we get Eq. (46). 
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 Now comes the main punch of the van der Pol approach: mathematically, Eq. (45) may be 
viewed as the equation of oscillations in a linear, dissipation-free harmonic oscillator of own frequency 
 (not 0!) under the action of an external force f (0)(t). In our particular case, this force is given by Eq. 
(46) and has three terms: two “quadrature” components with that very frequency , and the third one 
with frequency 3. As we know from our analysis of this problem in Sec. 1, if any of the first two 
components is not equal to zero, q(1) grows to infinity – see Eq. (19) with  = 0. At the same time, by the 
very structure of the van der Pol approximation, q(1) has to be finite – moreover, small! The only way to 
avoid these infinitely growing (so-called secular) terms is to require that the amplitudes of both 
quadrature components of f (0) with frequency  are equal to zero: 

       .0sin2,0cos
4

3
2 00

3   fAfAA    (5.47) 

 These two harmonic balance equations enable us to find both parameters of the forced 
oscillations: their amplitude A and phase . The phase may be readily eliminated from this system (most 
easily, by expressing sin and cos from Eqs. (47) and then requiring the sum sin2 + cos2 to equal 1), 
and the solution for A recast in the following implicit but convenient form: 
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This expression differs from Eq. (22) for the linear resonance in the low-damping limit only by the 
replacement of the detuning  with its effective amplitude-dependent value (A) – or, equivalently, the 
replacement of the frequency 0 of the oscillator with its effective, amplitude-dependent value 
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The physical meaning of  0(A) is simple: this is just the frequency of free oscillations of amplitude A in 
a similar nonlinear system but with zero damping.19 Indeed, for  = 0 and f0 = 0, we could repeat our 
calculations, assuming that  is an amplitude-dependent eigenfrequency 0(A). Then the second of Eqs. 
(47) is trivially satisfied, while the second of them gives Eq. (49). The implicit relation (48) enables us 
to draw the curves of this nonlinear resonance just by bending the linear resonance plots (Fig. 1) 
according to the so-called skeleton curve expressed by Eq. (49). Figure 4 shows the result of this 
procedure. Note that at small amplitude, (A)  0, i.e. we return to the usual, “linear” resonance (22). 

 To bring our solution to its logical completion, we should still find the first perturbation q(1)(t) 
from what is left of Eq. (45). Since the structure of this equation is identical to Eq. (13) with zero 
damping and the force of frequency 3 , we may use Eqs. (16)-(17) to obtain 

19 The effect of the pendulum’s frequency dependence on its oscillation amplitude was observed as early as 1673 
by Christiaan Huygens – who by the way had invented the pendulum clock, increasing the timekeeping accuracy 
by about three orders of magnitude. (He also discovered the largest of Saturn’s moons, Titan). 
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 tAtq     (5.50) 

Adding this perturbation (note the negative sign!) to the sinusoidal oscillation (41), we see that as the 
amplitude A of oscillations in a system with  > 0 (e.g., a pendulum) grows, their waveform becomes a 
bit more “blunt” near the largest deviations from the equilibrium. 

 

 

 

 

 

 

 

 

 

 
 
 The same Eq. (50) also enables an estimate of the range of validity of our first approximation: 
since it has been based on the assumption |q(1)| << |q(0)| ≤ A, for this particular problem we have to 
require αA2/32ω2 << 1. For a pendulum (i.e. for  = 0

2/6), this condition becomes A2 << 192. Though 
numerical coefficients in such strong inequalities should be taken with a grain of salt, the large 
magnitude of this particular coefficient gives a good hint that the method may give very accurate results 
even for relatively large oscillations with A ~ 1. In Sec. 7 below, we will see that this is indeed the case. 

 From the mathematical viewpoint, the next step would be to write the next approximation as 

    ,~),()(cos)( 2)2()2()1( qtqtqAtq     (5.51) 

and plug it into the Duffing equation (43), which (thanks to our special choice of q(0) and q(1)) would 
retain only the sum )2(2)2( qq  on its left-hand side. Again, requiring the amplitudes of two quadrature 

components of the frequency  on the right-hand side to vanish, we may get second-order corrections to 
the values of A and . Then we may use the remaining part of the equation to calculate q(2), and then go 
after the third-order terms, etc. 20 However, for most purposes, the sum q(0) + q(1), and sometimes even 
the crudest approximation of q(0) alone, are completely sufficient. For example, according to Eq. (50), in 
the case of a simple pendulum swinging as much as between the opposite horizontal positions (A = /2), 
the 1st order correction q(1) is of the order of  0.5%. (Soon beyond this value, completely new dynamic 
phenomena start  – see Sec. 7 below – but they cannot be described by these successive approximations 

20 For a mathematically rigorous treatment of higher approximations, see, e.g., Yu. Mitropolsky and N. Dao, 
Applied Asymptotic Methods in Nonlinear Oscillations, Springer, 2004. A more layman (and, by today’s 
standards, somewhat verbose) discussion of various oscillatory phenomena may be found in the classical text A. 
Andronov, A. Vitt, and S. Khaikin, Theory of Oscillators, first published in the 1960s and still available online as 
Dover’s republication in 2011. 
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Fig. 5.4. The nonlinear resonance in the 
Duffing oscillator, as described by Eq. (48), 
for the particular case  = 0

2/6, / = 0.01 
(i.e. Q = 50), and several values of the 
parameter f0/0

2, increased by equal steps of 
0.005 from 0 to 0.03. 
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at all.) Due to such reasons, for the analysis of particular systems, higher approximations are rarely 
pursued.  

 

5.3. Reduced equations 

 A much more important issue is the stability of the solutions described by Eq. (48). Indeed, Fig. 
4 shows that within a certain range of parameters, these equations give three different values for the 
oscillation amplitude (and phase), and it is important to understand which of them are stable. Since these 
solutions are not the fixed points in the sense discussed in Sec. 3.2 (each point in Fig. 4 represents a 
nearly-sinusoidal oscillation), their stability analysis needs a more general approach that would be valid 
for oscillations with amplitude and phase slowly evolving in time. This approach will also enable the 
analysis of non-stationary (especially the initial transient) processes, which are of importance for some 
dynamic systems. 

First of all, let us formalize the way the harmonic balance equations, such as Eqs. (47), should be 
obtained for the general case (38) – rather than for the particular Eq. (43) considered in the last section. 
After plugging in the 0th approximation (41) into the right-hand side of equation (38) we have to require 
the amplitudes of both quadrature components of frequency  to vanish. From the standard Fourier 
analysis, we know that these requirements may be represented as 

              ,0cos,0sin )0()0(  ff     (5.52) 

where the top bar means the time averaging – in our current case, over the period 2/ of the right-hand 
side of Eq. (52), with the arguments calculated in the 0th  approximation: 

           tAAtfqqtff Ψwith  ,,...Ψsin,Ψcos,,...),,( )0()0()0(  .  (5.53) 

 Now, for a transient process the contribution of q(0) to the left-hand side of Eq. (38) is not zero 
any longer, because its amplitude and phase may be both slow functions of time – see Eq. (41). Let us 
calculate this contribution. The exact result would be 
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  (5.54) 

However,  in the first approximation in , we may neglect the second derivative of A, and also the 
squares and products of the first derivatives of A and   (which are all of the second order in ), so Eq. 
(54) is  reduced to 

        )sin(2)cos(2)0(2)0(   tAtAqq  .   (5.55) 

On the right-hand side of Eq. (53), we can neglect the time derivatives of the amplitude and phase at all, 
because this part is already proportional to the small parameter. Hence, in the first order in , Eq. (38) 
becomes 

          Ψsin2Ψcos2)0(0
ef

)1(2)1(  AAffqq   .   (5.56) 

Harmonic 
balance 

equations 
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 Now, applying Eqs. (52) to the function fef
(0), and taking into account that the time averages of 

sin2 and cos2 are both equal to ½, while the time average of the product sincos vanishes, we get a 
pair of so-called reduced equations (alternatively called either “truncated”, or “RWA”, or “van der Pol” 
equations) for the time evolution of the amplitude and phase: 

    Ψcos
1

,Ψsin
1 )0()0( f

A
fA





  .    (5.57a) 

Extending the definition (4) of the complex amplitude of oscillations to their slow evolution in time, a(t) 
 A(t)exp{i(t)}, and differentiating this relation, the two equations (57a) may be also rewritten in the 
form of either one equation for a: 

             tii ef
i

ef
i

a 


)0()0( )Ψ(   ,    (5.57b) 

or two equations for the real and imaginary parts of a(t) = u(t) + iv(t): 

      tfvtfu 





cos
1

,sin
1 )0()0(   .    (5.57c) 

The first-order harmonic balance equations (52) are evidently just the particular case of the reduced 
equations (57) for stationary oscillations ( 0 A ).21 

 Superficially, the system (57a) of two coupled, first-order differential equations may look more 
complex than the initial, second-order differential equation (38), but actually, it is usually much simpler. 
For example, let us spell them out for the easy case of free oscillations a linear oscillator with damping. 
For that, we may reuse the ready Eq. (46) by taking  = f0 = 0, and thus turning Eqs. (57a) into 

         ,Ψsin)Ψsin2Ψcos2(
1

Ψsin
1 )0( AAAfA 


   (5.58a) 

   .Ψcos)Ψsin2Ψcos2(
1

Ψcos
1 )0( 


  AA

A
f

A
   (5.58b) 

 The solution of Eq. (58a) gives us the same “envelope” law A(t) = A(0)e-t as the exact solution 
(10) of the initial differential equation, while the elementary integration of Eq. (58b) yields (t) = t + 
(0)  t – 0t + (0). This means that our approximate solution, 

           ,)0(cos)0()(cos)()( 0
)0(     teAtttAtq t    (5.59) 

agrees with the exact Eq. (9), and misses only the correction (8) of the oscillation frequency. (This 
correction is of the second order in , i.e. of the order of 2, and hence is beyond the accuracy of our first 
approximation.) It is remarkable how nicely do the reduced equations recover the proper frequency of 
free oscillations in this autonomous system – in which the very notion of  is ambiguous. 

21 One may ask why we cannot stick to just one, most compact, complex–amplitude form (57b) of the reduced 
equations. The main reason is that when the function ),,( tqqf  is nonlinear, we cannot replace its real arguments, 

such as q = Acos(t – ), with their complex-function representations like aexp{-it} (as could be done in the 
linear problems considered in Sec. 5.1), and need to use real variables, such as either {A, } or {u, v}, anyway. 

Reduced 
equations: 
alternative 
forms 

Reduced 
(RWA) 
equations 
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 The result is different at forced oscillations. For example, for the (generally, nonlinear) Duffing 
oscillator described by Eq. (43) with f0  0, Eqs. (57a) yield the reduced equations, 

          





 cos
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00 f
AAA

f
AA   ,   (5.60) 

which are valid for an arbitrary function (A), provided that this nonlinear detuning remains much 
smaller than the oscillation frequency. Here (after a transient), the amplitude and phase tend to the 
stationary states described by Eqs. (47). This means that  becomes a constant, so q(0)  Acos(t – 
const), i.e. the reduced equations again automatically recover the correct frequency of the solution, in 
this case, equal to the external force frequency. 

 Note that each stationary oscillation regime, with certain amplitude and phase, corresponds to a 
fixed point of the reduced equations, so the stability of those fixed points determines that of the 
oscillations. In the next three sections, we will carry out such analyses for several simple systems of key 
importance for physics and engineering. 

 

5.4. Self-oscillations and phase locking 

 B. van der Pol’s motivation for developing his method was the analysis of one more oscillatory 
motion type: the so-called self-oscillations. Several systems, e.g., electronic rf amplifiers with positive 
feedback and optical media with quantum-level population inversion, provide convenient means for the 
compensation and even over-compensation of the intrinsic energy losses in oscillators. 
Phenomenologically, this effect may be described as the change of sign of the coefficient   from 
positive to negative. Since for small oscillations, the equation of motion is still linear, we may use Eq. 
(9) to describe its general solution. This equation shows that at  < 0, even infinitesimal deviations from 
equilibrium (say, due to unavoidable fluctuations) lead to oscillations with exponentially growing 
amplitude. Of course, in any real system such growth cannot persist infinitely, and shall be limited by 
this or that effect – e.g., in the above examples, respectively, by the amplifier’s saturation and the 
quantum level population’s exhaustion.  

 In many cases, the amplitude limitation may be described reasonably well by making the 
following replacement:  
               322 qqq    ,     (5.61) 

with  > 0. Let us analyze the effects of such nonlinear damping, applying the van der Pol’s approach22 
to the corresponding differential equation: 

         .02 2
0

3  qqqq        (5.62) 

Carrying out the dissipative and detuning terms to the right-hand side, and taking them for f in the 
canonical Eq. (38), we can easily calculate the right-hand sides of the reduced equations (57a), getting23 

             22

8

3
)(  where,)( AAAAA   ,   (5.63a) 

22 In his original work, B. van der Pol considered a very similar equation (frequently called the van der Pol 

oscillator) that differs from Eq. (62) only by the nonlinear term: qqq  23  , and has very similar properties. 
23 For that, one needs to use the trigonometric identity sin3 = (3/4)sin – (1/4)sin3 – see, e.g., MA Eq. (3.4). 
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         AA   .      (5.63b) 

The last of these equations has exactly the same form as Eq. (58b) for the case of decaying 
oscillations and hence shows that the self-oscillations (if they happen, i.e. if A  0) have the own 
frequency 0 of the oscillator – cf. Eq. (59). However, Eq. (63a) is more substantive. If the initial 
damping  is positive, it has only the trivial fixed point, A0 = 0 (that describes the oscillator at rest), but 
if  is negative, there is also another fixed point, 

                 0for  ,
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3

2
2/1

2001 







 




qqA ,    (5.64) 

which describes steady self-oscillations with a non-zero amplitude A1. 

 To understand which of these points is stable, let us apply the general approach discussed in Sec. 
3.2, the linearization of equations of motion, to Eq. (63a). For the trivial fixed point A0 = 0, its 
linearization is reduced to discarding the nonlinear term in the definition of the amplitude-dependent 
damping (A). The resulting linear equation evidently shows that the system’s equilibrium point, A = A0 
= 0,  is stable at  > 0 and unstable at  < 0. (This self-excitation condition was already discussed 
above.)  On the other hand, the linearization of near the non-trivial fixed point A1 requires a bit more 

math: in the first order in 0
~

1  AAA , we get 
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where Eq. (64) has been used to eliminate A1. We see that the fixed point A1 (and hence the self-
oscillation process) is stable as soon as it exists ( 0 ) – similarly to the situation in our “testbed 
problem” (Fig. 2.1), besides that in our current, dissipative system, the stability is “actual” rather than 
“orbital” – see Sec. 6 for more on this issue. 

 Now let us consider another important problem: the effect of an external oscillating force on a 
self-excited oscillator. If the force is sufficiently small, its effects on the self-excitation condition and 
the oscillation amplitude are negligible. However, if the frequency  of such a weak force is close to the 
own frequency 0 of the oscillator, it may lead to phase locking24 – also called “synchronization”, 
though the latter term also has a much broader meaning. At this effect, the oscillation frequency deviates 
from 0, and becomes exactly equal to the external force’s frequency , within a certain range 

       0 .     (5.66) 

 To prove this fact, and also to calculate the phase-locking range width 2, we may repeat the 
calculation of the right-hand sides of the reduced equations (57a), adding the term f0cost to the right-
hand side of Eq. (62) – cf. Eqs. (42)-(43). This addition modifies Eqs. (63) as follows:25 
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AAA       (5.67a) 
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24 Apparently, the phase locking was first noticed by the same C. Huygens for pendulum clocks. 
25 Actually, this result should be evident, even without calculations, from the comparison of Eqs. (60) and (63). 
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If the system is self-excited, and the external force is weak, its effect on the oscillation amplitude is 
small, and in the first approximation in f0 we can take A to be constant and equal to the value A1 given 
by Eq. (64). Plugging this approximation into Eq. (67b), we get a very simple equation26  

                            cosΔ ,     (5.68) 
where in our current case  

         .
2

Δ
1

0

A

f


       (5.69) 

Within the range – <  < +, Eq. (68) has two fixed points on each 2-segment of the variable : 

         n 2cos 1 








 

 .     (5.70) 

 It is easy to linearize Eq. (68) near each point to analyze their stability in our usual way; 
however, let me use this case to demonstrate another convenient way to do this in 1D systems, using the 
phase plane [  , ] – see Fig. 5, where the red line shows the right-hand side of Eq. (68). 

  

 

 

 

 

 

 

 

 Since according to Eq. (68), positive values of the plotted function correspond to the growth of 
phase  in time and vice versa, we may draw the arrows showing the direction of phase evolution. From 
this graphics, it is clear that one of these fixed points (for f0 > 0, +) is stable, while its counterpart (in 
this case, –) is unstable. Hence the magnitude of  given by Eq. (69) is indeed the phase-locking range 
(or rather its half) that we wanted to find. Note that the range is proportional to the phase-locking 
signal’s amplitude – perhaps the most important quantitative feature of this effect. 

 To complete our simple analysis, based on the assumption of fixed oscillation amplitude, we 
need to find the condition of its validity. For that, we may linearize Eq. (67a), for the stationary case, 
near the value A1, just as we have done in Eq. (65) for the transient process. The stationary result, 
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shows that our assumption,  A
~
 << A1, and hence the final result (69), are valid if the calculated phase-

locking range 2 is much smaller than 4 . 

26 This equation is ubiquitous in phase-locking system descriptions, including even some digital electronic circuits 
used for that purpose – at the proper re-definition of the phase difference . 

Fig. 5.5. The phase plane of a phase-
locked oscillator, for the particular 
case  = /2,  f0 > 0. 
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5.5. Parametric excitation 

 In both problems solved in the last section, the stability analysis was easy because it could be 
carried out for just one slow variable, either amplitude or phase. More generally, such an analysis of the 
reduced equations involves both of these variables. A classical example of such a situation is provided 
by one important physical effect – the parametric excitation of oscillations. A simple example of such 
excitation is given by a pendulum with a variable parameter, for example, the suspension length l(t) – 
see Fig. 6. Experiments27 and numerical simulations show that if the length is changed periodically 
(modulated) with some frequency 2 that is close to 20, and a sufficiently large depth l, the 
equilibrium position of the pendulum becomes unstable, and it starts oscillating with frequency  equal 
exactly to the half of the modulation frequency – and hence only approximately equal to the average 
frequency 0 of the oscillator. 

 

 

 

 

 

 
 For an elementary analysis of this effect, we may consider the simplest case when the 
oscillations are small. At the lowest point (  = 0), where the pendulum moves with the highest velocity 
vmax, the suspension string’s tension T  is higher than mg by the centripetal force: T max = mg + mvmax

2/l. 
On the contrary, at the maximum deviation of the pendulum from the equilibrium, the force is lower 
than mg, because of the string’s tilt: Tmin = mgcosmax. Using the energy conservation, E = mvmax

2/2 = 
mgl(1 – cosmax), we may express these values as Tmax = mg + 2E/l and Tmin = mg – E/l. Now, if during 
each oscillation period, the string is pulled up slightly by l (with l << l) at each of its two passages 
through the lowest point, and is let to go down by the same amount at each of two points of the 
maximum deviation, the net work of the external force per period is positive: 

                    ,
Δ

6Δ)(2 minmax E
l

l
l  TTW     (5.72) 

and hence increases the oscillator’s energy. If the parameter modulation depth l is sufficient, this 
increase may overcompensate the energy drained out by damping during the same period. 
Quantitatively, Eq. (10) shows that low damping (  << 0) leads to the following energy decrease, 

      EE
0

4

 ,     (5.73) 

per oscillation period. Comparing Eqs. (72) and (73), we see that the net energy flow into the 
oscillations is positive, W + E > 0, i.e. oscillation amplitude has to grow if28 

27 The simplest experiments of this kind may be done with the usual playground swings, where moving your body 
up and down moves the system’s c.o.m. position, and hence the effective length lef of the support – see Eq. (4.41). 
28 Modulation of the pendulum’s mass (say, by periodic pumping water in and out of a suspended bottle) gives a 
qualitatively similar result. Note, however, that parametric oscillations cannot be excited by modulating every 

Fig. 5.6. Parametric excitation of a pendulum. 
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Since this result is independent of the oscillation energy E, the growth of energy and amplitude is 
exponential (until E becomes so large that some of our assumptions fail), so Eq. (74) is the parametric 
excitation’s condition – in this simple model. 

 However, this result does not account for a possible difference between the oscillation frequency 
 and the eigenfrequency 0, and also does not clarify whether the best phase shift between the 
oscillations and parameter modulation, assumed in the above calculation, may be sustained 
automatically. To address these issues, we may apply the van der Pol approach to a simple but 
reasonable model: 
     ,0)2cos1(2 2

0  qtqq       (5.75) 

describing the parametric excitation in a linear oscillator with a sinusoidal modulation of the parameter 
0

2(t). Rewriting this equation in the canonical form (38), 
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and assuming that the dimensionless ratios /ω and /, and the modulation depth  are all much less 
than 1, we may use general Eqs. (57a) to get the following reduced equations:  
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 These equations evidently have a fixed point, with A0 = 0, but its stability analysis (though 
possible) is not absolutely straightforward, because the phase   of oscillations is undetermined at that 
point. In order to avoid this (technical rather than conceptual) difficulty, we may use, instead of the real 
amplitude and phase of oscillations, either their complex amplitude a = A exp{i}, or its components u 
and v – see Eqs. (4). Indeed, for our function f, Eq. (57b) gives 
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4
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  ,     (5.78) 

while Eqs. (57c) yield 
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 We see that in contrast to Eqs. (77), in the “Cartesian coordinates” {u, v} the trivial fixed point 
A0 = 0 (i.e. u0 = v0 = 0) is absolutely regular. Moreover, equations (78)-(79) are already linear, so they 
do not require any additional linearization. Thus we may use the same approach as was already used in 
Secs. 3.2 and 5.1, i.e. look for the solution of Eqs. (79) in the exponential form exp{t}. However, now 

oscillator’s parameter – for example, the oscillator’s damping coefficient (at least if it stays positive at all times), 
because this does not change the system’s energy, just the energy drain rate. 
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we are dealing with two variables and should allow them to have, for each value of , a certain ratio u/v. 
For that, we may take the partial solution in the form 

            ., tt ecvecu vu
       (5.80) 

where the constants cu and cv are frequently called the distribution coefficients. Plugging this solution 
into Eqs. (79), we get from them the following system of two linear algebraic equations: 
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 The characteristic equation of this system, i.e. the condition of compatibility of Eqs. (81), 
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has two roots:  
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Requiring the fixed point to be unstable, Re+ > 0, we get the parametric excitation condition 

                .
4

2/122 
      (5.84) 

Thus the parametric excitation may indeed happen without any external phase control: the arising 
oscillations self-adjust their phase to pick up energy from the external source responsible for the 
periodic parameter variation. 

 Our key result (84) may be compared with two other calculations. First, in the case of negligible 
damping ( = 0), Eq. (84) turns into the condition /4 >  . This result may be compared with the 
well-developed theory of the so-called Mathieu equation, whose canonical form is 

         .02cos2
2

2

 yvba
dv

yd
     (5.85) 

With the substitutions y  q, v  t, a  (0/)2, and b/a  –/2, this equation is just a particular case 
of Eq. (75) for  = 0. In terms of Eq. (85), our result (84) may be rewritten just as b > a – 1 , and is 
supposed to be valid for b  << 1. The boundaries given by this condition are shown with dashed lines in 
Fig. 7 together with the numerically calculated29 stability boundaries for the Mathieu equation. One can 
see that the van der Pol approximation works just fine within its applicability limit (and a bit beyond :-), 
though it fails to predict some other important features of the Mathieu equation, such as the existence of 
higher, more narrow regions of parametric excitation (at a  n2, i.e. 0  /n, for all integer n), and some 

29 Such calculations are substantially simplified by the use of the so-called Floquet theorem, which is also the 
mathematical basis for the discussion of wave propagation in periodic media – see the next chapter.  



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 21 of 38

spill-over of the stability region into the lower half-plane a < 0.30 The reason for these failures is the fact 
that, as can be seen in Fig. 7, these phenomena do not appear in the first approximation in the parameter 
modulation amplitude   b, which is the realm of the reduced equations (79). 

  

 

 

 

 

 

 

  

  

  

 

 

 

 In the opposite case of non-zero damping but exact tuning ( = 0,   0), Eq. (84) becomes  
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24

0 Q



       (5.86) 

This condition may be compared with Eq. (74) by taking l/l = 2. The comparison shows that while the 
structure of these conditions is similar, the numerical coefficients are different by a factor close to 2. 
The first reason for this difference is that the instant parameter change at optimal moments of time is 
more efficient than the smooth, sinusoidal variation described by (75). Even more significantly, the 
change of the pendulum’s length modulates not only its frequency 0  (g/l)1/2 as Eq. (75) implies but 
also its mechanical impedance Z  (gl)1/2 – the notion to be discussed in detail in the next chapter. (The 
analysis of the general case of the simultaneous modulation of 0 and Z is left for the reader’s exercise.) 

 To conclude this section, let me summarize the most important differences between the 
excitation of parametric and forced oscillations: 

  (i) Parametric oscillations completely disappear outside of their excitation range, while the 
forced oscillations have a non-zero amplitude for any frequency and amplitude of the external force – 
see Eq. (18).  

 (ii) While the parametric excitation may be described by linear equations such as  Eq. (75), such 
equations cannot predict a finite oscillation amplitude within the excitation range, even at finite 

30 This region (for b << 1, – b2/2 < a < 0) describes, in particular, the counter-intuitive stability of the so-called 
Kapitza pendulum – an inverted pendulum with the suspension point oscillated fast in the vertical direction – the 
effect first observed by Andrew Stephenson in 1908. 
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Fig. 5.7. Stability boundaries of the Mathieu 
equation (85), as calculated: numerically (solid 
curves) and using the reduced equations (79) 
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by various n, the trivial solution y = 0 of the 
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includes an exponentially growing term. 
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damping. In order to describe stationary parametric oscillations, some nonlinear effects have to be taken 
into account. (I am leaving analyses of such effects for the reader’s exercise.)  

 One more important feature of parametric oscillations will be discussed in the next section. 

 

5.6. Fixed point classification 

 The reduced equations (79) give us a good pretext for a brief discussion of an important general 
topic of dynamics: classification and stability of the fixed points of a system described by two time-
independent, first-order differential equations with time-independent coefficients.31 After their 
linearization near a fixed point, the equations for deviations can always be expressed in a form similar to 
Eq. (79): 

           
,~~~
,~~~

2221212

2121111

qMqMq

qMqMq







     (5.87) 

where Mjj’ (with j, j’ = 1, 2) are some real scalars, which may be viewed as the elements of a 22 matrix 
M. Looking for an exponential solution of the type (80),  

         ,~,~
2211

tt ecqecq        (5.88) 

we get a general system of two linear equations for the distribution coefficients c1,2: 
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These equations are consistent if 
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giving us a quadratic characteristic equation: 

      .0)( 211222112211
2  MMMMMM    (5.91) 

Its solution,32 

           ,4)(
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1
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1 2/1
2112

2
22112211 MMMMMM     (5.92) 

shows that the following situations are possible: 

 A. The expression under the square root, (M11- M22)
2 + 4M12M21, is positive. In this case, both 

characteristic exponents   are real, and we can distinguish three sub-cases: 

31 Autonomous systems described by a single, second-order homogeneous differential equation, 
say 0),,( qqqF  , also belong to this class, because we may always treat the generalized velocity vq   as a new 

variable, and use this definition as one first-order differential equation, while the initial equation, in the 
form 0),,( vvqF  , as the second first-order equation. 
32 In the language of linear algebra,  are the eigenvalues, and the corresponding sets of the distribution 
coefficients [c1, c2] are the eigenvectors of the matrix M with elements Mjj’. 
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  (i) Both + and - are negative. As Eqs. (88) show, in this case the deviations q~  tend to 

zero at t  , i.e. the fixed point is stable. Because of generally different magnitudes of the exponents 
, the process represented on the phase plane [ 21

~,~ qq ] (see Fig. 8a, with the solid arrows, for an 

example) may be seen as consisting of two stages: first, a faster (with the rate - > +) relaxation to a 
linear asymptote,33 and then a slower decline, with the rate +, along this line, i.e. at a virtually fixed 
ratio of the variables. Such a fixed point is called the stable node.  

     

  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

   

33 The asymptote direction may be found by plugging the value + back into Eq. (89) and finding the 
corresponding ratio c1/c2. Note that the separation of the system’s evolution into the two stages is conditional, 
being most vivid in the case of a large difference between the exponents + and -. 

Fig. 5.8. Typical trajectories on the phase plane [ 21
~,~ qq ] near fixed points of different types: 

(a) node, (b) saddle, (c) focus, and (d) center. The particular matrices M used for the first 
three panels correspond to Eqs. (81) for the parametric excitation, with  =  and three 
different values of the ratio /4: (a) 1.25, (b) 1.6, and (c) 0.
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  (ii) Both + and - are positive. This case of an unstable node differs from the previous 
one only by the direction of motion along the phase plane trajectories – see the dashed arrows in Fig. 8a. 
Here the variable ratio is also approaching a constant soon, now the one corresponding to + > -. 

   (iii) Finally, in the case of a saddle (+ > 0, – < 0), the system’s dynamics is different 
(Fig. 8b): after the rate-–relaxation to an asymptote, with the perturbation starts to grow, with the rate 
+, along one of two opposite directions. (The direction is determined on which side of another straight 
line, called the separatrix, the system has been initially.)  So the saddle34 is an unstable fixed point. 

 B. The expression under the square root in Eq. (92), (M11- M22)
2 + 4 M12M21, is negative. In this 

case, the square root is imaginary, making the real parts of both roots equal, Re = (M11 + M22)/2, and 
their imaginary parts equal but opposite. As a result, here there can be just two types of fixed points: 

  (i) Stable focus, at (M11 + M22) < 0. The phase plane trajectories are spirals going to the 
origin (i.e. toward the fixed point) – see Fig. 8c with the solid arrow. 

  (ii) Unstable focus, taking place at (M11 + M22) > 0, differs from the stable one only by 
the direction of motion along the phase trajectories – see the dashed arrow in the same Fig. 8c. 

 C. Frequently, the border case, M11 + M22 = 0, corresponding to the orbital (“indifferent”) 
stability already discussed in Sec. 3.2, is also distinguished, and the corresponding fixed point is referred 
to as the center (Fig. 8d). Considering centers as a separate category makes sense because such fixed 
points are typical for Hamiltonian systems, whose first integral of motion may be frequently represented 
as the distance of the representing point from a certain center. For example, by introducing new 

variables 121
~~  and  ~~ qmqqq  , we may rewrite Eq. (3.12) of a harmonic oscillator without dissipation 

(again, with indices “ef” dropped for brevity), as a system of two first-order differential equations: 

        ,~~,~1~
1221 qqq

m
q        (5.93) 

i.e. as a particular case of Eq. (87), with M11 = M22 = 0, and M12M21 = –/m  –0
2 < 0, and hence (M11- 

M22)
2 + 4M12M21 = –40

2 < 0, and M11 + M22 = 0. On the symmetrized phase plane  Zqq /~,~
21 , where 

the parameter Z  (m)1/2  m0 is the oscillator’s impedance, the sinusoidal oscillations of amplitude A 
are represented by a circle of radius A about the center-type fixed point A = 0. In the case when qq ~~

1   

is the linear coordinate q of an actual mechanical oscillator, so 12
~~ qmq   is its linear momentum 

qmp  , such a circular trajectory corresponds to the conservation of the oscillator’s energy 
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 This is a convenient moment for a brief discussion of the so-called Poincaré (or “slow-variable”, 
or “stroboscopic”) plane.35 From the point of view of the basic Eq. (41), the sinusoidal oscillations q(t) 

34 The term “saddle” is due to the fact that in this case, the system’s dynamics is qualitatively similar to that of a 
heavily damped motion in a 2D potential U( 21

~,~ qq ) having the shape of a horse saddle (or a mountain pass). 
35Named after Jules Henri Poincaré (1854-1912), who is credited, among many other achievements in physics 
and mathematics, for his contributions to special relativity (see, e.g., EM Chapter 9), and the basic idea of 
unstable trajectories responsible for the deterministic chaos – to be discussed in Chapter 9 of this course. 
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= Acos(t – ), described by a circular trajectory on the actual (symmetrized) phase plane, correspond 
to a fixed point {A, }, which may be conveniently represented by a stationary geometric point on the 
plane with these polar coordinates – see Fig. 9a. (As follows from Eq. (4), the point’s Cartesian 
coordinates on that plane are just the variables u  Acos and v  Acos that were used, in particular, in 
the last section.) The quasi-sinusoidal process (41), with slowly changing A and , may be represented 
by  slow motion of that point on this Poincaré plane.  

 

 

 

 

 

 

 

 

  

 Figure 9b shows a convenient way to visualize the relation between the actual phase plane of an 
oscillator, with the “fast” symmetrized coordinates q and p/m, and the Poincaré plane with the “slow” 
coordinates u and v: the latter plane rotates relative to the former one, about the origin, clockwise, with 
the angular velocity .36 Another, “stroboscopic” way to generate the Poincaré plane pattern is to have a 
fast glance at the “real” phase plane just once during the oscillation period T  = 2/.   

 In many cases, the representation on the Poincaré plane is more convenient than that on the 
“real” phase plane. In particular, we have already seen that the reduced equations for such important 
phenomena as phase locking and parametric oscillations, whose original differential equations include 
time explicitly, are time-independent – cf., e.g., Eqs. (75) and (79) describing the latter effect. This 
simplification brings the equations into the category considered earlier in this section and enables an 
easy classification of their fixed points, which may shed additional light on their dynamic properties.    

 In particular, Fig. 10 shows the classification of the only (trivial) fixed point A1 = 0 on the 
Poincaré plane of the parametric oscillator, which follows from Eq. (83). As the parameter modulation 
depth  is increased, the type of this fixed point changes from a stable focus (pertinent to a simple 
oscillator with damping) to a stable node and then to a saddle describing the parametric excitation. In 
the last case, the two directions of the perturbation growth, so prominently featured in Fig. 8b, 
correspond to the two possible values of the oscillation phase , with the phase choice determined by 
initial conditions. 

 This double degeneracy of the parametric oscillation’s phase could already be noticed from Eqs.  
(77), because they are evidently invariant with respect to the replacement    + . Moreover, the 
degeneracy is not an artifact of the van der Pol approximation, because the initial equation (75) is 
already invariant with respect to the corresponding replacement q(t)  q(t – /). This invariance 

36 This notion of phase plane rotation is the origin of the term “Rotating Wave Approximation”, mentioned above. 
(The word “wave” is an artifact of this method’s wide application in classical and quantum optics.) 
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Fig. 5.9. (a) Representation of a 
sinusoidal oscillation (point) and a 
slow transient process (line) on the 
Poincaré plane, and (b) the relation 
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and the “slow” (Poincaré) plane. 
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means that all other characteristics (including the amplitude) of the parametric oscillations excited with 
either of the two phases are exactly similar. At the dawn of the computer age (in the late 1950s and early 
1960s), there were substantial attempts, especially in Japan, to use this property for storage and 
processing digital information coded in the binary-phase form. Though these attempts have not survived 
the competition with simpler approaches based on binary-voltage coding, some current trends in the 
development of prospective reversible and quantum computers may be traced back to that idea.  

  

 

 

 

 

 

 

5.7. Numerical approaches 

 If the amplitude of oscillations, for whatever reason, becomes so large that nonlinear terms in the 
equation describing an oscillator become comparable with its linear terms, numerical methods are 
virtually the only avenue available for their theoretical studies. In Hamiltonian 1D systems, such 
methods may be applied directly to Eq. (3.26), but dissipative and/or parametric systems typically lack 
such first integrals of motion, so the initial differential equation has to be solved.  

 Let us discuss the general idea of such methods on the example of what mathematicians call the  
Cauchy problem (finding the solution for all moments of time, starting from the known initial 
conditions) for the first-order differential equation 

      ).,( qtfq        (5.95) 

(The generalization to a system of several such equations is straightforward.) Breaking the time axis into 
small equal steps h (Fig. 11) we can reduce the equation integration problem to finding the function’s 
value at the next time point, qn+1  q(tn+1)  q(tn + h) from the previously found value qn = q(tn) – and, if 
necessary, the values of q at other previous time steps.   

 

 

 

  

 

  

 In the simplest approach (called the Euler method), qn+1 is found using the following formula: 
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Fig. 5.11. The basic notions used at numerical 
integration of ordinary differential equations. 
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This approximation is equivalent to the replacement of the genuine function q(t), on the segment [tn, 
tn+1], with the two first terms of its Taylor expansion in point tn:  

    ).,()()()()( nnnnnn qthftqhtqtqhtq      (5.97) 

 This approximation has an error proportional to h2. One could argue that by making the step h 
sufficiently small, the Euler method’s error might be made arbitrarily small, but even with all the 
number-crunching power of modern computer platforms, the CPU time necessary to reach sufficient 
accuracy may be too large for big problems.37 Besides that, the increase of the number of time steps, 
which is necessary at h  0 at a fixed total time interval, increases the total rounding errors and 
eventually may cause an increase, rather than the reduction of the overall error of the computed result. 

 A more efficient way is to modify Eq. (96) to include the terms of the second order in h. There 
are several ways to do this, for example using the 2nd-order Runge-Kutta method: 
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One can readily check that this method gives the exact result if the function q(t) is a quadratic 
polynomial, and hence in the general case its errors are of the order of h3. We see that the main idea here 
is to first break the segment [tn, tn+1] in half (see Fig. 11 again), evaluate the right-hand side of the 
differential equation (95) at the point intermediate (in both t and q) between the points number n and (n 
+ 1), and then use this information to evaluate qn+1.   

 The advantage of the Runge-Kutta approach over other second-order methods is that it may be 
readily extended to the 4th order, without an additional breakup of the interval [tn, tn+1]: 
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(5.99) 

This method has a much lower error, O(h5), without being too cumbersome. These features have made 
the 4th-order Runge-Kutta the default method in most numerical libraries. Its extension to higher orders 
is possible, but requires more complex formulas, and is justified only for some special cases, e.g., very 
abrupt functions q(t).38 The most frequent enhancement of the method is an automatic adjustment of the 
step h to reach the pre-specified accuracy, but not make more calculations than necessary. 

 Figure 12 shows a typical example of an application of that method to the very simple problem 
of a damped linear oscillator, for two values of the fixed time step h – expressed in terms of the number 
(N) of such steps per oscillation period. The black straight lines connect the adjacent points obtained by 

37 In addition, the Euler method is not time-reversible. This handicap that may be essential for Hamiltonian 
systems described by systems of second-order differential equations. However, this drawback may be partly 
overcome by the so-called leapfrogging – the overlap of time steps h for a generalized coordinate and the 
corresponding generalized velocity. 
38 The most popular approaches in such cases are the Richardson extrapolation, the Bulirsch-Stoer algorithm, and 
a set of so-called prediction-correction techniques, e.g. the Adams-Bashforth-Moulton method – see the literature 
recommended in MA Sec. 16(iii). 
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the 4th-order Runge-Kutta method, while the points connected with the green straight lines represent the 
exact analytical solution (22). The plots show that a-few-percent errors start to appear only at as few as 
~10 time steps per period, so the method is indeed very efficient.  

 Let me hope that the discussion in the next section will make the conveniences and the handicaps 
of the numerical approach to problems of nonlinear dynamics very clear. 

  

 

 

 

 

 

 

 

 

  

  

5.8. Higher-harmonic and subharmonic oscillations 

 Figure 13 shows the numerically calculated39 transient process and stationary oscillations in a 
linear oscillator and a very representative nonlinear system, the pendulum described by Eq. (42), both 
with the same 0.  Both systems are driven by a sinusoidal external force of the same amplitude and 
frequency – in this illustration, equal to the own small-oscillation frequency 0 of both systems. The 
plots show that despite a very substantial amplitude of the pendulum oscillations (the angle amplitude of 
about one radian), their waveform remains almost exactly sinusoidal.40 On the other hand, the 
nonlinearity affects the oscillation amplitude very substantially. These results imply that the 
corresponding reduced equations (60), which are based on the assumption (41), may work very well far 
beyond its formal restriction q << 1.  

 Still, the waveform of oscillations in a nonlinear system always differs from that of the applied 
force – in our case, from the sine function of frequency . This fact is frequently formulated as the 
generation, by the system, of higher harmonics. Indeed, the Fourier theorem tells us that any non-
sinusoidal periodic function of time may be represented as a sum of its basic harmonic of frequency , 
plus higher harmonics with frequencies n, with integer n > 1.  

 Note that an effective generation of higher harmonics is only possible with adequate nonlinearity 
of the system. For example, consider the nonlinear term q3 used in the equations explored in Secs. 2 

39 All numerical results shown in this section have been obtained by the 4th-order Runge-Kutta method with the 
automatic step adjustment that guarantees the relative error of the order of 10-4 – much smaller than the pixel size 
in the shown plots. 
40 In this particular case, the higher harmonic content is about 0.5%, dominated by the 3rd harmonic, whose 
amplitude and phase are in very good agreement with Eq. (50). 

Fig. 5.12. Results of the Runge-Kutta solution of Eq. (6) (with /0 = 0.03) for: (a) 30 and (b) 6 points per 
oscillation period. The results are shown by points; the black and green lines are only the guides for the eye. 
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and 3. If the waveform q(t) is sinusoidal, such term will have only the basic (1st) and the 3rd harmonics – 
see, e.g., Eq. (50). As another example, the “pendulum nonlinearity” sinq cannot produce, without a 
time-independent component (”bias”) in q(t), any even harmonic, including the 2nd one. The most 
efficient generation of harmonics may be achieved using systems with the sharpest nonlinearities – e.g., 
semiconductor diodes whose current may follow an exponential dependence on the applied voltage 
through several orders of magnitude. 41 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Another way to increase the contents of an nth higher harmonic in a nonlinear oscillator is to 
reduce the excitation frequency   to ~0/n, so the oscillator resonated at the frequency n  0 of the 
desired harmonic. For example, Fig. 14a shows the oscillations in a pendulum described by the same Eq. 
(42), but driven at frequency  = 0/3. One can see that the 3rd harmonic amplitude may be comparable 
with that of the basic harmonic, especially if the external frequency is additionally lowered (Fig. 14b) to 
accommodate for the deviation of the effective frequency ω0(A) of own oscillations from its small-
oscillation value ω0 – see Eq. (49), Fig. 4, and their discussion in Sec. 2 above.  

 However, numerical modeling of nonlinear oscillators, as well as experiments with their physical 
implementations, bring more surprises. For example, the bottom panels of Fig. 15 show oscillations in a 
pendulum under the effect of a strong sinusoidal force with a frequency  close to 30. One can see that 
at some parameter values and initial conditions, the system’s oscillation spectrum is heavily contributed 
(almost dominated) by the 3rd subharmonic, i.e. the Fourier component of frequency /3  0.  

This counter-intuitive phenomenon of such subharmonic generation may be explained as 
follows. Let us assume that subharmonic oscillations of frequency /3   0 have somehow appeared, 
and coexist with the forced oscillations of frequency 3:  

41 This method is used in practice, for example, for the generation of electromagnetic waves with frequencies in 
the terahertz range (1012-1013 Hz), which is still in wait for efficient electronic self-oscillators.   

Fig. 5.13. The oscillations induced by a similar sinusoidal external force (turned on at t = 0) in two 
systems with the same small-oscillation frequency ω0 and low damping: a linear oscillator (two 
top panels) and a pendulum (two bottom panels). In all cases, δ/ω0 = 0.03, f0 = 0.1, and ω = ω0.  
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     .
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Then the leading nonlinear term, q3, of the Taylor expansion of the pendulum’s nonlinearity sin q, is 
proportional to  
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Fig. 5.14. The oscillations induced in a pendulum, with damping δ/ω0 = 0.03, by a sinusoidal external 
force of amplitude f0 = 0.75, and frequencies ω0/3 (top panel) and 0.8ω0/3 (bottom panel).  
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Fig. 5.15. The oscillations of a pendulum with δ/ω0 = 0.03, driven by a sinusoidal external force of 
amplitude f0 = 3 and frequency 0.83ω0, at initial conditions q(0) = 0 (the top panels) and q(0) = 1 
(the bottom panels), with dq/dt (0) = 0 in both cases.

0 5 10 15 20
2

1

0

1

2

28 29 30
2

1

0

1

2

0 5 10 15 20
2

1

0

1

2

28 29 30
2

1

0

1

2

 2/0t  2/0t

)(tq

)(tq



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 31 of 38

 While the first and the last terms of the last expression depend only on the amplitudes of the 
individual components of oscillations, the two middle terms are more interesting, because they produce 
so-called combinational frequencies of the two components. In our case, the third term, 

            ...)Ψ2Ψcos(
4

3
ΨcosΨcos3 sub

2
ubsub

22
ub  ss AAAA ,    (5.102) 

is of special importance, because it produces (besides other combinational frequencies) the subharmonic 
component with the total phase 

      subsub 2
3

2 


t
.     (5.103) 

Thus, this nonlinear contribution is synchronous with the subharmonic oscillations, and describes the 
interaction that can, within a certain range of the mutual phase shift between the Fourier components,  
deliver to them energy from the external force, so that the oscillations may be sustained. Note, however, 
that the amplitude of the term describing this energy exchange is proportional to the square of Asub, and 
vanishes at the linearization of the equations of motion near the trivial fixed point. This means that the 
point is always stable, i.e., the 3rd subharmonic cannot be self-excited and always needs an initial “kick-
off” – compare the two panels of Fig. 15. The same is true for higher-order subharmonics. 

 Only the second subharmonic is a special case. Indeed, let us make a calculation similar to Eq. 
(102), by replacing Eq. (101) with 

    ,
2

Ψ,Ψ  where,ΨcosΨcos)( subsubsubsub  
t

tAAtq   (5.104) 

for a nonlinear term proportional to q2: 

     .ΨcosΨcosΨcos2Ψcos)ΨcosΨcos( sub
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Here the combinational-frequency term capable of supporting the 2nd subharmonic, 

       ...cosΨΨcosΨcosΨcos2 subsubsubsubsubsub  tAAAAAA ,  (5.106) 

is linear in the subharmonic’s amplitude, i.e. survives the linearization near the trivial fixed point. This 
means that the second subharmonic may arise spontaneously, from infinitesimal fluctuations. 

 Moreover, such excitation of the second subharmonic is very similar to the parametric excitation 
that was discussed in detail in Sec. 5, and this similarity is not coincidental. Indeed, let us redo the 
expansion (106) making a somewhat different assumption – that the oscillations are a sum of the forced 
oscillations at the external force’s frequency  and an arbitrary but weak perturbation: 

      AqtqtAtq  ~with  ),(~)cos()(  .    (5.107) 

Then, neglecting the small term proportional to 2~q , we get 

    ).cos()(~2)(cos222   tAtqtAq     (5.108) 

Besides the inconsequential phase shift , the second term in the last formula is exactly similar to the 
term describing the parametric effects in Eq. (75). This fact means that for a weak perturbation, a system 
with a quadratic nonlinearity in the presence of a strong “pumping” signal of frequency  is equivalent 
to a system with parameters changing in time with frequency . This fact is broadly used for the 
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parametric excitation at high (e.g., optical) frequencies, where the mechanical means of parameter 
modulation (see, e.g., Fig. 5) are not practicable. The necessary quadratic nonlinearity at optical 
frequencies may be provided by a non-centrosymmetric nonlinear crystal, e.g., the -phase barium 
borate (BaB2O4). 

 Before finishing this section, let me elaborate a bit on a general topic: the relation between the 
numerical and analytical approaches to problems of dynamics – and to physics as a whole. We have just 
seen that sometimes numerical solutions, like those shown in Fig. 15b, may give vital clues for 
previously unanticipated phenomena such as the excitation of subharmonics. (The phenomenon of 
deterministic chaos, which will be discussed in Chapter 9 below, presents another example of  such 
“numerical discoveries”.) One might also argue that for problems without exact analytical solutions, the 
numerical simulation may be an equally productive theoretical tool. These hopes are, however, muted by 
the general problem that is frequently called the curse of dimensionality,42 in which the last word refers 
to the number of parameters of the problem to be solved.43   

 Indeed, let us have one more look at Fig. 15. OK, we have been lucky to find a new 
phenomenon, the 3rd subharmonic generation, for a particular set of parameters – in that case, five of 
them: /0 = 0.03, /0 = 2.4, f0  = 3, q(0) = 1, and dq/dt (0) = 0. Could we tell anything about how 
common this effect is? Are subharmonics with different n possible in this system? The only way to 
address these questions computationally is to carry out similar numerical simulations at many points of 
the d-dimensional (in this case, d = 5) space of parameters. Say, we have decided that breaking the 
reasonable range of each parameter to N = 100 points is sufficient. (For many problems, even more 
points are necessary – see, e.g., Sec. 9.1.) Then the total number of numerical experiments to carry out is 
Nd = (102)5 = 1010 – not a simple task even for the powerful modern computing facilities. (Besides the 
pure number of required CPU cycles, consider the storage and analysis of the results.) For many 
important problems of nonlinear dynamics, e.g., turbulence, the parameter dimensionality d is 
substantially larger, and the computer resources necessary even for one numerical experiment, are much 
greater. 

 In view of the curse of dimensionality, approximate analytical considerations, like those outlined 
above for the subharmonic excitation, are invaluable. More generally, physics used to stand on two legs: 
experiment and analytical theory. The enormous progress of computer performance during the few last 
decades has provided it with one more support point (a tail? :-) – numerical simulation. This does not 
mean we can afford to discard any of the legs we are standing on. 

 

5.9. Relaxation oscillations 

 Such synthesis of the analytical and numerical approaches is also beneficial for the discussion of 
the last subject of this chapter: nonlinear oscillators with high damping. Perhaps the most interesting 
effect in such systems is the so-called relaxation oscillations, a type of self-oscillations with highly non-
sinusoidal waveforms. Let me demonstrate them using our old friend, Eq. (62) with  < 0, whose 

42 This term had been coined in 1957 by Richard Bellman in the context of the optimal control theory (where the 
dimensionality means the number of parameters affecting the system under control) but gradually has spread all 
over quantitative sciences using numerical methods. 
43 In EM Sec. 1.2, I discuss the implications of this “curse” for a different case, when both analytical and 
numerical solutions to the same problem are possible. 
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properties at    << 0 were discussed 
in Sec. 4, because it will enable us to 
follow the crossover from the harmonic 
oscillations to the relaxation ones. 

 Figure 16 shows the results of 
the numerical solution of this equation 
for three characteristic values of its 
only substantial parameter44 

                 0
2

0





D .     (5.109) 

(Indeed, if we introduce the natural 
dimensionless variables: time   0t, 
displacement x  q/q0, where q0 is the 
scale defined in Eq. (64), and velocity y 
 dx/d, then the second-order 
differential equation (62) may be 
rewritten as the following system of 
two first-order equations: 45 

         

  ,1

,

2 xyy
d

dy

y
d

dx





D


      (5.110) 

with D being its only parameter.) The 
left panels show phase planes [x, dx/d] 
of the oscillator, with their axes 
swapped46 for the comparison with the 
right panels showing the displacement x  
as a function of time. 

 If the damping is low (top two 
panels), the system, launched from any 
initial state, gradually approaches the 
“limit cycle” of nearly sinusoidal 
oscillations. Note that even for this, not 
extremely small value D = 0.2, 
deviations of the waveform x() from a 
purely sinusoidal function of time are 

44 As Eq. (11) shows, for positive damping, this parameter is just the reciprocal Q-factor.  
45 A somewhat different equation used in 1926 by B. van der Pol to trace the harmonic-to-relaxation-oscillation 
crossover for the first time may be also reduced to Eq. (110) by using the so-called Liénard's transformation. 
46 Note that while on the usual phase plane, the free-oscillation process corresponds to a clockwise rotation of the 
representation point (see, e.g., Fig. 9), the axes’ swap in Fig. 16 makes the rotation counterclockwise. 

Fig. 5.16. The phase plane and time evolution of the self-
oscillator described by Eqs. (62) and (110), for three values of the 
normalized damping (109). The red and blue lines show the 
system’s dynamics for two representative initial conditions, while 
the black lines, its asymptotic behavior (the “limit cycles”). 

2 1 0 1 2
2

1

0

1

2

2 1 0 1 2
2

1

0

1

2

0 0.5 1 1.5
2

1

0

1

2

0 0.5 1 1.5
2

1

0

1

2

0 2 4 6 8
1

0.5

0

0.5

1

2 1 0 1 2
1

0.5

0

0.5

1

x

 2/

x

x

y

2.0D

0.2D

20D

D

x

D

x

x

 2/

 2/y

y

 xy0



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 34 of 38

very small, its period (in the normalized time ) is very close to the small-oscillation value 2, and its 
amplitude is also very close to the value 2/3  1.15 predicted by the van der Pol method – see Eq. (64). 

 As the damping is increased to D = 2 (middle panels), the limit cycle’s deviations from the 
circle, and hence the deviations of the waveform x() from a sinusoidal function become obvious. Note 
also that while the oscillation period becomes somewhat longer than its small-oscillation value, the 
transient processes of approaching the limit cycle become faster. 

 The trend of these changes becomes evident on the bottom panels, showing case D = 20. (The 
further increase of the damping does not change the results noticeably, only rescaling the displacements 
as x  D – note the vertical scale of the bottom panels of Fig. 16.) It shows that the oscillation period is 
dominated by two similar parts, of equal duration. During these two intervals of relatively slow 
evolution, the limit cycle closely follows the declining branches of the function 

        0
2
01 yyx  D ,     (5.111) 

corresponding to the zero value of the first (and nominally, the largest) term in the second equation of 
the system (110) – see the dashed line on the left bottom panel. During these intervals, the displacement 
x grows in accordance with the first of these equations, with its right-hand part virtually equal to the y0 
corresponding to Eq. (111). Even without solving the resulting differential equation exactly,47 we see 
that at these brunches, with y0  1, x() changes with a speed of the order of D, and hence the path from 
the initial and final points of each branch, of a length x ~ D, takes a time interval  of the order of 1 –  
exactly as the right panel shows.  

 As soon as the system reaches the branch’s endpoint x = (2/33)D  0.385D, where the 
derivative dy0/dx diverges, the balance of the terms on the right-hand part of the second Eq. (110) is not 
more possible, and its magnitude abruptly becomes of the order of D >> 1. As a result, the system jumps 
from this point to the opposite branch of the curve (111) very rapidly, during a time interval   ~ y0/D 
~ 1/D << 1, insufficient for x to change much. (The initial transient processes, i.e. the approaches to the 
limit cycle from almost arbitrary initial conditions, are equally fast, also with x  const.) Upon reaching 
the new branch, the system “relaxes” to a relatively slow evolution in the opposite direction (hence the 
term “relaxation oscillations”), and the process repeats again and again. 

 Such oscillations take place in a large number of practical mechanical systems and electronic 
devices, ranging from bowed string musical instruments (including those of the violin family), to usual 
mechanical clocks, to car light blinkers. Many of them allow for simple analyses; to save time/space, let 
me leave a couple of problems of this type for the reader’s exercise.  

 

5.10. Exercise problems 

 5.1. A body of mass m is connected to its support not only with an elastic 
spring but also with a damper (say, an air brake) that provides a drag force obeying 
Eq. (5) – see the figure on the right.  

47 Its integration leads to an elementary function for (y), but transcendental equations for y() and x().





m
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 (i) How to select the constants  and  to minimize the body’s vibrations caused by vertical 
oscillations of its support with frequency ?  
 (ii)* What if the oscillations are random? 
 
 5.2. For a system with the response function given by Eq. (17): 

 (i) prove Eq. (26), and  
 (ii) use an approach different from the one used in Sec. 1, to derive Eq. (34). 

 Hint: You may like to use the Cauchy integral theorem and the Cauchy integral formula for 
analytical functions of a complex variable.48 
 
 5.3. A square-wave pulse of force (see the figure on the right) is exerted 
on a damping-free linear oscillator of frequency 0, initially at rest. Calculate the 
law of motion q(t), sketch it, and interpret the result. 
 
 5.4. A linear oscillator with frequency 0 and damping  was at rest at t  0. At t = 0, an external 
force F(t) = F0cost starts to be exerted on it. 

  (i) Derive the general expression for the time evolution of the oscillator’s displacement, and 
interpret the result. 
 (ii) Spell out the result for the exact resonance ( = 0) in a system with low damping ( << 0) 
and explore the limit   0. 
 
 5.5. A pulse of external force F(t), with a finite duration T, is exerted on a linear oscillator with 
negligible damping, initially at rest in its equilibrium position. Use two different approaches to calculate 
the resulting change of the oscillator’s energy. 
  
 5.6. A bead may slide, without friction, in a vertical plane along a parabolic curve y = x2/2, in a 
uniform gravity field g = –gny. Calculate the change its free oscillations’ frequency as a function of their 
amplitude A, in the first nonvanishing approximation in A  0, by using two different approaches. 
  
 5.7. For a system with the Lagrangian function  

422

22
qqq

m
L  

 , 

with small parameter , use the harmonic balance method to find the frequency of free oscillations as a 
function of their amplitude. 
 
 5.8. Use a different approach to derive Eq. (49) for the frequency of free oscillations of the 
system described by the Duffing equation (43) with  = 0, in the first nonvanishing approximation in the 
small parameter A2/0

2 << 1. 
 
 5.9. On the plane [a1, a2] of two real parameters a1 and a2, find the regions in which the fixed 
point of the following system of equations, 

48 See, e.g., MA Eq. (15.1). 
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is unstable, and sketch the regions of each fixed point type – stable and unstable nodes, focuses, etc. 
  
 5.10. Solve Problem 4(ii) by using the reduced equations (57), and compare the result with the 
exact solution.  
 
 5.11. Use the reduced equations to analyze forced oscillations in an oscillator with weak 
nonlinear damping, described by the following equation: 

,cos2 0
32

0 tfqqqq     

with   0; ,  > 0; and A2 << 1. In particular, find the stationary amplitude of the forced 
oscillations and analyze their stability. Discuss the effect(s) of the nonlinear term on the resonance. 
 

5.12. Within the approach discussed in Sec. 4, calculate the average frequency of a self-oscillator 
outside of the range of its phase locking by a weak sinusoidal force. 
 
 5.13.* Use the reduced equations to analyze the stability of the forced nonlinear oscillations 
described by the Duffing equation (43). Relate the result to the slope of the resonance curves (Fig. 4). 

 
5.14. Use the van der Pol method to find the condition of 

parametric excitation of an oscillator described by the following 
equation: 

,0)(2 2
0  qtqq    

where 0
2(t) is the square-wave function shown in the figure on the 

right, with   0. 
 
5.15. Use the van der Pol method to analyze the parametric excitation of an oscillator with weak 

nonlinear damping, described by the following equation: 

  ,02cos12 2
0

3  qtqqq    

with   0; ,  > 0; and , A2 << 1. In particular, find the amplitude of stationary oscillations and 
analyze their stability. 
 
 5.16. Upon adding the nonlinear term q3 to the left-hand side of Eq. (75),  

  (i) find the corresponding addition to the reduced equations, 
 (ii) calculate the stationary amplitude A of the parametric oscillations, 
 (iii) find the type and stability of each fixed point of the reduced equations, 

  (iv) sketch the Poincaré phase plane of the system in major parameter regions. 
  

5.17. Use the van der Pol method to find the condition of parametric excitation of a linear 
oscillator with simultaneous weak modulation of the effective mass m(t) = m0(1 + mcos2t) and the 
effective spring constant (t) = 0[1 + cos(2t – )], with the same frequency 2  20, for arbitrary 

2
0

t
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0
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0 t
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modulation depths ratio m/ and phase shift . Interpret the result in terms of modulation of the 
oscillator’s instantaneous frequency (t)  [(t)/m(t)]1/2 and impedance Z(t)  [(t)m(t)]1/2. 
 
 5.18.* Find the condition of parametric excitation of a nonlinear oscillator described by the 
following equation: 

,2cos2 0
22

0 tfqqqq     

with sufficiently small , ,  f0, and     – 0. 

 
5.19. Find the condition of stability of the equilibrium point q = 0 of a parametric oscillator 

described by Eq. (75), in the limit when  << 0 <<  and  << 1. Use the result to analyze the stability 
of the Kapitza pendulum mentioned in Sec. 5. 
 
 5.20.* Use numerical simulation to explore phase-plane trajectories [ qq , ] of an autonomous 
pendulum described by Eq. (42) with f0 = 0, for both low and high damping, and discuss their most 
significant features. 
 
 5.21. Analyze relaxation oscillations of the system shown 
in the figure on the right. Here an elastic spring prevents a block 
of mass m from being carried away by a horizontal conveyor belt 
moving with a constant velocity u. Assume that the coefficient k 
of the kinematic friction between the block and the belt is lower 
than the static friction coefficient s. 
 
 5.22. The figure on the right shows the circuit of the simplest 
electronic relaxation oscillator. N is a bistable circuit element that 
switches very rapidly from its very-high-resistance state to a very-low-
resistance state as the voltage across it is increased beyond some value 
Vt, and switches back as the voltage is decreased below another value 
Vt’ < Vt.49 Calculate the waveform and the time period of voltage 
oscillations in the circuit. 

 Hint: The solution of this problem requires a very basic understanding of electric circuits, 
including such notions as the e.m.f. E and the internal resistance R of a dc current source – e.g., of an 
electric battery. 

49 This is a reasonable model for many two-terminal gas-discharge devices (such as glow lamps), whose effective 
resistance may drop by up to 5 orders of magnitude when the discharge has been ignited by voltage V > Vt. In 
usual neon glow lamps, the discharge stops at a voltage Vt’ that is about 30% lower than Vt. 

m
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Chapter 6. From Oscillations to Waves 

In this chapter, the discussion of oscillations is extended to systems with two and more degrees of 
freedom. This extension naturally leads to another key notion of physics – waves, so far in simple, 
mostly 1D systems. (In the next chapter, this discussion will be extended to more complex elastic 
continua.) However, even the limited scope of the models analyzed in this chapter will still enable us to 
discuss such important general aspects of waves as their dispersion, phase and group velocities, 
impedance, reflection, and attenuation. 

 
6.1. Two coupled oscillators  

Let us discuss oscillations in systems with several degrees of freedom, starting from the simplest 
case of two linear (harmonic), dissipation-free, 1D oscillators. If the oscillators are independent of each 
other, the Lagrangian function of their system may be expressed as a sum of two independent terms      
of the type (5.1): 

         2
2,1

2,12
2,1

2,1
2,12,12,121 22

, qq
m

UTLLLL


  .   (6.1) 

Correspondingly, Eqs. (2.19) for qj = q1,2 yields two independent equations of motion of the oscillators, 
each one being similar to Eq. (5.2): 

              
2,1

2,12
2,12,1

2
2,12,12,12,1   where,0

m
qmqm


 .   (6.2) 

(In the context of what follows, 1,2 are sometimes called the partial frequencies.) This means that in 
this simplest case, an arbitrary motion of the system is just a sum of independent sinusoidal oscillations 
at two frequencies equal to the partial frequencies (2). 

 However, as soon as the oscillators are coupled (i.e. interact), the full Lagrangian L contains an 
additional mixed term Lint depending on both generalized coordinates q1 and  q2 and/or generalized 
velocities. As a simple example, consider the system shown in Fig. 1, where two small masses m1,2 are 
constrained to move in only one direction (shown horizontal), and are kept between two stiff walls with three 
springs.  

 

 

 

  

 In this case, the kinetic energy is still separable, T = T1 + T2, but the total potential energy, 
consisting of the elastic energies of three springs, is not: 

           2
2
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21
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 ,    (6.3a)

where q1.2 are the horizontal displacements of the particles from their equilibrium positions. It is 
convenient to rewrite this expression as   

Fig. 6.1. A simple system of two 
coupled linear oscillators. 

1m 2mL M R

1q 2q
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 qqqqU . (6.3b) 

This formula shows that the Lagrangian function L = T – U of this system contains, besides the partial 
terms (1), a bilinear interaction term: 

              21intint21 , qqLLLLL  .    (6.4) 

The resulting Lagrange equations of motion are as follows: 
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     (6.5) 

Thus the interaction leads to an effective generalized force q2 exerted on subsystem 1 by subsystem 2, 
and the reciprocal effective force q1.  

 Please note two important aspects of this (otherwise rather simple) system of equations. First, in 
contrast to the actual physical interaction forces (such as F12 = –F21 = M(q2 – q1) for our system1) the 
effective forces on the right-hand sides of Eqs. (5) do not obey the 3rd Newton law. Second, the forces 
are proportional to the same coefficient ; this feature is a result of the general bilinear structure (4) of 
the interaction energy, rather than of any special symmetry. 

  From our prior discussions, we already know how to solve Eqs. (5), because it is still a system 
of linear and homogeneous differential equations, so its general solution is a sum of particular solutions 
of the form similar to Eqs. (5.88),  

       tt ecqecq 
2211 ,  ,     (6.6) 

with all possible values of . These values may be found by plugging Eq. (6) into Eqs. (5), and requiring 
the resulting system of two linear, homogeneous algebraic equations for the distribution coefficients c1,2, 
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to be self-consistent. In our particular case, we get a characteristic equation, 
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that is quadratic in 2, and thus has a simple analytical solution: 
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     (6.9) 

1 Using these expressions, Eqs. (5) may be readily obtained from the Newton laws, but the Lagrangian approach 
used above will make their generalization, in the next section, more straightforward.  

Linearly 
coupled 
oscillators 
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 According to Eqs. (2) and (3b), for any positive spring constants, the product 12 = (L + 
M)(R + M)/(m1m2)

1/2 is always larger than  /(m1m2)
1/2 = M/(m1m2)

1/2, so the square root in Eq. (9) is 
always smaller than (1

2+2
2)/2. As a result, both values of 2 are negative, i.e. the general solution to 

Eq. (5) is a sum of four terms, each proportional to exp{it}, where both normal frequencies (or 
“natural frequencies”, or “eigenfrequencies”)   i are real: 

           
2/1

21

2
22

2
2
1

2
2

2
1

22

4

1

2

1








  mm

 .   (6.10) 

 A plot of these eigenfrequencies as a function of one of the partial frequencies (say, 1), with the 
other partial frequency fixed, gives us the famous anticrossing (also called the “avoided crossing” or 
“non-crossing”) diagram – see Fig. 2. One can see that at weak coupling, the normal frequencies  are 
close to the partial frequencies 1,2 everywhere besides a narrow range near the anticrossing point 1 = 
2. Most remarkably, at passing through this region, +  smoothly “switches” from following 2 to 
following 1 and vice versa. 

 

 

 

 

 

 

 

 

 
 The reason for this counterintuitive behavior may be found by examining the distribution 
coefficients c1,2 corresponding to each branch of the diagram, which may be obtained by plugging the 
corresponding value of  = –i back into Eqs. (7). For example, at the anticrossing point 1 = 2  , 
Eq. (10) is reduced to  
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    (6.11) 

Plugging this expression back into any of Eqs. (7), we see that for the two branches of the anticrossing 
diagram, the distribution coefficient ratio is the same by magnitude but opposite by sign: 
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 In particular, if the system is symmetric (m1 = m2, L = R), then at the upper branch, 
corresponding to + > -, we get c1 = –c2. This means that in this so-called hard mode,2 masses oscillate 

2 In physics, the term “mode” (or “normal mode”) is typically used to describe the distribution of a variable in 
space, at its oscillations with a single frequency. In our current case, when the notion of space is reduced to two 
oscillator numbers, each mode is fully specified by the corresponding ratio of two distribution coefficients c1,2. 

Anticrossing: 
example 

Fig. 6.2. The anticrossing diagram for two 
values of the normalized coupling strength 
/(m1m2)

1/22
2: 0.3 (red lines) and 0.1 (blue 

lines). In this plot,  1 is assumed to be changed 
by varying 1 rather than m1, but in the opposite 
case, the diagram is qualitatively similar. 
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in anti-phase: q1(t)  –q2(t). The resulting substantial extension/compression of the middle spring (see 
Fig. 1 again) yields additional returning force which increases the oscillation frequency. On the 
contrary, at the lower branch, corresponding to –, the particle oscillations are in phase: c1 = c2, i.e. q1(t) 
 q2(t), so the middle spring is neither stretched nor compressed at all. As a result, in this soft mode, the 
oscillation frequency -  is lower than +, and does not depend on M:  

         
mmm

RL22    .     (6.13) 

Note that for both modes, the oscillations equally engage both particles.   

 Far from the anticrossing point, the situation is completely different. Indeed, a similar calculation 
of c1,2 shows that on each branch of the diagram, the magnitude of one of the distribution coefficients is 
much larger than that of its counterpart. Hence, in this limit, any particular mode of oscillations involves 
virtually only one particle. A slow change of system parameters, bringing it through the anticrossing, 
leads, first, to a maximal delocalization of each mode at 1 = 2, and then to a restoration of the 
localization, but in a different partial degree of freedom. 

 We could readily carry out similar calculations for the case when the systems are coupled via 
their velocities, 21int qqmL  , where m is a coupling coefficient – not necessarily a certain physical 

mass.3 The results are generally similar to those discussed above, again with the maximum level 
splitting at 1 = 2  : 
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the last relation being valid for weak coupling. The generalization to the case of simultaneous coordinate 
and velocity coupling is also straightforward – see the next section.4 

  One more property of weakly coupled oscillators is a periodic slow transfer of energy between 
them, especially strong at or near the anticrossing point 1 = 2. Let me leave an analysis of such 
transfer for the reader’s exercise. (Due to the importance of this effect for quantum mechanics, it will be 
discussed in detail in the QM part of this series.) 

 

6.2. N coupled oscillators 

 The calculations of the previous section may be readily generalized to the case of an arbitrary 
number (say, N) of coupled harmonic oscillators, with an arbitrary type of coupling. It is obvious that in 
this case Eq. (4) should be replaced with 

3 In mechanics, with q1,2 standing for the actual displacements of particles, such coupling is not very natural, but 
there are many dynamic systems of non-mechanical nature in which such coupling is the most natural one. The 
simplest example is the system of two LC (“tank”) circuits, with either capacitive or inductive coupling. Indeed, 
as was discussed in Sec. 2.2, for such a system, the very notions of the potential and kinetic energies are 
conditional and interchangeable.  
4 Note that the anticrossing diagram shown in Fig. 2, is even more ubiquitous in quantum mechanics, because, due 
to the time-oscillatory character of the Schrödinger equation solutions, a weak coupling of any two quantum states 
leads to qualitatively similar behavior of the eigenfrequencies  of the system, and hence of its eigenenergies 
(“energy levels”) E =  of the system. 
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Moreover, we can generalize the above expression for the mixed terms Ljj’, taking into account their 
possible dependence not only on the generalized coordinates but also on the generalized velocities, in a 
bilinear form similar to Eq. (4). The resulting Lagrangian may be represented in a compact form, 
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where the off-diagonal terms are index-symmetric: mjj’ = mj’j, jj’ = j’j, and the factors ½ compensate for 
the double-counting of each term with j  j’, at the summation over two independently running indices. 
One may argue that Eq. (16) is quite general if we still want to keep the equations of motion linear – as 
they always are if the oscillations are small enough. 

 Plugging Eq. (16) into the general form (2.19) of the Lagrange equation, we get N equations      
of motion of the system, one for each value of the index  j’ = 1, 2,…, N: 

            .0
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N
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jjj'jjj' qqm        (6.17) 

Just as in the previous section, let us look for a particular solution to this system in the form 

                    tecq jj
 .      (6.18) 

As a result, we are getting a system of N linear, homogeneous algebraic equations, 

             0
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for the set of N distribution coefficients cj. The condition that this system is self-consistent is that the 
determinant of its matrix equals zero: 

             .0 Det '
2

'  jjjjm       (6.20) 

This characteristic equation is an algebraic equation of degree N for 2, and so has N roots (2)n. For any 
Hamiltonian system with stable equilibrium, the matrices mjj’ and jj’ ensure that all these roots are real 
and negative. As a result, the general solution to Eq. (17) is the sum of 2N terms proportional to exp 
{int}, n = 1, 2,…, N, where all N normal frequencies ωn are real. 

 Plugging each of these 2N values of  = in back into a particular set of linear equations (17), 
one can find the corresponding sets of distribution coefficients cj. Generally, the coefficients are 
complex, but to keep qj(t) real, the coefficients cj+ corresponding to  = +in, and cj- corresponding to  
= –in have to be complex-conjugate of each other. Since the sets of the distribution coefficients may be 
different for each n, they should be marked with two indices, j and n. Thus, at general initial conditions, 
the time evolution of the  jth generalized coordinate may be represented as 
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 This formula shows very clearly again the physical sense of the distribution coefficients cjn: a set 
of these coefficients, with different values of index j but the same mode number n, gives the complex 
amplitudes of oscillations of the coordinates in this mode, i.e. for the special initial conditions that 
ensure purely sinusoidal motion of all the system, with frequency n. 

 The calculation of the normal frequencies and the corresponding modes (distribution coefficient 
sets) of a particular coupled system with many degrees of freedom from Eqs. (19)–(20) is a task that 
frequently may be only done numerically.5 Let us discuss just two particular but very important cases. 
First, let all the coupling coefficients be small in the following sense: mjj’  << mj   mjj  and jj’  << j 
 jj, for all j  j, and all partial frequencies j  (j/mj)

1/2  be not too close to each other: 
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2

2
'

2

,
Ω

ΩΩ







,    for all j  j’.    (6.22) 

(Such a situation frequently happens if parameters of the system are “random” in the sense that they do 
not follow any special, simple rule – for example, the one resulting from some simple symmetry of the 
system.)  Results of the previous section imply that in this case, the coupling does not produce a 
noticeable change in the oscillation frequencies: {ωn} {j}. In this situation, oscillations at each 
eigenfrequency are heavily concentrated in one degree of freedom, i.e. in each set of the distribution 
coefficients cjn (for a given n), one coefficient’s magnitude is much larger than all others. 

 Now let the conditions (22) be valid for all but one pair of partial frequencies, say 1 and 2, 
while these two frequencies are so close that the coupling of the corresponding partial oscillators 
becomes essential. In this case, the approximation {ωn}  {j} is still valid for all other degrees of 
freedom, and the corresponding terms may be neglected in Eqs. (19) for j = 1 and 2. As a result, we 
return to Eqs. (7) (perhaps generalized for velocity coupling) and hence to the anticrossing diagram (Fig. 
2) discussed in the previous section.  As a result, an extended change of only one partial frequency (say, 
1) of a weakly coupled system produces a sequence of frequency anticrossings – see Fig. 3. 

 

 

 

 

 

 

 

 

6.3. 1D waves 

 The second case when the general results of the last section may be simplified are coupled 
systems with a considerable degree of symmetry. Perhaps the most important of them are uniform 

5 Fortunately, very effective algorithms have been developed for this matrix diagonalization task – see, e.g., 
references in MA Sec. 16(iii)-(iv). For example, the popular MATLAB software package was initially created 
exactly for this purpose. (“MAT” in its name stood for “matrix” rather than “mathematics”.) 
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Fig. 6.3. The level anticrossing in a system of N 
weakly coupled oscillators – schematically.  
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systems that may sustain traveling and standing waves. Figure 4a shows a simple example of such a 
system – a long uniform chain of particles, of mass m, connected with light, elastic springs, pre-
stretched with the tension force T  to have equal lengths d. (This system may be understood as a natural 
generalization of the two-particle system considered in Sec. 1 – cf. Fig. 1.) 

 

 

 

 

  

 

    

 

 

 

 

 

                     

 

 
 The spring’s pre-stretch does not affect small longitudinal oscillations qj of the particles about 
their equilibrium positions zj = jd (where the integer j numbers the particles sequentially) – see Fig. 4b.6 
Indeed, in the 2nd Newton law for such a longitudinal motion of the jth particle, the forces T and (–T) 
exerted by the springs on the right and the left of it, cancel. However, the elastic additions, q, to these 
forces are generally different:   
             )()( 11   jjjjj qqqqqm  .    (6.23) 

 On the contrary, for transverse oscillations within one plane (Fig. 4c), the net transverse 

component of the pre-stretch force exerted on the jth particle, Tt = T(sin+ – sin-), where  are the 
force direction angles, does not vanish. As a result, direct contributions to this force from small 
longitudinal oscillations, with qj << d, T/, are negligible. Also, due to the first of these strong 
conditions, the angles  are small, and hence may be approximated, respectively, as +  (qj+1 – qj)/d 
and -  (qj – qj-1)/d. Plugging these expressions into a similar approximation, Tt   T(+ – -) for the 
transverse force, we see that it may be expressed as T(qj+1 – qj)/d – T(qj – qj-1)/d, i.e. is absolutely similar 

6 Note the need for a clear distinction between the equilibrium position zj of the jth point and its deviation qj from 
it. Such distinction has to be sustained in the continuous limit (see below), where it is frequently called the 
Eulerian description – named after L. Euler, even though it was introduced to mechanics by J. d’Alembert. In this 
course, the distinction is emphasized by using different letters – respectively, z and q (in the 3D case, r and q). 

Fig. 6.4. (a) A uniform 1D chain 
of elastically coupled particles, 
and their small (b) longitudinal 
and (c) transverse displacements 
(much exaggerated for clarity). 
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to that in the longitudinal case, just with the replacement   T/d. As a result, we may write the 
equation of motion of the jth particle for these two cases in the same form: 

          )()( 1ef1ef   jjjjj qqqqqm  ,    (6.24) 

where ef is the “effective spring constant”, equal to  for the longitudinal oscillations, and to T/d for 
the transverse oscillations.7 

 Apart from the (formally) infinite size of the system, Eq. (24) is just a particular case of Eq. (17), 
and thus its particular solution may be looked for in the form (18), where, in light of our previous 
experience, we may immediately take 2  –2. With this substitution, Eq. (24) gives the following 
simple form of the general system of equations (19) for the distribution coefficients cj: 

             02 1ef1efef
2   jjj cccm  .   (6.25) 

Now comes the most important conceptual step toward the wave theory. The translational symmetry of 
Eq. (25), i.e. its invariance with respect to the replacement j  j + 1, allows it to have particular 
solutions of the following form: 
                  jiaec j

 ,      (6.26) 

where the coefficient   may depend on  (and system’s parameters), but not on the particle number j. 
Indeed, plugging Eq. (26) into Eq. (25) and canceling the common factor eij, we see that this 
differential  equation is indeed identically satisfied, provided that  obeys the following algebraic 
characteristic equation: 

          02 efefef
2     ii eem .   (6.27) 

The physical sense of the solution (26) becomes clear if we use it and Eq. (18) with  = i, to write 

                                )(expRe)(expRe)( ph tvzikatkziatq jjj    ,   (6.28) 

where the wave number k is defined as k  /d. Eq. (28) describes a sinusoidal8 traveling wave of 
particle displacements, which propagates, depending on the sign before vph, to the right or the left along 
the particle chain, with the so-called phase velocity 

           
k

v


ph .      (6.29) 

Perhaps the most important characteristic of a wave system is the so-called dispersion relation, 
i.e. the relation between the wave’s frequency   and its wave number k – one may say, between the 
temporal and spatial frequencies of the wave. For our current system, this relation is given by Eq. (27) 
with   kd. Taking into account that (2 – e+i – e-i)  2(1 – cos)  4sin2(/2), the dispersion relation 
may be rewritten in a simpler form: 

7 The re-derivation of Eq. (24) from the Lagrangian formalism, with the simultaneous strict proof that the small 
oscillations in the longitudinal direction and the two mutually perpendicular transverse directions are all 
independent of each other, is a very good exercise, left for the reader. 
8 In optics and quantum mechanics, such waves are usually called monochromatic; I will try to avoid this term 
until the corresponding parts (EM and QM) of my series. 

1D 
traveling  
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           .2  where,
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sin 
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ef
maxmaxmax 








m

kd 
    (6.30) 

 This result, sketched in Fig. 5, is rather remarkable in several aspects. I will discuss them in 
some detail, because most of these features are typical for waves of any type (including even the “de 
Broglie waves”, i.e. wavefunctions, in quantum mechanics), propagating in periodic structures.  

 

 

 

 

 

 First, at low frequencies,  << max, the dispersion relation (31) is linear: 
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d
vvk

k

2/1

efmax

0 2
  where, 










 .   (6.31) 

Plugging Eq. (31) into Eq. (29), we see that the constant v plays, in the low-frequency limit, the role of 
the phase velocity for waves of any frequency. Due to its importance, this acoustic wave9  limit will with 
be the subject of the special next section. 

 Second, when the wave frequency is comparable with max, the dispersion relation is not linear, 
and the system is dispersive. This means that as a wave, whose Fourier spectrum has several essential 
components with frequencies of the order of max, travels along the structure, its waveform (which may 
be defined as the shape of the line connecting all points qj(z), at the same time) changes.10 This effect 
may be analyzed by representing the general solution of Eq. (24) as the sum (more generally, an 
integral) of the components (28) with different complex amplitudes a: 

             dktkkziatq jkj  




expRe)( .    (6.32) 

 This notation emphasizes the possible dependence of the component wave amplitudes ak and 
frequencies  on the wave number k. While the latter dependence is given by the dispersion relation, in 
our current case by Eq. (30), the function ak is determined by the initial conditions. For applications, the 
case when ak is substantially different from zero only in a narrow interval, of a width k  << k0 around 
some central value k0, is of special importance. The Fourier transform reciprocal to Eq. (32) shows that 
this is true, in particular, for the so-called wave packet – a sinusoidal (“carrier”) wave modulated by a 
spatial envelope function of a large width z ~ 1/k >> 1/k0 – see, e.g., Fig. 6. 

9 This term is purely historical. Though the usual sound waves in air, which are the subject of acoustics, belong to 
this class, the waves we are discussing may have frequencies both well below and well above the human ear’s 
sensitivity range. 
10 The waveform’s deformation due to dispersion (which we are considering now) should be clearly distinguished 
from its possible change due to attenuation due to energy dissipation – which is not taken into account is our 
current energy-conserving model – cf. Sec. 6 below. 

1D wave 
packet 

Fig. 6.5. The dispersion 
relation (30).kd0 2
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 Using the strong inequality k  << k0, the wave packet’s propagation may be analyzed by 
expending the dispersion relation (k) into the Taylor series at point k0, and, in the first approximation 
in k/ k0, restricting the expansion to its first two terms: 

              .
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  and  , where,
~
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k kk      (6.33) 

In this approximation, Eq. (32) yields 
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Comparing the last expression with the initial form of the wave packet,  

                   







 









dkzkiazikdkeaq jkj
j

kj

ikz ~
expexpReRe)0( 0 ,  (6.35) 

and taking into account that the phase factors before the integrals in the last forms of Eqs. (34) and (35) 
do not affect its envelope, we see that in this approximation, the envelope sustains its initial form and 
propagates along the system with the so-called group velocity 

      
0

gr kkdk

d
v 


.     (6.36) 

 Except for the acoustic wave limit (31), this velocity, which characterizes the propagation of the 
waveform’s envelope, is different from the phase velocity (29), which describes the propagation of the 
carrier wave, e.g., the spatial position of one of its zeros – see the red and blue arrows in Fig. 6.11  

 Next, for our particular dispersion relation (30), the difference between vph and vgr increases as  
approaches max, with the group velocity (36) tending to zero, while the phase velocity stays almost 
constant. The physics of such a maximum frequency available for the wave propagation may be readily 
understood by noticing that according to Eq. (30), at  = max, the wave number k equals n/d, where n 

11 Taking into account the next term in the Taylor expansion of the function (q), proportional to d2/dq2, we 
would find that the dispersion leads to a gradual change of the envelope’s form. Such changes play an important 
role in quantum mechanics, so they are discussed in detail in the QM part of these lecture notes. 

grv
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Fig. 6.6. The phase 
and group velocities 
of a wave packet. 
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is an odd integer, and hence the phase shift   kd is an odd multiple of . Plugging this value into Eq. 
(28), we see that at  = max, the oscillations of two adjacent particles are in anti-phase, for example: 

                ).(expRe)(,expRe)( 010 tqtiiatqtiatq     (6.37) 

It is clear, especially from Fig. 4b for longitudinal oscillations, that at such a phase shift, all the springs 
are maximally stretched/compressed (just as in the hard mode of the two coupled oscillators analyzed in 
Sec. 1), so it is natural that this mode has the highest possible frequency.  

 This fact invites a natural question: what happens with the system if it is agitated at a frequency 
 > max, say by an external force exerted on its boundary? Reviewing the calculations that have led to 
the dispersion relation (30), we see that they are all valid not only for real but also for any complex 
values of k. In particular, at  > max it gives 

       
 

  ./cosh2
Λ,...,3,2,1  where,
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12
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 d
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   (6.38) 

Plugging this relation into Eq. (28), we see that the wave’s amplitude becomes an exponential function 
of the particle’s position: 

        /expIm
jj zeaq kdj .    (6.39) 

Physically this means that penetrating into the structure, the wave decays exponentially (from the 
excitation point), dropping by a factor of e  3 at the so-called penetration depth . (According to Eq. 
(38), at  ~ max this depth is of the order of the distance d between the adjacent particles, and decreases 
but rather slowly as the frequency is increased beyond max.) Such a limited penetration is a very 
common property of waves, including electromagnetic waves penetrating into various plasmas and 
superconductors, and the quantum-mechanical de Broglie waves penetrating into classically forbidden 
regions of space. Note that this effect of “wave expulsion” from the medium’s bulk does not require any 
energy dissipation. 

 Finally, one more fascinating feature of the dispersion relation (30) is its periodicity: if the 
relation is satisfied with some wave number k0(), it is also satisfied with any kn() = k0() + 2n/d, 
where n is an integer. This property is independent of the particular dynamics of the system and is a 
common property of all systems that are d-periodic in the usual (“direct”) space. It has especially 
important implications for the quantum de Broglie waves in periodic systems – for example, crystals – leading, in 
particular, to the famous band/gap structure of their energy spectrum.12 

 

6.4. Acoustic waves 

 Now let us return to the limit of low-frequency, dispersion-free acoustic waves, with  << 0, 
propagating with the frequency-independent velocity (31). Such waves are the general property of any 
elastic continuous medium and obey a simple (and very important) partial differential equation. To 
derive it, let us note that in the acoustic wave limit,  kd  << 1,13 the phase shift   kd is very close to 

12 For more detail see, e.g., QM Sec. 2.5. 
13 Strictly speaking, per the discussion at the end of the previous section, in this reasoning, k means the distance of 
the wave number from the closest point 2n/d – see Fig. 5 again. 
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2n. This means that the differences qj+1(t) – qj(t) and qj(t) – qj-1(t), participating in Eq. (24), are 
relatively small and may be approximated with q/j  q/(z/d)  d(q/z), with the derivatives taken at 
middle points between the particles: respectively, z+  (zj+1 – zj)/2 and z- (zj – zj-1)/2. Let us now 
consider z as a continuous argument, and introduce the particle displacement q(z, t) – a continuous 
function of space and time, satisfying the requirement q(zj, t) = qj(t). In this notation, in the limit kd  0, 
the sum of the last two terms of Eq. (24) becomes –d[q/z(z+) – q/z(z-)], and hence may be 
approximated as –d2(2q/z2), with the second derivative taken at point (z+ – z-)/2  zj, i.e. exactly at the 
same point as the time derivative. As a result, the whole set of ordinary differential equations (24), for 
different j, is reduced to just one partial differential equation 

          0
2

2
2

ef2
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m  .     (6.40a) 

Using Eq. (31), we may rewrite this 1D wave equation in a more general form 
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.     (6.40b) 

 The most important property of the wave equation (40), which may be verified by an elementary 
substitution, is that it is satisfied by either of two traveling wave solutions (or their linear superposition): 

           vztftzqvztftzq /,,/,   ,   (6.41) 

where f are any smooth functions of one argument. The physical sense of these solutions may be 
revealed by noticing that the displacements q do not change at the addition of an arbitrary change t to 
their time argument, provided that it is accompanied by an addition of the proportional addition of vt 
to their space argument. This means that with time, the waveforms just move (respectively, to the left or 
the right), with the constant speed v, retaining their form – see Fig. 7. 14  

 

 

 

 
 

 Returning to the simple model shown in Fig. 4, let me emphasize that the acoustic-wave velocity 
v is different for the waves of two types: for the longitudinal waves (with ef = , see Fig. 4b), 
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m

vv l

2/1










,     (6.42) 

while for the transverse waves (with ef = T/d, see Fig. 4c): 

14 From the point of view of Eq. (40), the only requirement to the “smoothness” of the functions f is to be doubly 
differentiable. However, we should not forget that in our case the wave equation is only an approximation of the 
discrete Eq. (24), so according to Eq. (30), the traveling waveform conservation is limited by the acoustic wave 
limit condition  << max, which should be fulfilled for all Fourier components of these functions. 

1D wave 
equation 

Fig. 6.7. Propagation of a 
traveling wave in a 
dispersion-free 1D system.  
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where the constant   m/d has a simple physical sense of the particle chain’s mass per unit length. 
Evidently, these velocities, in the same system, may be rather different. 

 The wave equation (40), with its only parameter v, may conceal the fact that any wave-
supporting system is characterized by one more key parameter. In our current model (Fig. 4), this 
parameter may be revealed by calculating the forces F(z, t) accompanying any of the traveling waves 
(41) of particle displacements. For example, in the acoustic wave limit kd  0 we are considering now, 
the force exerted by the jth particle on its right neighbor may be approximated as 

                     d
z

q
tqtqtzF

jjjj zz


  ef1ef )()(),(  ,   (6.44) 

where, as was discussed above, ef is equal to  for the longitudinal waves, and to T/d for the transverse 

waves. But for the traveling waves (41), the partial derivatives q/z are equal to  vf /
  (where the dot 

means the differentiation over the full arguments of the functions f), so the corresponding forces are 
equal to  

               ,ef
  f

v

d
F 


     (6.45) 

i.e. are proportional to the particle’s velocities u = q/t  in these waves,15 u = f , for the same z and t. 
This means that the ratio 
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depends only on the wave propagation direction, but is independent of z and t, and also of the 
propagating waveform. Its magnitude,  
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 ,    (6.47) 

characterizing the dynamic “stiffness” of the system for the propagating waves, is called the wave 
impedance.16 Note that the impedance is determined by the product of the system’s generic parameters 
ef and m, while the wave velocity (31) is proportional to their ratio, so these two parameters are 
completely independent, and both are important. According to Eq. (47), the wave impedance, just as the 
wave velocity, is also different for the longitudinal and transverse waves:  

         2/12/1 , 
T
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t
t

l
l v

Zm
v

d
Z .    (6.48) 

15 Of course, the particle’s velocity u (which is proportional to the wave amplitude) should not be confused with 
the wave’s velocity v (which is independent of this amplitude). 
16 This notion is regretfully missing from many physics (but not engineering!) textbooks. 
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(Note that the first of these expressions for Z coincides with the one used for a single oscillator in Sec. 
5.6. In that case, Z may be also recast in a form similar to Eq. (46), namely, as the ratio of the force and 
velocity amplitudes at free oscillations.) 

 One of the wave impedance’s key functions is to scale the power carried by a traveling wave: 

                                   22ef
ef,, 
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P .  (6.49) 

Two remarks about this important result. First, the sign of P depends only on the direction of the wave 
propagation, but not on the waveform. Second, the instant value of the power does not change if we 
move with the wave in question, i.e. measure P at points with z  vt = const. This is natural because in 
the Hamiltonian system we are considering, the wave energy is conserved. Hence, the wave impedance 
Z characterizes the energy transfer along the system rather than its dissipation. 

 Another important function of the wave impedance notion becomes clear when we consider 
waves in nonuniform systems. Indeed, our previous analysis assumed that the 1D system supporting the 
waves (Fig. 4) is exactly periodic, i.e. macroscopically uniform, and extends all the way from – to +. 
Now let us examine what happens when this is not true. The simplest and very important example of 
such nonuniform systems is a sharp interface, i.e. a point (say, z = 0) at which system parameters 
experience a jump while remaining constant on each side of the interface – see Fig. 8. 

 

 

 

 

 

In this case, the wave equation (40) and its partial solutions (41) are is still valid for z < 0 and z > 
0 – in the former case, with primed parameters. However, the jump of parameters at the interface leads 
to a partial reflection of the incident wave from the interface, so at least on the side of the incidence (in 
the case shown in Fig. 8, for z  0) we need to use two such terms, one describing the incident wave and 
another one, the reflected wave: 
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tzq    (6.50) 

 To find the relations between the functions f–, f+, and f–’ (of which the first one, describing the 
incident wave, may be considered known), we may use two boundary conditions at z = 0. First, the 
displacement q0(t) of the particle at the interface has to be the same whether it is considered a part of the 
left or right sub-system, and it participates in Eqs. (50) for both z  0 and z  0. This gives us the first 
boundary condition: 
                 tftft'f   .     (6.51) 

On the other hand, the forces exerted on the interface from the left and the right should also have equal 
magnitude, because the interface may be considered as an object with a vanishing mass, and any 
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Fig. 6.8. Partial reflection of a 
wave from a sharp interface. 
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nonzero net force would give it an infinite (and hence unphysical) acceleration. Together with Eqs. (45) 
and (47), this gives us the second boundary condition: 

                          tftfZt'fZ'    .     (6.52) 

 Integrating both parts of this equation over time, and neglecting the integration constant (which 
describes a common displacement of all particles rather than their oscillations), we get 

               tftfZt'Z'f   .     (6.53) 

Now solving the system of two linear equations (51) and (53) for f+(t) and f+’(t), we see that both these 
functions are proportional to the incident waveform: 

                 ,, tft'ftftf   TR     (6.54) 

with the following reflection (R ) and transmission (T ) coefficients: 
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, TR .    (6.55) 

 Later in this series, we will see that with the appropriate re-definition of the impedance, these 
relations are also valid for waves of other physical nature (including the de Broglie waves in quantum 
mechanics) propagating in 1D continuous structures, and also in continua of higher dimensions, at the 
normal wave incidence upon the interface.17 Note that the coefficients R and T give the ratios of wave 
amplitudes, rather than their powers. Combining Eqs. (49) and (55), we get the following relations for 
the powers – either at the interface or at the corresponding points of the reflected and transmitted waves: 
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      (6.56) 

Note that P– + P+ = P–’, again reflecting the wave energy conservation. 

 Perhaps the most important corollary of Eqs. (55)–(56) is that the reflected wave completely 
vanishes, i.e. the incident wave is completely transmitted through the interface (P+’ = P+), if the so-
called impedance matching condition  Z’ = Z is satisfied, even if the wave velocities v (32) are different 
on the left and the right sides of it. On the contrary, the equality of the acoustic velocities in the two 
continua does not guarantee the full transmission of their interface. Again, this is a very general result. 

 Finally, let us note that for the important particular case of a sinusoidal incident wave:18 

               ,Re that  so,Re titi eatfeatf     R     (6.57) 

where a is its complex amplitude, the total wave (50) on the right of the interface is 

17 See, e.g. the corresponding parts of this series: QM Sec. 2.3 and EM Sec. 7.3. 
18 In the acoustic wave limit, when the impedances Z and Z’, and hence the reflection coefficient R, are real, the 
factors R  and Z may be taken out from under the Re operators in Eqs. (57)-(59). However, in the current, more 

general form of these relations, they are also valid for the case of arbitrary frequencies,  ~ max, when these 
factors may be complex. 
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zeeeaeaeatzq tiikzikzvztivzti  RR , (6.58) 

while according to Eq. (45), the corresponding force distribution is 

              tiikzikz eeeZaivztfZvztfZtzFtzFtzF     RRe//,,,  . (6.59) 

These expressions will be used in the next section. 

 

6.5.Standing waves 

 Now let us consider the two limits in which Eqs. (55) predicts a total wave reflection (T = 0): 

Z’/Z   (when R = –1) and Z’/Z  0 (when R = +1). According to Eq. (53), the former limit 

corresponds to f-(t) + f+(t)  q(0, t) = 0, i.e. to vanishing oscillations at the interface. This means that this 
particular limit describes a perfectly rigid boundary, not allowing the system’s end to oscillate at all. In 
this case, Eqs. (58)-(59) yield 

          ,sinRe2Re, kzeaeeeatzq titiikzikz         (6.60) 

           kzeaZeeeZaitzF
titiikzikz cosRe2Re,

2/






   . (6.61) 

 These equalities mean that we may interpret the process on the right of the interface using two 
mathematically equivalent, but physically different languages: either as the sum of two traveling waves 
(the incident one and the reflected one, propagating in opposite directions), or as a single standing wave. 
Note that in contrast with the traveling wave (Fig. 9a, cf. Fig. 7), in the standing sinusoidal wave (Fig. 
9b) all particles oscillate in time with the same phase.  

 

 

 

 

 

 

 

  

 Note also that the phase of the force oscillations (61) is shifted, both in space and in time, by /2 
relative to the particle displacement oscillations. (In particular, at the rigid boundary the force amplitude 
reaches its maximum.) As a result, the average power flow vanishes, so the average energy of the 
standing wave does not change, though its instant energy still oscillates, at each spatial point, between 
its kinetic and potential components – just as at the usual harmonic oscillations of one particle. A similar 
standing wave, but with a maximum of the displacement q, and with a zero (“node”) of the force F, is 
formed at the open boundary, with Z’/Z  0, and hence R  = +1. 

Fig. 6.9. The time evolution of 
(a) a traveling sinusoidal wave, 
and (b) a standing sinusoidal 
wave at a rigid boundary.
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 Now I have to explain why I have used the sinusoidal waveform for the wave reflection analysis. 
Let us consider a 1D wave system, which obeys Eq. (40), of a finite length l, limited by two rigid walls 
(located, say, at z = 0 and z = l), which impose the corresponding boundary conditions,  

              0),(),0(  tlqtq ,     (6.62) 

on its motion. Naturally, a sinusoidal traveling wave, induced in the system, will be reflected from both 
ends, forming the standing wave patterns of the type (60) near each of them. These two patterns are 
compatible if l is exactly equal to an integer number (say, n) of /2, where   2/k is the wavelength: 

      
k

nnl



2

.      (6.63) 

This requirement yields the following spectrum of possible wave numbers: 

         ,
l

nkn


       (6.64) 

where the list of possible integers n may be limited to non-negative values: n = 1, 2, 3,… (Indeed, 
negative values give absolutely similar waves (60), while n = 0 yields kn = 0, and the corresponding 
wave vanishes at all points: sin(0z)  0.) In the acoustic wave limit we are discussing, Eq. (31),  = vk, 
may be used to translate this wave-number spectrum into an equally simple spectrum of possible 
standing-wave frequencies:19 

          ,...3,2,1with  ,  n
l

v
nvknn

     (6.65) 

 Now let us notice that this spectrum, and the corresponding standing-wave patterns, 20 

            lzzktiatzq nnn
n  0for  ,sinexpRe2,  ,   (6.66) 

may be calculated in a different way, by a direct solution of the wave equation (41) with the boundary 
conditions (62). Indeed, let us look for the general solution of this partial differential equation in the so-
called variable-separated form21  
             

n
nn tTzZtzq ),( ,     (6.67) 

where each partial product Zn(z)Tn(t) is supposed to satisfy the equation on its own. Plugging this partial 
solution into Eq. (40), and then dividing all its terms by the same product, ZnTn, we may rewrite the 
result as 

         
2
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Zdt

Td

Tv
n

n

n

n

 .     (6.68) 

Here comes the punch line of the variable separation method: since the left-hand side of the equation 
may depend only on t, while its right-hand side, only on z, Eq. (68) may be valid only if both sides are 
constant. Denoting this constant as –kn

2, we get two similar ordinary differential equations,22 

19 Again, negative values of   may be dropped, because they give similar real functions q(z, t). 
20 They describe, in particular, the well-known transverse standing waves on a guitar string.  
21 This variable separation method is very general and is discussed in all parts of this series, especially in EM 
Chapter 2. 
22 The first of them is the 1D form of what is frequently called the Helmholtz equation. 
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  ,  (6.69) 

with well-known (and similar) sinusoidal solutions 

          tiazvtuTzkszkcZ nnnnnnnnnnnn   expResincos,sincos , (6.70) 

where cn, vn, un, and vn (or, alternatively, an  un + ivn) are constants. The first of these relations, with all 
kn different, may satisfy the boundary conditions only if for all n, cn = 0, and sinknl = 0, giving the same 
wave number spectrum (64) and hence the own frequency spectrum (65), so the general solution (67) of 
the so-called boundary problem, given by Eqs. (40) and (62), takes the form 

              zktiatzq nn
n

n sinexpRe,   ,    (6.71) 

where the complex amplitudes an are determined by the initial conditions.  

 Hence such sinusoidal standing waves (Fig. 10a) are not just an assumption, but a natural 
property of the 1D wave equation. It is also easy to verify that the result (71) is valid for the same 
system with different boundary conditions, though with a modified wave number spectrum. For 
example, if the rigid boundary condition (q = 0) is implemented at z = 0, and the so-called open 
boundary condition (F = 0, i.e. q/z = 0) is imposed at z = l, the spectrum becomes 

     ,...,3,2,1with  ,
2

1







  n

l
nkn


   (6.72) 

so the lowest standing waves look like Fig. 10b shows.23  

 

 

 

 

 

 

 

 

 Note that the difference between the sequential values of kn is still a constant: 

                  
l

kk nn


1 ,     (6.73) 

the same one as for the spectrum (64). This is natural because in both cases the transfer from the nth 
mode to the (n + 1)th mode corresponds just to an addition of one more half-wave – see Fig. 10. (This 
conclusion is valid for any combination of rigid and free boundary conditions.) As was discussed above, 
for the discrete-particle chain we have started with (Fig. 4), the wave equation (40), and hence the above 

23 The lowest standing wave of the system, with the smallest kn and n, is usually called its fundamental mode. 

Fig. 6.10. The lowest standing 
wave modes for the 1D 
systems with (a) two rigid 
boundaries, and (b) one rigid 
and one open boundary. 
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derivation of Eq. (71), are only valid in the acoustic wave limit, i.e. when the distance d between the 
particles is much less than the wavelengths n  2/kn of the mode under analysis. For a chain of length 
l, this means that the number of particles, N ~ l/d, has to be much larger than 1. However, a remarkable 
property of Eq. (71) is that it remains valid, with the same wave number spectrum (64), not only in the 
acoustic limit but also for arbitrary N > 0. Indeed, since sinknz  (exp{+iknz} – exp{-iknz})/2, each nth 
term of Eq. (71) may be represented as a sum of two traveling waves with equal but opposite wave 
vectors. As was discussed in Sec. 3, such a wave is a solution of equation (24) describing the discrete-
particle system for any kn, with the only condition that its frequency obeys the general dispersion 
relation (30), rather than its acoustic limit (65).  

 Moreover, the expressions for kn (with appropriate boundary conditions), such as Eq. (64) or Eq. 
(72), also survive the transition to arbitrary N, because their derivation above was based only on the 
sinusoidal form of the standing wave. The only new factor arising in the case of arbitrary N is that due to 
the equidistant property (73) of the wave number spectrum, as soon as n exceeds N, the waveforms (71), 
at particle locations zj = jd, start to repeat. For example, 

     jnjnnnjNn zkjNzkjd
d

NkjdkNkzk sinsinsinsinsin 





  

.  (6.74) 

 Hence the system has only N different (linearly-independent) modes. But this result is in full 
compliance with the general conclusion made in Sec. 2, that any system of N coupled oscillators has 
exactly N own frequencies and corresponding oscillation modes. So, our analysis of a particular system 
shown in Fig. 4, just exemplifies this general conclusion. Fig. 11 below illustrates this result for a 
particular finite value of N; the curve connecting the points shows exactly the same dispersion relation 
as was shown in Fig. 5, but now it is just a guide for the eye, because for a system with a finite length l, 
the wave number spectrum is discrete, and the intermediate values of k and  do not have an immediate 
physical sense.24 Note that the own frequencies of the system are generally not equidistant, while the 
wave numbers are. 

 

 

 

 

 

 

 

 This insensitivity of the spacing (73) between the adjacent wave numbers to the particular 
physics of a macroscopically uniform system is a very general fact, common for waves of any nature, 
and is broadly used for analyses of systems with a very large number of particles (such as human-size 
crystals, with N ~ 1023). For N so large, the effect of the boundary conditions, e.g., the difference 

24 Note that Fig. 11 shows the case of one rigid and one open boundary (see Fig. 10b), where l = Nd; for a 
conceptually simpler system with two rigid boundaries (Fig. 10a) we would need to take l = (N + 1)d because 
neither of the end points can oscillate. 

Fig. 6.11. The wave numbers and 
own frequencies of a chain of a 
finite number N of particles in a 
chain with one rigid and one open 
boundary – schematically.
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between the spectra (64) and (72) is negligible, and they may be summarized as the following rule for 
the number of different standing waves within some interval k >> /l: 

     standing
1

standing
k

l

kk

k
N

nn







 
.    (6.75a) 

For such analyses, it is frequently more convenient to work with traveling waves rather than standing 
ones. In this case, we have to take into account that (as was just discussed above) each standing wave 
(66) may be decomposed into two traveling waves with wave numbers kn, so the interval k doubles, 
and Eq. (75a) becomes25  

              traveling2
k

l
N 


.     (6.75b) 

 Note that this counting rule is valid for waves of just one type. As was discussed above, for the 
model system we have studied (Fig. 4), there are 3 types of such waves – one longitudinal and two 
transverse, so if we need to count them all, N should be multiplied by 3.  

   

6.6. Wave decay and attenuation 

 Now let us discuss the effects of energy dissipation on the 1D waves, on the example of the same 
uniform system shown in Fig. 4. The simplest description of this effect is the linear drag that may be 
described, as it was done for a single oscillator in Sec. 5.1, by adding the term dqj/dt, to Eq. (24) for 
each particle:  
              0)()( 1ef1ef   jjjjjj qqqqqqm    .   (6.76) 

(In a uniform system, the drag coefficient  should be similar for all particles, though it may be different 
for the longitudinal and transverse oscillations.)  

 To analyze the dissipation effect on the standing waves, we may again use the variable 
separation method, i.e. look for the solution of Eq. (76) in the form similar to Eq. (67), naturally re-
adjusting it for our current discrete case:  

             
n

njnj tTzZtzq ),( .     (6.77) 

After dividing all terms by mZn(zj)Tn(t) and separating the time-dependent and space-dependent terms, 
we get 
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As we know from the previous section, the resulting equation for the function Zn(zj) is satisfied if the 
variable separation constant is equal to –n

2, where n obeys the dispersion relation (30) for the wave 
number kn, properly calculated for the dissipation-free system, with the account of the given boundary 

25 Note that this simple, but very important relation is frequently derived using the so-called Born-Carman 
boundary condition q0(t)  qN(t), which implies bending the system of interest into a closed loop. For a 1D system 
with N >> 1, such mental exercise may be somehow justified, but for systems of higher dimension, it is hardly 
physically plausible – and is unnecessary. 

Traveling  
wave  
number 
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conditions – see, e.g. Eqs. (62) and (72). Hence for the function Tn(t), we are getting the following 
ordinary differential equation: 

m
TTT nnnn 2

with  ,02 2    ,    (6.79)

which is absolutely similar to Eq. (5.6b) for a single linear oscillator, which was studied in Sec. 5.1. As 
we already know, it has the solution (5.9) describing the free oscillation decay with the relaxation time 
given by (5.10),  = 1/, and hence similar for all modes.26  

 Hence, the above analysis of the dissipation effect on free standing waves has not brought any 
surprises, but it gives us a hint of how their forced oscillations, induced by some external forces Fj(t) 
exerted on the particles, may be analyzed. Indeed, representing each of the forces as a sum over the 
system’s modes (spatial harmonics), 

                  jn
n

n
j

j zZtf
m

tF
tzf 

)(
, ,    (6.80) 

and using the variable separation (77), we arrive at the natural generalization of Eq. (79): 

 tfTTT nnnnn  22   , (6.81) 

which is identical to Eq. (5.13b) for a single oscillator. This fact enables us to use Eq. (5.27), with G() 
 Gn(), for the calculation of each Tn(t). Now finding the functions fn(t) from Eq. (80) by the usual 
reciprocal Fourier transform, and plugging these results into Eq. (77), we get the following 
generalization of Eq. (5.27): 

                ''
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 GG . (6.82) 

(Here the mutually orthogonal functions Zn(zj) are assumed to be normalized, i.e. the sums of their 
squares over j = 1, 2,…, N to equal 1.) Such function G(zj, zj’,) is called the spatial-temporal Green’s 
function of the system – in our current case, of a discrete 1D set of N particles located at points zj = jd. 
The reader is challenged to spell out this function for at least one of the particular cases discussed above 
and use it to solve at least one forced-oscillation problem. 

 Now let us discuss the dissipation effects on the traveling waves, where they may take a 
completely different form of attenuation. Let us discuss it on a simple example when one end (located at 
z = 0) of a very long chain (l  ) is externally forced to perform sinusoidal oscillations of a certain 
frequency  and a fixed amplitude A0. In this case, it is natural to look for a particular solution to Eq. 
(76) in a form very different from Eq. (77): 

         



  tiectzq jj

Re),( ,     (6.83) 

26 Even an elementary experience with acoustic guitars shows that for their strings, this conclusion of our theory 
is not valid: higher modes (“overtones”) decay substantially faster, leaving the fundamental mode oscillations for 
a slower decay. This is a result of another important energy dissipation (i.e. the wave decay) mechanism, not 
taken into account in Eq. (76) – the radiation of the sound into the guitar’s body through the string supports, 
mostly through the bridge. Such radiation may be described by a proper modification of the boundary conditions 
(62), in terms of the ratio of the wave impedance (47) of the string and those of the supports. 
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with time-independent but generally complex amplitudes cj. As our discussion of a single oscillator in 
Sec. 5.1 implies, this is not the general, but rather a partial solution, which describes the forced 
oscillations in the system, to that it settles after some initial transient process. (At non-zero damping, we 
may be sure that free oscillations fade after a finite time, and thus may be ignored for most purposes.) 

 Plugging Eq. (83) into Eq. (76), we reduce it to an equation for the amplitudes cj, 

                02 1ef1efef
2   jjj cccim  ,   (6.84) 

which is a natural generalization of Eq. (25). As a result, partial solutions of the set of these equations 
(for j = 0, 1, 2,…) may be looked for in the form (26) again, but now, because of the new, imaginary 
term in Eq. (84), we should be ready to get a complex phase shift , and hence a complex wave number 
k  /d.27 Indeed, the resulting characteristic equation for k, 

        
2
max

2
max

2
2 2

2
sin







i
kd

      (6.85) 

(where max is defined by Eq. (30), and the damping coefficient is defined just as in a single oscillator,  
 /2m), does not have a real solution even at  < max. Using the well-known expressions for the sine 
function of a complex argument,28 Eq. (85) may be readily solved in the most important low-damping 
limit  << . In the linear approximation in , it does not affect the real part of k, but makes its 
imaginary part different from zero: 
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with a periodic extension to other periods – see Fig. 5. Just as was done in Eq. (28), due to two values of 
the wave number, generally we have to take cj in the form of not a single wave (26), but of a linear 
superposition of two partial solutions: 
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Reexp ,    (6.87) 

where the constants c should be found from the boundary conditions. In our particular case, when  c0  
= A0 and c = 0, only one of these two waves, namely the wave exponentially decaying at its penetration 
into the system, is different from zero:  c+  = A0, c– = 0. Hence our solution describes a single wave, 
with the real amplitude and the oscillation energy decreasing as 
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, (6.88) 

i.e. with a frequency-independent attenuation constant  = 2/v,29 so the spatial scale of wave 
penetration into a dissipative system is given by ld  1/. Certainly, our simple solution (88) is only 
valid for a system of length l >> ld; otherwise, we would need the second term in the sum (87) to 
describe the wave reflected from its opposite end. 

27 As a reminder, we have already met such a situation in the absence of damping, but at   > max – see Eq. (38). 
28 See, e.g., MA Eq. (3.5). 
29 I am sorry to use for the attenuation the same letter  as for the phase shift in Eq. (26) and a few of its 
corollaries, but both notations are traditional.  
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6.7. Nonlinear and parametric effects 

 Now let me discuss (because of the lack of time, very briefly, and on a semi-quantitative level), 
the new nonlinear and parametric phenomena that appear in oscillatory systems with more than one 
degree of freedom – cf. Secs. 5.4-5.8. One important new effect here is the mutual phase locking of (two 
or more) weakly coupled self-excited oscillators with close frequencies: if the own frequencies of the 
oscillators are sufficiently close, their oscillation frequencies “stick together” to become exactly equal. 
Though the dynamics of this process is very close to that of the phase locking of a single oscillator by an 
external signal, which was discussed in Sec. 5.4, it is rather counter-intuitive in view of the results 
discussed in Sec. 1, and in particular, the anticrossing diagram shown in Fig. 2. The analysis of the 
effect using the van der Pol method (which is left for the reader’s exercise) shows that the origin of the 
difference is the oscillators’ nonlinearity, which makes the oscillation amplitudes virtually independent 
of the phase evolution – see Eq. (5.68) and its discussion. 

 One more new effect is the so-called non-degenerate parametric excitation. It may be illustrated 
on the example of just two coupled oscillators – see Sec. 1 above. Let us assume that the coupling 
constant  participating in Eqs. (5) is not constant, but oscillates in time – say with some frequency p. 
In this case, the forces acting on each oscillator from its counterpart, described by the right-hand sides of 
Eqs. (5), will be proportional to q2,1(1 +  cospt). Assuming that the oscillations of q1 and q2 are close 
to sinusoidal ones, with certain frequencies 1,2, we see that the force exerted on each oscillator contains 
the so-called combinational frequencies 

           1,2p   .      (6.89) 

If one of these frequencies is close to the own oscillation frequency of the oscillator, we can expect a 
substantial parametric interaction between the oscillators (on top of the constant coupling effects 
discussed in Sec. 1). According to Eq. (89), this may happen in two cases: 

                  ,21p        (6.90a) 

       21p   .      (6.90b) 

 The quantitative analysis (also highly recommended to the reader) shows that in the case (90a), 
the parameter modulation indeed leads to energy “pumping” into the oscillations.30 As a result, a 
sufficiently large , at sufficiently small damping coefficients 1,2 and the effective detuning 

             ),( 21p        (6.91) 

may lead to a simultaneous self-excitation of two frequency components 1,2. These frequencies, while 
being approximately equal to the corresponding own frequencies 1,2 of the system, are related to the 
pumping frequency p by the exact relation (90a), but otherwise are arbitrary, e.g., may be 
incommensurate (Fig. 12a), thus justifying the term non-degenerate parametric excitation.31 (The 
parametric excitation of a single oscillator, which was analyzed in Sec. 5.5, is a particular, degenerate 
case of such excitation, with 1 = 2 = p/2.) On the other hand, for the case described by Eq. (90b), the 
parameter modulation always extracts energy from the oscillations, effectively increasing the system’s 
damping.  

30 Hence the common name of p – the pumping frequency. 
31 Note that in some publications, the term parametric down-conversion (PDC) is used instead. 

Parametric 
interaction 
conditions 



Essential Graduate Physics                 CM: Classical Mechanics 

 

Chapter 6             Page 24 of 30 

 Somewhat counterintuitively, this difference between the two cases (90) may be interpreted more 
simply by using the basic notions of quantum mechanics. Namely, the equality p = 1 + 2 enables a 
decay of an external photon of energy p into two photons of energies 1 and 2 of the oscillators. 
On the contrary, the complementary relation (90b), meaning that 1 = p + 2, results in a pumping-
induced decay of photons of frequency 1. 

 

  

 

 

 

 

  

 Note that even if the frequencies 1 and 2 of the parametrically excited oscillations are 
incommensurate, the oscillations are highly correlated. Indeed, the quantum-mechanical theory of this 
effect32 shows that the generated photons are entangled.  This fact makes the parametric excitation very 
popular for a broad class of experiments in several currently active fields including quantum 
computation and encryption, and the Bell inequality/local reality studies.33 

 Proceeding to nonlinear phenomena, let us note, first of all, that the simple reasoning that 
accompanied Eq. (5.108) in Sec. 5.8, is also valid in the case when oscillations consist of two (or more) 
sinusoidal components with incommensurate frequencies. Replacing the notation 2 with p, we see 
that the non-degenerate parametric excitation of the type (90a) is possible in a system of two coupled 
oscillators with a quadratic nonlinearity (of the type q2), “pumped” by an intensive external signal at 
frequency p  1 + 2. In optics, it is often more convenient to have all three of these frequencies 
within the same, relatively narrow range. A simple calculation, similar to the one made in Eqs. (5.107)-
(5.108), shows that this may be done using the cubic nonlinearity34 of the type q3, which allows a 
similar parametric energy exchange at the frequency relation shown in Fig. 12b: 

         2121 with  ,2   .    (6.92a) 

 This process is often called the four-wave mixing, because it may be interpreted quantum-
mechanically as the transformation of two externally-delivered photons, each with energy , into two 
other photons of energies 1 and 2. The word “wave” in this term stems from the fact that at optical 
frequencies, it is hard to couple a sufficient volume of a nonlinear medium with lumped-type resonators. 
It is much easier to implement the parametric excitation (as well as other nonlinear phenomena such as 
the higher harmonic generation) of light in distributed systems of a linear size much larger than the 
involved wavelengths. In such systems, the energy transfer from the incoming wave of frequency  to 

32 Which is, surprisingly, not much more complex than the classical theory – see, e.g., QM Sec.5.5. 
33 See, e.g., QM Secs. 8.5 and 10.3, respectively. 
34 In optics, such nonlinearity is implemented using transparent crystals such as lithium niobate (LiNbO3), with 
the cubic-nonlinear dependence of the electric polarization on the applied electric field: P  E + E 3. 
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wave 
mixing 

Fig. 6.12. Spectra of oscillations at (a) the non-degenerate parametric excitation, and (b) the four-
wave mixing. The arrow directions symbolize the energy flows into and out of the system. 
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generated waves of frequencies 1 and 2 is gradually accumulated at their joint propagation along the 
system. From the analogy between Eq. (85) (describing the evolution of the wave’s amplitude in space), 
and the usual equation of the linear oscillator (describing its evolution in time), it is clear that this 
energy transfer accumulation requires not only the frequencies  but also the wave numbers k be in 
similar relations. For example, the four-wave mixing requires not only the frequency balance (92a) but 
also a similar relation 
       ,2 21 kkk        (6.92b) 

to be fulfilled. Since all three frequencies are close, this relation is easy to arrange. Unfortunately, due to 
the lack of time/space, for more discussion of this very interesting subject, called nonlinear optics, I 
have to refer the reader to special literature.35 

 It may look like a dispersion-free media, with /k = v = const, is the perfect solution for 
arranging the nonlinear/parametric interaction of waves, because in such media, for example, Eq. (92b) 
automatically follows from Eq. (92a). However, in such a medium, not only the desirable three 
parametrically interacting waves but also all their harmonics, have the same velocity. At these 
conditions, the energy transfer rates between all harmonics are of the same order. Perhaps the most 
important result of such a multi-harmonic interaction is that intensive incident traveling waves, 
interacting with a nonlinear medium, may develop sharply non-sinusoidal waveforms, in particular those 
with an almost instant change of the field at a certain moment. Such shock waves, especially the 
mechanical ones, are of large interest for certain applications – some of them not quite innocent, e.g., the 
dynamics of explosion in the usual (chemical) and nuclear bombs.36  

 To conclude this chapter, let me note that the above discussion of 1D acoustic waves will be 
extended, in Sec. 7.7, to elastic 3D media. There we will see that generally, the waves obey a more 
complex equation than the apparently natural generalization of Eq. (40): 
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where 2 is the 3D Laplace operator. This fact adds to the complexity of traveling-wave and standing-
wave phenomena in higher dimensions. Moreover, in multi-dimensional systems, including such 
pseudo-1D systems as thin rods and pseudo-2D systems such as thin membranes, even static elastic 
deformations may be very nontrivial. An introduction to the general theory of small deformations, with a 
focus on elastic continua, will be the subject of the next chapter.  

 

6.8. Exercise problems 

 For each of the systems specified in Problems 1-6: 

  (i) introduce convenient generalized coordinates qj of the system, 

35 See, e.g.,  N. Bloembergen, Nonlinear Optics,  4th ed., World Scientific, 1996, or a more modern treatment by 
R. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008. This field is currently very active. As just a single 
example, let me mention the recent experiments with parametric amplification of ultrashort (~20-fs) optical pulses 
to peak power as high as ~51012 W – see X. Zeng et al., Optics Lett. 42, 2014 (2017).  
36 The classical (and perhaps still the best) monograph on the subject is Ya. Zeldovich, Physics of Shock Waves 
and High-Temperature Phenomena, Dover, 2002.  
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   (ii) calculate the frequencies of its small harmonic oscillations near the equilibrium, 
  (iii) calculate the corresponding distribution coefficients, and  
  (iv) sketch the oscillation modes. 

 
 6.1. Two elastically coupled pendula confined to the vertical plane that 
contains both suspension points, with the parameters shown in the figure on the 
right (see also Problems 1.8 and 2.9). 

  
 
  
 
 6.2. The double pendulum confined to the vertical plane containing the support 
point (which was the subject of Problem 2.1), with m’ = m and l = l’ – see the figure on 
the right. 
 

  

 

 
 6.3 The chime bell considered in Problem 4.12 (see the figure on the right), for the 
particular case l = l’. 
 
 
 
 
 6.4. The triple pendulum shown in the figure on the right, with the motion 
confined to a vertical plane containing the support point. 

 Hint: You may use any (e.g., numerical) method to calculate the characteristic 
equation’s roots. 
  
 
 6.5. The symmetric three-particle system shown in the figure on the 
right, where the connections between the particles not only act as usual 
elastic springs (giving potential energies U = (l)2/2) but also resist 
bending, giving additional potential energy U’ = ’(l) 2/2, where   is the 
(small) bending angle.37  
 
 
 6.6. Three similar beads of mass m, which may slide along a round ring 
of radius R without friction, connected with similar springs with elastic constants 
 and equilibrium lengths l0 (not necessarily equal to 3R) – see the figure on 
the right. 

37 This is a reasonable model for small oscillations of linear molecules such as the now-infamous CO2. 
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 6.7. On the example of the model considered in Problem 1, explore free oscillations in a system 
of two similar and weakly coupled linear oscillators. 

 
 
6.8. A small body is held by four similar elastic springs as shown 

in the figure on the right. Analyze the effect of rotation of the system as a 
whole about the axis normal to its plane, on the body’s small oscillations 
within this plane. Assume that the oscillation frequency is much higher 
than the angular velocity  of the rotation. Discuss the physical sense of 
your results and possible ways of using such systems for measurement of 
the rotation. 
 
 
 6.9. An external longitudinal force F(t) is 
applied to the right particle of the system shown in 
Fig. 1, with L = R = ’ and m1 = m2  m (see the 
figure on the right), and the response q1(t) of the left 
particle to this force is being measured.  

 (i) Calculate the temporal Green’s function for this response. 
 (ii) Use this function to calculate the response to the following force: 

 








,0for ,sin

,0for              ,0

0 ttF

t
tF


 

with constant amplitude F0 and frequency . 
 
 6.10. Use the Lagrangian formalism to re-derive Eqs. (24) for both the longitudinal and the 
transverse oscillations in the system shown in Fig. 4a. 
 
 6.11. Calculate the energy (per unit length) of a sinusoidal traveling wave propagating in the 1D 
system shown in Fig. 4a. Use your result to calculate the average power flow created by the wave, and 
compare it with Eq. (49) in the acoustic wave limit. 
 
 6.12. Calculate spatial distributions of the kinetic and potential energies in a standing sinusoidal 
1D acoustic wave and analyze their evolution in time. 
  
 6.13. The midpoint of a guitar string of length l has been slowly pulled off sideways by a 
distance h << l from its equilibrium position, and then let go. Neglecting energy dissipation, use two 
different approaches to calculate the midpoint’s displacement as a function of time. 

 Hint: You may like to use the following series:
 

 











 








0for  ,
2/

1
812

12cos 2

1
2

m m

m
. 

  
 6.14. Spell out the spatial-temporal Green’s function (82) for waves in a uniform 1D system of N 
points, with rigid boundary conditions (62). Explore the acoustic limit of your result. 

m m
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 6.15. Calculate the dispersion law (k) and the highest and 
lowest frequencies of small longitudinal waves in a long chain of 
similar, spring-coupled pendula – see the figure on the right. 

 
  
 6.16. Calculate and analyze the dispersion relation 
(k) for small waves in a long chain of elastically coupled 
particles with alternating masses – see the figure on the right. 
In particular, discuss the dispersion relation’s period k, and 
its evolution at m’  m. 

 

6.17. Analyze the traveling wave’s reflection from a 
“point inhomogeneity”: a single particle with a different mass 
m0  m, in an otherwise uniform 1D chain – see the figure on 
the right. 

 
6.18.*  

 (i) Explore an approximate way to analyze small waves in a continuous 1D system with 
parameters slowly varying along its length. 
 (ii) Apply this method to calculate the frequencies of transverse standing waves on 
a freely hanging heavy rope of length l, with a constant mass  per unit length – see the 
figure on the right. 
 (iii) For the three lowest standing wave modes, compare the results with those 
obtained in the solution of Problem 4 for the triple pendulum. 

 Hint: The reader familiar with the WKB approximation in quantum mechanics 
(see, e.g., QM Sec. 2.4) is welcome to adapt it for this classical application. Another 
possible starting point is the van der Pol approximation discussed in Sec. 5.3, which should be translated 
from the time domain to the space domain. 

 
 6.19. A particle of mass m is attached to an infinite string, of mass  per unit length, stretched 
with tension T. The particle is confined to move along the x-axis perpendicular to the string (see the 
figure below), in an additional smooth potential U(x) with a minimum at x = 0. Assuming that the waves 
on the string are excited only by the motion of the particle (rather than any external source), reduce the 
system of equations describing the system to an ordinary differential equation for small oscillations x(t), 
and calculate their Q-factor of due to the drag caused by the string. 
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 6.20.* Use the van der Pol method to analyze the mutual phase locking of two weakly coupled 
self-oscillators with the dissipative nonlinearity, for the cases of: 

 (i) the direct coordinate coupling described by Eq. (5), and 
 (ii) a bilinear but otherwise arbitrary coupling of two similar oscillators.  

 Hint: In Task (ii), describe the coupling by an arbitrary linear operator, and express the result via 
its Fourier image.  
 
 6.21.* Extend Task (ii) of the previous problem to the mutual phase locking of N similar self-
oscillators. In particular, explore the in-phase mode’s stability for the case of so-called global coupling 
via a single force F contributed equally by all oscillators. 
 
 6.22.* Find the condition of non-degenerate parametric excitation in a system of two coupled 
oscillators described by Eqs. (5), but with time-dependent coupling:   (1 +  cospt), with p  1 
+ 2. 

 Hint: Use the van der Pol method, assuming the modulation depth , the static coupling 
coefficient , and the detuning   p – (1+ 2) are all sufficiently small. 
 
 6.23. Show that the cubic nonlinearity of the type q3 indeed enables the parametric interaction 
(“four-wave mixing”) of oscillations with incommensurate frequencies related by Eq. (92a). 
 

6.24. In the first nonvanishing approximation in small oscillation amplitudes, calculate their 
effect on the frequencies of the double-pendulum system that was the subject of Problem 1. 

 6.25. Calculate the velocity of small transverse waves propagating on a thin, planar, elastic 
membrane, with a constant mass m per unit area, pre-stretched with force   per unit width. 
 
 6.26. A membrane discussed in the previous problem is 
stretched on a thin but firm plane frame of area aa.  

 (i) Calculate the frequency spectrum of small transverse 
standing waves in the system; sketch a few lowest wave modes. 
 (ii) Compare the results with those for a discrete-point analog of 
this system, with four particles of equal masses m, connected with light 
flexible strings that are stretched, with equal tensions T, on a similar 
frame – see the figure on the right.  

 Hint: The frames do not allow the membrane edges/string ends 
to deviate from their planes. 
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Chapter 7. Deformations and Elasticity 

The objective of this chapter is a discussion of small deformations of 3D continua, with a focus on the 
elastic properties of solids. The reader will see that such deformations are nontrivial even in the 
absence of their evolution in time, so several key problems of statics will need to be discussed before 
proceeding to such dynamic phenomena as elastic waves in infinite media and thin rods. 

 

    7.1. Strain 

 As was already discussed in Chapters 4-6, in a continuum, i.e. a system of particles so close to 
each other that the system discreteness may be neglected, particle displacements q may be considered as 
a continuous function of not only time but also space. In this chapter, we will consider only small 
deviations from the rigid-body approximation discussed in Chapter 4, i.e. small deformations. The 
deformation smallness allows us to consider the displacement vector q as a function of the initial (pre-
deformation) position of the particle, r, and time t – just as was done in Chapter 6 for 1D waves. 

 The first task of the deformation theory is to exclude from consideration the types of motion 
considered in Chapter 4, namely the body’s translation and rotation, unrelated to deformations. This 
means, first of all, that the variables describing deformations should not depend on the displacement’s 
part that is independent of the position r (i.e. is common for the whole media), because that part 
corresponds to a translational shift rather than to a deformation (Fig. 1a). Moreover, even certain non-
uniform displacements do not contribute to deformation. For example, Eq. (4.9) (with dr replaced with 
dq to comply with our current notation) shows that a small displacement of the type  

                dqrotation = dr,      (7.1) 

where d = dt is an infinitesimal vector common for the whole continuum, corresponds to its 
elementary rotation of the body about the direction of that vector, and has nothing to do with its 
deformation (Fig. 1b). 

 

 

 

 

 

  

   

 
 
 This is why to develop an adequate quantitative characterization of deformation, so far for fixed 
t, we should start with finding suitable functions of the spatial distribution of displacements, q(r), that 
exist only due to deformations. One such measure is the change of the distance dl dr  between two 
close points: 

Fig. 7.1. Two types of 
displacement vector distributions 
that are unrelated to deformation: 
(a) translation and (b) rotation. 

constntranslatio q

(a)                (b) 

O
  dqrotation  = dr
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where dqj is the jth Cartesian component of the difference dq between the displacements q of these close 
points. If the deformation is small in the sensedq<< dl, we may keep, in this expression, only the 
terms proportional to the first power of  the infinitesimal vector dq: 
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Since qj is a function of three independent scalar arguments rj, its full differential (at fixed time) may be 
represented as 
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The coefficients qj/rj’ may be considered as elements of a tensor providing a linear relation between 
the vectors dr and dq.1 Plugging Eq. (4) into Eq. (2), we get 
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 The convenience of the tensor qj/rj’ for characterizing deformations is that it automatically 
excludes the translation displacement (Fig. 1a), which is independent of rj. Its drawback is that its 
particular elements are still affected by the rotation of the body – even though the sum (5) is not. Indeed, 
according to the vector product’s definition, Eq. (1) may be represented in Cartesian coordinates as 

                         jj'j"jjj"j'j rdrddq  '"rotation  ,    (7.6) 

where jj’j” is the Levi-Civita symbol. Differentiating Eq. (6) over a particular Cartesian coordinate of 
vector r, and taking into account that this partial differentiation () is independent of (and hence may be 
swapped with) the differentiation (d) over the common rotation angle , we get the amounts 
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rotationrotation
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which may differ from 0. However, notice that the sum of these two differentials equals zero for any d, 
which is possible only if2 
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j
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for  0,

rotation

.    (7.8) 

 This is why it is convenient to rewrite Eq. (5) in a mathematically equivalent form, 

1 Since both dq and dr are legitimate physical vectors (whose Cartesian components are properly transformed as 
the transfer between reference frames), the 33 matrix with elements qj/rj’ is indeed a legitimate physical tensor 
– see the discussion in Sec. 4.2.   
2 As a result, the full sum (5), which includes three partial sums (8), is not affected by rotation – as we already 
know. 
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where sjj’ are the elements of the so-called symmetrized strain tensor, defined as 
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(Note that this modification does not affect the diagonal elements sjj = qj/rj.). So, the advantage of the 
symmetrized tensor (9b) over the initial tensor with elements qj/rj’ is that according to Eq. (8), at pure 
rotation, all elements of the symmetrized strain tensor vanish. 

 Now let us discuss the physical meaning of this tensor. As was already mentioned in Sec. 4.2,  
any symmetric tensor may be diagonalized by an appropriate selection of the reference frame axes. In 
such principal axes, sjj’ = sjjjj’, so Eq. (4) takes a simple form: 

                 .jjjj
j

j
j drsdr

r

q
dq 




      (7.10) 

We may use this expression to calculate the change of each side of an elementary cuboid 
(parallelepiped) with its sides dqj parallel to the principal axes: 

    jjjjjj drsdqdrdr   ndeformatio beforendeformatioafter ,   (7.11) 

and of the cuboid’s volume dV = dr1dr2dr3: 
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Since all our analysis is only valid in the linear approximation in small sjj’, Eq. (12) is reduced to 
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where Tr (trace)3 of any matrix (in particular, any tensor) is the sum of its diagonal elements; in our 
current case 
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jjs .     (7.14) 

The tensor theory shows that the trace does not depend on the particular choice of the coordinate axes; 
so, the diagonal elements of the strain tensor characterize the medium’s compression/extension. 

 Next, what is the meaning of its off-diagonal elements? It may be illustrated by the simplest 
example of a purely shear deformation shown in Fig. 2. (The geometry means to be uniform along the z-
axis normal to the plane of the drawing.) In this case, all displacements (assumed small) have just one 
Cartesian component – in Fig. 2, along the x-axis: q = nxy (with  << 1), so the only nonzero element 
of the initial strain tensor qj/rj’ is qx/y = , and the symmetrized tensor (9b) is   

3 The traditional European notation for Tr is Sp (from the German Spur meaning “trace” or “track”). 

Strain  
tensor 
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Evidently, the change of volume, given by Eq. (13), vanishes in this case. Thus, off-diagonal elements 
of the tensor s characterize shear deformations. 

 

 

 

 

 

 To conclude this section, let me note that Eq. (9) is only valid in Cartesian coordinates. For the 
solution of some important problems with the axial or spherical symmetry, it is frequently convenient to 
express six different elements of the symmetric strain tensor in either cylindrical or spherical 
coordinates via three components of the displacement vector q in the same coordinates. A 
straightforward differentiation of the definitions of these curvilinear coordinates, similar to that used to 
derive the well-known expressions for spatial derivatives of arbitrary functions,4 yields, in particular, the 
following formulas for the diagonal elements of the tensor: 

 (i) in the cylindrical coordinates: 
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 (ii) in the spherical coordinates: 
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 These expressions, which will be used below for the solution of some problems for symmetrical 
geometries, may be a bit counter-intuitive. Indeed, Eq. (16) shows that even for a purely radial, axially-
symmetric deformation, q = q()n, the angular element of the strain tensor does not vanish: s = q/. 
(According to Eq. (17), in the spherical coordinates, both angular elements of the tensor exhibit the 
same property.) Note, however, that this relation describes a simple geometric fact: the change of the 
lateral distance d <<  between two close points at the same distance from the symmetry axis, at a 
small change of  that keeps the angle d between the directions towards these two points intact. 

 

7.2. Stress 

 Now let us discuss the forces that cause the strain – or, from a legitimate alternative point of 
view, are caused by the strain. Internal forces acting inside (i.e. between arbitrarily defined parts of) a 

4 See, e.g., MA Eqs. (10.1)-(10.12).  

Fig. 7.2. An example of pure shear. x
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continuum may be also characterized by a tensor. This stress tensor,5 with elements jj’, relates the 
Cartesian components of the vector dF of the force acting on an elementary area dA of an (in most 
cases, just imagined) interface between two parts of a continuum, to the components of the elementary 
vector dA = ndA normal to the area – see Fig. 3: 

               



3

1j'
j'jj'j dAdF  .     (7.18) 

The usual sign convention here is to take the outer normal dn, i.e. to direct dA out of “our” part of the 
continuum, i.e. the part on which the calculated force dF is exerted – by the complementary part. 

 

 

 

 

 

 

 In some cases, the stress tensor’s structure is very simple. For example, as will be discussed in 
detail in the next chapter, static and ideal fluids (i.e. liquids and gases) may only provide forces normal 
to any interface and usually are directed toward “our” part of the body, so 

            , i.e., jj'jj'dd  PP  AF      (7.19) 

where the scalar P  (in most cases positive) is called pressure, and generally may depend on both the 
spatial position and time. This type of stress, with P  > 0, is frequently called hydrostatic compression – 
even if it takes place in solids, as it may. 

 However, in the general case, the stress tensor also has off-diagonal terms, which characterize 
the shear stress. For example, if the shear strain in Fig. 2 is caused by the shown pair of forces F, they 
create internal forces Fxnx, with Fx > 0 if we speak about the force acting upon a part of the sample 
below the imaginary horizontal interface we are discussing. To avoid a horizontal acceleration of each 
horizontal slice of the sample, the forces should not depend on y, i.e. Fx = const = F. Superficially, it 
may look that in this case, the only nonzero element of the stress tensor is dFx/dAy = F/A = const, so 
tensor is asymmetric, in contrast to the strain tensor (15) of the same system. Note, however, that the 
displayed pair of forces F creates not only the shear stress but also a nonzero rotating torque  = –Fhnz 
= –(dFx/dAy)Ahnz = –(dFx/dAy)Vnz, where V = Ah is the sample’s volume. So, if we want to perform a 
static stress experiment, i.e. avoid the sample’s rotation, we need to apply some other forces, e.g., a pair 
of vertical forces creating an equal and opposite torque ’ = (dFy/dAx)Vnz, implying that dFy/dAx = 
dFx/dAy = F/A. As a result, the stress tensor becomes symmetric, and similar in structure to the 
symmetrized strain tensor (15): 

5 It is frequently called the Cauchy stress tensor, partly to honor Augustin-Louis Cauchy who introduced this 
notion (and is responsible for the development, mostly in the 1820s, much of the theory described in this chapter), 
and partly to distinguish it from other possible definitions of the stress tensor, including the 1st and 2nd Piola-
Kirchhoff tensors. For the small deformations discussed in this course, all these notions coincide. 

Fig. 7.3. The definition of vectors dA and dF. 
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 In many situations, the body may be stressed not only by forces applied to their surfaces but also 
by some volume-distributed (bulk) forces dF = fdV, whose certain effective bulk density f. (The most 
evident example of such forces is gravity. If its field is uniform as described by Eq. (1.16), then f = g, 
where  is the mass density.) Let us derive the key formula describing the summation of the interface 
and bulk forces. For that, consider again an elementary cuboid with sides drj parallel to the 
corresponding coordinate axes nj (Fig. 4) – now not necessarily the principal axes of the stress tensor.  

 

 

 

 

 

 If elements jj’ of the tensor do not depend on position, the force dF(j’) acting on the j’ th face of 
the cuboid is exactly balanced by the equal and opposite force acting on its opposite face, because the 
vectors dA(j’) at these faces are equal and opposite. However, if jj’ is a function of r, then the net force 
d(dF(j’)) does not vanish. (In this expression, the first differential sign refers to the elementary shift drj’, 
while the second one, to the elementary area dAj’.) Using the expression jj’dAj’ for the j’th contribution 
to the sum (18), in the first order in dr the jth  components of the vector d(dF(j’)) is 
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where the cuboid’s volume dV = drj’dAj’  evidently does not depend on the index j’. The addition of these 
force components for all three pairs of cuboid faces, i.e. the summation of Eqs. (21) over all three values 
of the upper index j’, yields the following relation for the jth Cartesian component of the net force 
exerted on the cuboid: 
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Since any volume may be broken into such infinitesimal cuboids, Eq. (22) shows that the space-varying 
stress is equivalent to a volume-distributed force dFef = fefdV, whose effective (not real!) bulk density fef  
has the following Cartesian components 
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,     (7.23) 

so in the presence of genuinely bulk forces dF = fdV, the densities fef and f just add up. This is the so-
called Euler-Cauchy stress principle. 

 Let us use this addition rule to spell out the 2nd Newton law for a unit volume of a continuum: 

Fig. 7.4. Deriving Eq. (23). 
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Using Eq. (23), the jth Cartesian component of Eq. (24) may be represented as 
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This is the key equation of the continuum’s dynamics (and statics), which will be repeatedly used below. 

 For the solution of some problems, it is also convenient to have a general expression for the 
work W of the stress forces at a virtual deformation q – understood in the same variational sense as 
the virtual displacements r in Sec. 2.1. Using the Euler-Cauchy principle (23), for any volume V of a 
medium not affected by volume-distributed forces, we may write6 
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Let us work out this integral by parts for a volume so large that the deformations qj on its surface are 
negligible. Then, swapping the operations of the variation and the spatial differentiation (just like it was 
done with the time differentiation in Sec. 2.1), we get 
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Assuming that the tensor jj’ is symmetric, we may rewrite this expression as 
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Now, swapping indices j and j’ in the second expression, we finally get  
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where sjj’ are the elements of the strain tensor (9b). It is natural to rewrite this important formula as       
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and interpret the locally-defined scalar function w(r) as the work of the stress forces per unit volume, at 
a small variation of the deformation.  

 As a sanity check, for the pure pressure (19), Eq. (30) is reduced to the obviously correct result 
W = –PV, where V is the volume of the “our” part of the continuum. 

6 Here the sign corresponds to the work of the “external” stress force dF exerted on “our” part of the continuum 
by its counterpart – see Fig. 3. Note that some texts make the opposite definition of W, leading to its opposite 
sign. 
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7.3. Hooke’s law 

 In order to form a complete system of equations describing the continuum’s dynamics, one needs 
to complement Eq. (25) with an appropriate constitutive equation describing the relation between the 
forces described by the stress tensor jj’, and the deformations q described (in the small deformation 
limit) by the strain tensor sjj’. This relation depends on the medium, and generally may be rather 
complicated. Even leaving alone various anisotropic solids (e.g., crystals) and macroscopically-
inhomogeneous materials (like ceramics or sand), strain typically depends not only on the current value 
of stress (possibly in a nonlinear way) but also on the previous history of stress application. Indeed, if 
strain exceeds a certain plasticity threshold, atoms (or nanocrystals) may slip to their new positions and 
never come back even if the strain is reduced. As a result, deformations become irreversible – see Fig. 5.  

  

 

 

 

 

 

  

 

 Only below the thresholds of nonlinearity and plasticity (which are typically close to each other), 
the strain is nearly proportional to stress, i.e. obeys the famous Hooke’s law.7 However, even in this 
elastic range, the law is not quite simple, and even for an isotropic medium is described not by one but 
by two constants, called the elastic moduli. The reason for that is that most elastic materials resist the 
strain accompanied by a volume change (say, the hydrostatic compression) differently from how they 
resist a shear deformation.  

 To describe this difference, let us first represent the symmetrized strain tensor (9b) in the 
following mathematically equivalent form: 

            .sTr 
3

1
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3

1
'''' 













  jjjjjjjj ss      (7.31) 

According to Eq. (13), the traceless tensor in the first parentheses does not give any contribution to the 
volume change, e.g., may be used to characterize a purely shear deformation, while the second term 
describes the hydrostatic compression alone. Hence we may expect that the stress tensor may be 
represented (again, within the elastic deformation range only!) as 

                 












  '''' sTr 

3

1
3sTr 

3

1
2 jjjjjjjj Ks  ,   (7.32) 

where K and  are constants. (The inclusion of coefficients 2 and 3 into Eq. (32) is justified by the 
simplicity of some of its corollaries – see, e.g., Eqs. (36) and (41) below.) Indeed, experiments show that 

7 Named after Robert Hooke (1635-1703), the polymath who was the first to describe the law in its simplest, 1D 
version. 

Fig. 7.5. A typical relation between the 
stress and strain in solids (schematically). 
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Hooke’s law in this form is followed, at small strain, by all isotropic materials. In accordance with the 
above discussion, the constant  (in some texts, denoted as G) is called the shear modulus, while the 
constant K (sometimes denoted B), the bulk modulus. The two left columns of Table 1 show the 
approximate values of these moduli for typical representatives of several major classes of materials.8  

  

 

 

 

 

 

 

 

 

 
 
 To better appreciate these values, let us first discuss the quantitative meaning of K and , using 
two simple examples of elastic deformation. However, in preparation for that, let us first solve the set of 
nine (or rather six different) linear equations (32) for sjj’. This is easy to do, due to the simple structure 
of these equations: they relate the elements jj’ and sjj’ with the same indices, but the tensor’s trace 
effect. This slight complication may be readily overcome by noticing that according to Eq. (32), 

            σTr
3

1
sTr  that  so,sTr 3σTr

3

1

  
K
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j

jj  


 .   (7.33) 

Plugging this result into Eq. (32) and solving it for sjj’, we readily get the reciprocal relation, which may 
be represented in a similar form:  
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.   (7.34) 

 Now let us apply Hooke’s law, in the form of Eqs. (32) or (34), to two simple situations in which 
the strain and stress tensors may be found without using the full differential equation of the elasticity 
theory and boundary conditions for them. (That will be the subject of the next section.) The first 
situation is the hydrostatic compression when the stress tensor is diagonal, and all its diagonal elements 
are equal – see Eq. (19).9 For this case, Eq. (34) yields 

      ,
3 '' jjjj K

s P
      (7.35) 

8 Since the strain tensor elements, defined by Eq. (9), are dimensionless, while the strain, defined by Eq. (18), has 
a dimensionality similar to pressure (of force per unit area), so do the elastic moduli K and . 
9 It may be proved that such a situation may be implemented not only in a fluid with pressure P  but also in a solid 
sample of an arbitrary shape, for example by placing it into a compressed fluid. 

Table 7.1. Elastic moduli, density, and sound velocities of a few representative materials (approximate values) 

Material K (GPa) μ (GPa) E (GPa)   (kg/m3) vl (m/s) vt (m/s) 

Diamond(a) 600 450 1,100 0.20 3,500 1,830 1,200 

Hardened steel 170 75 200 0.30 7,800 5,870 3,180 

Water(b) 2.1 0 0 0.5 1,000 1,480 0 

Air(b) 0.00010 0 0 0.5 1.2 332 0 

  (a) Averages over crystallographic directions (~10% anisotropy). 
 (b) At the so-called ambient conditions (T = 20C, P  = 1 bar  105 Pa). 
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i.e. regardless of the shear modulus, the strain tensor is also diagonal, with all diagonal elements equal. 
According to Eqs. (11) and (13), this means that all linear dimensions of the body are reduced by a 
similar factor, so its shape is preserved, while the volume is reduced by 

             .
Δ 3

1 K
s

V

V

j
jj

P
 



     (7.36) 

 This formula clearly shows the physical sense of the bulk modulus K as the reciprocal 
compressibility. As Table 1 shows, the values of K  may be dramatically different for various materials, 
and even for such “soft stuff” as water, this modulus is actually rather high. For example, even at the 
bottom of the deepest, 10-km ocean well (P   103 bar  0.1 GPa), the water’s density increases by just 
about 5%. As a result, in most human-scale experiments, water may be treated as an incompressible 
fluid – the approximation that will be widely used in the next chapter. Many solids are even much less 
compressible – see, for example, the first two rows of Table 1. 

 Quite naturally, the most compressible media are gases. For a portion of gas, a certain 
background pressure P  is necessary just for containing it within its volume V, so Eq. (36) is only valid 

for small increments of pressure, P : 

        .
KV

V P



     (7.37) 

Moreover, the compression of gases also depends on thermodynamic conditions. (In contrast, for most 
condensed media, the temperature effects are very small.) For example, at ambient conditions, most 
gases are reasonably well described by the equation of state called the ideal classical gas: 

              
V

TNk
TNkV B

B   i.e.,  PP .    (7.38) 

where N is the number of molecules in volume V, and kB  1.3810-23 J/K is the Boltzmann constant.10  
For a small volume change V at a constant temperature T, this equation gives 
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V
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PP
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  const2

B
const    i.e., .  (7.39) 

Comparing this expression with Eq. (36), we get a remarkably simple result for the isothermal 
compression of gases, 
           ,const PTK      (7.40) 

which means in particular that the bulk modulus listed in Table 1 is actually valid, at the ambient 
conditions, for almost any gas. Note, however, that the change of thermodynamic conditions (say, from 
isothermal to adiabatic11) may affect the compressibility of the gas.. 

 Now let us consider the second, rather different, fundamental experiment: a purely shear 
deformation shown in Fig. 2. Since the traces of the matrices (15) and (20), which describe this 
situation, are equal to 0, for their off-diagonal elements, Eq. (32) gives merely jj’ = 2sjj’, so the 
deformation angle   (see Fig. 2) is just 

10 For the derivation and a detailed discussion of Eq. (37), see, e.g., SM Sec. 3.1. 
11 See, e.g., SM Sec. 1.3. 
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 1
 .      (7.41) 

Note that the angle does not depend on the thickness h of the sample, though of course the maximal 
linear deformation qx = h is proportional to the thickness. Naturally, as Table 1 shows, μ = 0 for all 
fluids because they do not resist static shear stress. 

 However, not all situations, even apparently simple ones, involve just either K or . Let us 
consider stretching a long and thin elastic rod of a uniform cross-section of area A – the so-called tensile 
stress experiment shown in Fig. 6.12  

 

 

 

 

 Though the deformation of the rod near its clamped ends depends on the exact way forces F are 
applied (we will discuss this issue later on), we may expect that over most of its length, the tension 
forces are directed virtually along the rod, dF = Fznz, and hence, with the coordinate choice shown in 
Fig. 6, xj = yj = 0 for all j, including the diagonal elements xx and yy. Moreover, due to the open 
lateral surfaces, on which, evidently, dFx = dFy = 0, there cannot be an internal stress force of any 
direction, acting on any elementary internal boundary parallel to these surfaces. This means that zx = 
zy = 0. So, of all elements of the stress tensor only one, zz, is not equal to zero, and for a uniform 
sample, zz = const = F/A. For this case, Eq. (34) shows that the strain tensor is also diagonal, but with 
different diagonal elements:  
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  Since tensile stress is most common in engineering practice (including physical experiment 
design), both combinations of the elastic moduli participating in these two relations have earned their 
own names. In particular, the constant in Eq. (42) is usually denoted as 1/E (but in many texts, as 1/Y), 
where E is called Young’s modulus:13 

           .
3

9
  i.e.,
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12 Though the analysis of compression in this situation gives similar results, in practical experiments a strong 
compression of a long sample may lead to the loss of the horizontal stability – the so-called buckling – of the rod. 
13 Named after another polymath, Thomas Young (1773-1829) – somewhat unfairly, because his work on 
elasticity was predated by a theoretical analysis by L. Euler in 1727 and detailed experiments by Giordano Riccati 
in 1782. 

Fig. 7.6. The tensile stress experiment. 
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As Fig. 6 shows, in the tensile stress geometry  szz  qz/z = l/l, so Young’s modulus scales the linear 
relation between the relative extension of the rod and the force applied per unit area:14 

         
A

F

El

l 1



.      (7.45) 

The third column of Table 1 above shows the values of this modulus for two well-known solids: 
diamond (with the highest known value of E of all bulk materials15) and the steels (solid solutions of 
~10% of carbon in iron) used in construction. Again, for all fluids, Young’s modulus equals zero – as it 
follows from Eq. (44) for  = 0. 

 I am confident that most readers of these notes have been familiar with Eq. (42), in the form of 
Eq. (45), from their undergraduate studies. However, this can hardly be said about its counterpart, Eq. 
(43), which shows that at the tensile stress, the rod’s cross-section dimensions also change. This effect is 
usually characterized by the following dimensionless Poisson’s ratio:16 
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 According to this formula, for realistic materials with K > 0,   0,  may vary from (-1) to (+½), 
but for the vast majority of materials,17 its values are between 0 and ½ – see the corresponding column 
of Table 1. The lower limit of this range is reached in porous materials like cork, whose lateral 
dimensions almost do not change at the tensile stress. Some soft materials such as natural and synthetic 
rubbers present the opposite case:   ½.18 Since according to Eqs. (13) and (42), the volume change is 
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     (7.47) 

such materials virtually do not change their volume at the tensile stress. The ultimate limit of this trend, 
V/V = 0, is provided by fluids and gases, because, as it follows from Eq. (46) with  = 0, their 
Poisson’s ratio   is exactly ½. However, for most practicable construction materials such as various 
steels (see Table 1) the relative volume change (47) is as high as ~40% of that of the length. 

 Due to the tensile stress dominance in practice, the coefficients E and  are frequently used as a 
pair of independent elastic moduli, instead of K and . Solving Eqs. (44) and (46) for them, we get 

             .
)1(2

,
)21(3 


 





EE

K     (7.48) 

14 According to Eq. (47), E may be thought of as the force (per unit area) that would double the initial sample’s 
length, if only Hooke’s law was valid for deformations that large – as it typically isn’t. 
15 E is probably somewhat higher (up to 2,000 GPa) in such nanostructures as carbon nanotubes and monatomic 
sheets (graphene), though there is still substantial uncertainty in experimentally measured elastic moduli of these 
structures – for a review see, e.g., G. Dimitrios et al., Prog. Mater. Sci. 90, 75 (2017). 
16 In some older texts, the Poisson’s ratio is denoted , but its notation as   dominates modern literature. 
17 The only known exceptions are certain exotic solids with very specific internal microstructure – see, e.g., R. 
Lakes, Science 235, 1038 (1987) and references therein. 
18 For example, silicone rubbers (synthetic polymers broadly used in engineering and physics experiment design) 
have, depending on their particular composition, synthesis, and thermal curing,  = 0.470.49, and as a result, 
combine respectable bulk moduli K = (1.52) GPa with very low Young’s moduli: E = (0.00010.05) GPa. 

Poisson  
ratio 
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Using these formulas, the two (equivalent) formulations of Hooke’s law, expressed by Eqs. (32) and 
(34), may be rewritten as 
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 The linear relation between the strain and stress tensor in elastic continua enables one more step 
in our calculation of the potential energy U due to deformation, which was started at the end of Sec. 2. 
Indeed, to each infinitesimal part of this strain increase, we may apply Eq. (30), with the elementary 
work W of the surface forces increasing the potential energy of “our” part of the body by the equal 
amount U. Let us slowly increase the deformation from a completely unstrained state (in which we 
may take U = 0) to a certain strained state, in the absence of bulk forces f, keeping the deformation type, 
i.e. the relation between the elements of the stress tensor, intact. In this case, all elements of the tensor 
jj’ are proportional to the same single parameter characterizing the stress (say, the total applied force), 
and according to Hooke’s law, all elements of the tensor sj’j are proportional to that parameter as well. In 
this case, integration of Eq. (30) through the variation yields the following final value:19 
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 Evidently, this u(r) may be interpreted as the volumic density of the potential energy of the 
elastic deformation. 

7.4. Equilibrium 

 Now we are fully equipped to discuss the elastic deformation dynamics, but let us start with 
statics. The static (equilibrium) state may be described by requiring the right-hand side of Eq. (25) to 
vanish. To find the elastic deformation, we need to plug jj’ from Hooke’s law (49a), and then express 
the elements sjj’ via the displacement distribution – see Eq. (9). For a uniform material, the result is20  
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Taking into account that the first sum is just the jth component of 2q, while  the second sum is the jth 
component of (q), we see that all three equations (51) for three Cartesian components (j = 1, 2, and 
3) of the deformation vector q, may be conveniently merged into one vector equation  

             .0)(
)21)(1(2)1(2
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   (7.52) 

19 To give additional clarity to the arising factor ½, let me spell out this integration for the simple case of a 1D 
spring. In this case, Eq. (30) is reduced to U = W = Fx, and if the spring’s force is elastic, F = x, the 
integration over x from 0 to its final value yields U = x2/2  Fx/2.  
20 As it follows from Eqs. (48), the coefficient before the first sum in Eq. (51) is just the shear modulus , while 
that before the second sum is equal to (K + /3). 
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For some applications, it is more convenient to recast this equation into a different form, using the well-
known vector identity21 2q = (q) – (q). The result is 
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   (7.53) 

 It is interesting that in problems without volume-distributed forces (f = 0), Young’s modulus E 
cancels out. Even more fascinating, in this case, the equation may be re-written in a form not involving 
Poisson’s ratio   either. Indeed, calculating the divergence of the remaining terms of Eq. (53), taking 
into account MA Eqs. (9.2) and (11.2), we get a surprisingly simple equation  

       .0)(2  q      (7.54) 

 A natural question here is how the elastic moduli affect the deformation distribution if they do 
not participate in the differential equation describing it. The answer is different in the following two 
cases. If what is fixed at the body’s boundary are deformations, then the moduli are irrelevant, because 
the deformation distribution through the body does not depend on them. On the other hand, if the 
boundary conditions describe fixed stress (or a combination of stress and strain), then the elastic 
constants creep into the solution via the recalculation of these conditions into the strain. As a simple but 
representative example, let us calculate the deformation distribution in a (generally, thick) spherical 
shell under the effect of pressures inside and outside it  – see Fig. 7a.  

 

 

 

  

 

 
  
 Due to the spherical symmetry of the problem, the deformation is obviously spherically 
symmetric and radial, q(r) = q(r)nr, i.e. is completely described by one scalar function q(r). Since the 
curl of such a radial vector field is zero,22 Eq. (53) is reduced to  

        ,0)( q       (7.55) 

This means that the divergence of the function q(r) is constant within the shell. In the spherical 
coordinates:23 

               .const 
1 2

2
qr
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r
     (7.56) 

Naming this constant 3a (with the numerical factor chosen just for the later notation’s convenience), and 
integrating Eq. (56) over r, we get its solution,  

21 See, e.g., MA Eq. (11.3). 
22 If this is not immediately evident, please have a look at MA Eq. (10.11) with f = fr(r)nr. 
23 See, e.g., MA Eq. (10.10) with f = q(r)nr 

Fig. 7.7. The spherical shell 
problem: (a) the general case, and 
(b) the thin shell limit. 
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which also includes another integration constant, b. The constants a and b may be determined from the 
boundary conditions. Indeed, according to Eq. (19), 
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In order to relate this stress to strain, let us use Hooke’s law, but for that, we first need to calculate the 
strain tensor components for the deformation distribution (57). Using Eqs. (17), we get 
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so Tr (s) = 3a. Plugging these relations into Eq. (49a) for rr, we obtain 
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Now plugging this relation into Eqs. (58), we get a system of two linear equations for the coefficients a 
and b. An easy solution to this system yields 
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 Formulas (57) and (61) give a complete solution to our problem. (Note that the elastic moduli are 
back, as was promised.) This solution is rich in physical content and deserves at least some analysis. 
First of all, note that according to Eq. (48), the coefficient (1 – 2)/E in the expression for a is just 1/3K, 
so the first term in Eq. (57) for the net deformation describes the hydrostatic compression. Now note 
that the second of Eqs. (61) yields b = 0 if R1 = 0. Thus for a solid sphere, we have only the hydrostatic 
compression that was discussed in the previous section. Perhaps less intuitively, making two pressures 
equal also gives b = 0, i.e. the purely hydrostatic compression, for arbitrary R2 > R1. 

 However, in the general case, b  0, so the second term in the deformation distribution (57),  
which describes the shear deformation,24 is also substantial. In particular, let us consider the important 
thin-shell limit, when R2 – R1  t  << R1,2  R – see Fig. 7b. In this case, q(R1)  q(R2) is just the change 
of the shell radius R, for which Eqs. (57) and (61) (with R2

3 – R1
3  3R2t) give 
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 Naively, one could think that at least in this limit the problem could be analyzed by elementary 
means. For example, the total force exerted by the pressure difference (P1 – P2) on the diametrical cross-
section of the shell (see, e.g., the dashed line in Fig. 7b) is F = πR2(P1 – P2), giving the stress,  

24 Indeed, according to Eq. (48), the material-dependent factor in the second of Eqs. (61) is just 1/4. 
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directed along the shell’s walls. One can check that this simple formula may be indeed obtained, in this 
limit, from the strict expressions for   and , following from the general treatment carried out 
above. However, if we now tried to continue this approach by using the simple relation (45) to find the 
small change Rsrr of the sphere’s radius, we would arrive at a result with the general structure of Eq. 
(62), but without the factor (1 – ) < 1 in the numerator. The reason for this error (which may be as 
significant as ~30% for typical construction materials – see Table 1) is that Eq. (45), while being valid 
for thin rods of arbitrary cross-section, is invalid for thin but broad sheets, and in particular the thin 
shell in our problem. Indeed, while at the tensile stress, both lateral dimensions of a thin rod may 
contract freely, in our last problem all dimensions of the shell are under stress – actually, under much 
more tangential stress than the radial one.25 

 
7.5. Rod bending 

 The general approach to the static deformation analysis, outlined at the beginning of the previous 
section, may be simplified not only for symmetric geometries but also for uniform thin structures such 
as thin plates (also called “membranes” or “thin sheets”) and thin rods. Due to the shortage of time, in 
this course, I will demonstrate typical approaches to such systems only on the example of thin rods. 
(The theory of thin plates and shells is conceptually similar but mathematically more involved.26)  

 Besides the tensile stress analyzed in Sec. 3, the two other major types of rod deformation are 
bending and torsion. Let us start from a “local” analysis of bending caused by a pair of equal and 
opposite external torques  = nyy perpendicular to the rod axis z (Fig. 8), assuming that the rod is 
“quasi-uniform”, i.e. that on the scale of this analysis (comparable with the linear scale a of the cross-
section) its material parameters and the cross-section A do not change substantially. 

  

 

 

 

 

 

 

 Just as in the tensile stress experiment (Fig. 6), the components of the stress forces dF, normal to 
the rod’s length, have to equal zero on the surface of the rod. Repeating the arguments made for the 
tensile stress discussion, we have to conclude that only one diagonal element of the tensor (in Fig. 8, zz) 
may differ from zero: 

25 Strictly speaking, this is only true if the pressure difference is not too small, namely, if P1 – P2 >> P1,2t/R. 
26 For its review see, e.g., Secs. 11-15 in L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed., Butterworth-
Heinemann, 1986.  

(a)        (b) 

Fig. 7.8. Rod bending, in a local reference frame (specific for each cross-section). The bold arrows show 
the simplest way to create the two opposite torques y: a couple of opposite forces for each torque. 
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        .' zzjzjj         (7.64) 

However, in contrast to the tensile stress, at pure static bending, the net force directed along the rod has 
to vanish: 

              ,02 
S

zzz rdF       (7.65)  

where S is the rod’s cross-section, so zz has to change its sign at some point of the x-axis, selected to lie 
in the plane of the bent rod. Thus, the bending deformation may be viewed as a combination of a stretch 
of some layers of the rod (bottom layers in Fig. 8) with compression of other (top) layers. 

 Since it is hard to make more conclusions about the stress distribution immediately, let us turn 
over to strain, assuming that the rod’s cross-section is virtually constant over the length of our local 
analysis. From the above representation of bending as a combination of stretching and compression, it is 
evident that the longitudinal deformation qz has to vanish along some neutral line on the rod’s cross-
section – in Fig. 8, represented by the dashed line.27 Selecting the origin of the x-coordinate on this line, 
and expanding the relative deformation in the Taylor series in x, due to the cross-section smallness we 
may keep just the first, linear term of the expansion: 

      .
R

x

dz

dq
s z

zz       (7.66) 

The constant R has the sense of the curvature radius of the bent rod. Indeed, on a small segment dz, the 
cross-section turns by a small angle dy = –dqz/x (Fig. 8b). Using Eq. (66), we get dy = dz/R, which is 
the usual definition of the curvature radius R in the differential geometry, for our special choice of the 
coordinate axes.28 

 Expressions for other elements of the strain tensor are harder to guess (like at the tensile stress, 
not all of them are equal to zero!), but what we already know about zz and szz is sufficient to start 
formal calculations. Indeed, plugging Eq. (64) into Hooke’s law in the form (49b), and comparing the 
result for szz with Eq. (66), we find 
        .

R

x
Ezz        (7.67) 

From the same Eq. (49b), we could also find the transverse elements of the strain tensor, and conclude 
that they are related to szz exactly as at the tensile stress: 

               zzyyxx sss  ,     (7.68) 

and then, integrating these relations along the cross-section of the rod, find the deformation of the cross-
section’s shape. More important for us, however, is to calculate the relation between the rod’s curvature 
and the net torque acting on a given cross-section S (taking dAz > 0): 

                  ,)( 222

R

EI
rdx

R

E
rdxd y

SS

zz

S

yy    Fr    (7.69) 

27 Strictly speaking, that dashed line is the intersection of the neutral surface (the continuous set of such neutral 
lines for all cross-sections of the rod) with the plane of the drawing. 
28 Indeed, for (dx/dz)2 << 1, the general formula MA Eq. (4.3) for the curvature (with the appropriate 
replacements f  x and x z) is reduced to 1/R = d2x/dz2 = d(dx/dz)/dz = d(tany)/dz  dy/dz. 
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where Iy is a geometric constant defined as 

                   
S

y dxdyxI 2 .      (7.70) 

Note that this factor, defining the bending rigidity of the rod, grows as fast as a4 with the linear scale a 
of the cross-section.29 

In these expressions, x has to be measured from the neutral line. Let us see where exactly this 
line passes through the rod’s cross-section. Plugging the result (67) into Eq. (65), we get the condition 
defining the neutral line: 
         .0 

S

xdxdy       (7.71) 

This condition allows for a simple interpretation. Imagine a thin sheet of some material, with a constant 
mass density   per unit area, cut in the form of the rod’s cross-section. If we place a reference frame 
into its center of mass, then, by its definition, 

                    .0 
S

dxdyr      (7.72) 

Comparing this condition with Eq. (71), we see that one of the neutral lines has to pass through the 
center of mass of the sheet, which may be called the “center of mass of the cross-section”. Using the 
same analogy, we see that the integral Iy given by Eq. (72) may be interpreted as the moment of inertia 
of the same imaginary sheet of material, with  formally equal to 1, for its rotation about the neutral line 
– cf. Eq. (4.24).  This analogy is so convenient that the integral is usually called the moment of inertia of 
the cross-section and denoted similarly – just as has been done above. So, our basic result (69) may be 
rewritten as 

          
y

y

EIR




1
 .      (7.73) 

 This relation is only valid if the deformation is small in the sense R >> a. Still, since the 
deviations of the rod from its unstrained shape may accumulate along its length, Eq. (73) may be used 
for calculations of large “global” deviations of the rod from equilibrium, on a length scale much larger 
than a. To describe such deformations, Eq. (73) has to be complemented by conditions of the balance of 
the bending forces and torques. Unfortunately, a general analysis of such deformations requires a bit 
more differential geometry than I have time for, so I will only discuss this procedure for the simplest 
case of relatively small transverse deviations q  qx of an initially horizontal rod from its straight shape 
that will be used for the z-axis (Fig. 9a), by some forces, possibly including bulk-distributed forces f = 
nxfx(z). (Again, the simplest example is a uniform gravity field, for which fx = –g = const.) Note that in 
the forthcoming discussion, the reference frame will be global, i.e. common for the whole rod, rather 
than local (pertaining to each cross-section) as it was in the previous analysis – cf. Fig. 8. 

 First of all, we may write a static relation for the total vertical force F = nxFx(z) exerted on the 
part of the rod to the left of the considered cross-section – located at point z. The differential form of this 
relation expresses the balance of vertical forces exerted on a small fragment dz of the rod (Fig. 9a), 
necessary for the absence of its linear acceleration: Fx(z + dz) – Fx(z) + fx(z)Adz = 0, giving 

29 In particular, this is the reason why the usual electric wires are made not of a solid copper core, but rather a 
twisted set of thinner sub-wires, which may slip relative to each other, increasing the wire flexibility. 

Rod  
bending: 
curvature 
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where A is the cross-section’s area. Note that this vertical component of the internal forces has been 
neglected in our derivation of Eq. (73), and hence our final results will be valid only if the ratio Fx/A is 
much smaller than the magnitude of zz described by Eq. (67). However, in reality, these are exactly the 
forces that create the very torque  = nyy that in turn causes the bending, and thus have to be taken into 
account in the analysis of the global picture.  

 Such an account may be made by writing the balance of the components of the elementary 
torque exerted on the same rod fragment of length dz, necessary for the absence of its angular 
acceleration: dy + Fxdz = 0, so 

          .x
y F

dz

d



      (7.75) 

These two equations should be complemented by two geometric relations. The first of them is 
dy/dz = 1/R, which has already been discussed above. We may immediately combine it with the basic 
result (73) of our local analysis, getting: 

        .
y

yy

EIdz

d 
       (7.76) 

The final equation is the geometric relation evident from Fig. 9a: 

     y
x

dz

dq
 ,      (7.77) 

which is (as all expressions of our simple analysis) only valid for small bending angles, y  << 1.  

 The four differential equations (74)-(77) are sufficient for the full solution of the weak-bending 
problem, if complemented by appropriate boundary conditions. Figure 9b shows the conditions most 
frequently met in practice. Let us solve, for example, the problem shown on the top panel of Fig. 9b: 
bending of a rod, “clamped” at one end (say, immersed into a rigid wall), under its own weight. As 
should be clear from their derivation, Eqs. (74)-(77) are valid for any distribution of parameters A, E, Iy, 
and  over the rod’s length, provided that the rod is quasi-uniform, i.e. its parameters’ changes are so 
slow that the local relation (76) is still valid at any point. However, just for simplicity, let us consider a 

Fig. 7.9. A global picture of rod bending: (a) the forces acting on a small fragment of a rod, and (b) two 
bending problem examples, each with two typical but different boundary conditions.  
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uniform rod. The simple structure of Eqs. (74)-(77) allows for their integration one by one, each time 
using the appropriate boundary conditions. To start, Eq. (74) with  fx = –g = const yields  

               ,const lzgAgAzFx       (7.78) 

where the integration constant has been selected to satisfy the right-end boundary condition: Fx = 0 at z 
= l. As a sanity check, at the left wall (z = 0), Fx = –gAl = –mg, meaning that the whole weight of the 
rod is exerted on the supporting wall – fine.  

Next, by plugging Eq. (78) into Eq. (75) and integrating, we get  

         2222
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llzz
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 ,  (7.79) 

where the integration constant’s choice ensures the second right-boundary condition: y = 0 at z = l – see 
Fig. 9b again. Now proceeding in the same fashion to Eq. (76), we get  
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    (7.80) 

where the integration constant is selected to satisfy the clamping condition at the left end of the rod:  y 

= 0 at z = 0. (Note that this is different from the support condition illustrated on the lower panel of Fig. 
9b, which allows the angle y to be different from zero at z = 0, but requires the torque to vanish at that 
point.) Finally, integrating Eq. (77) with y  given by Eq. (80), we get the rod’s global deformation law, 
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  (7.81) 

where the integration constant is selected to satisfy the second left-boundary condition: q = 0 at z = 0. 
So, the bending law is sort of complicated even in this very simple problem. It is also remarkable how 
fast the end’s displacement grows with the increase of the rod’s length: 

                .
8
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4

y
x EI

gAl
lq


      (7.82) 

 To conclude this solution, let us discuss the validity of this result. First, the geometric relation 
(77) is only valid if y (l) << 1, and hence if qx(l) << l. Next, the local formula Eq. (76) is valid if 1/R 
= (l)/EIy  << 1/a ~ A-1/2. Using the results (79) and (82), we see that the latter condition is equivalent to 
qx(l) << l2/a, i.e. is weaker than the former one, because all our analysis has been based on the 
assumption l >> a. Another point of concern may be that the off-diagonal stress element xz ~ Fx/A, 
which is created by the vertical gravity forces, has been ignored in our local analysis. For that 
approximation to be valid, this element must be much smaller than the diagonal element zz ~ aE/R = 
a/Iy taken into account in that analysis. Using Eqs. (78) and (80), we are getting the following 
estimates: xz ~ gl, zz ~ agAl2/Iy ~ a3gl2/Iy. According to its definition (70), Iy may be crudely 
estimated as a4, so we finally get the simple condition a << l, which has been assumed from the very 
beginning of our solution. 
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7.6. Rod torsion 

 One more class of analytically solvable elasticity problems is the torsion of quasi-uniform, 
straight rods by a couple of axially-oriented torques  = nzz – see Fig. 10.   

 

 

 

 

 

 

 This problem is simpler than the bending in the sense that due to its longitudinal uniformity, 
dz/dz = const, it is sufficient to relate the torque z  to the so-called torsion parameter  

         .
dz

d z        (7.83) 

If the deformation is elastic and small (in the sense a << 1, where a is again the characteristic size of 
the rod’s cross-section),  is proportional to z. Hence our task is to calculate their ratio, 

             
dzd
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z

zz

/





 ,     (7.84) 

called the torsional rigidity of the rod. 

 As the first guess (as we will see below, of a limited validity), one may assume that the torsion 
does not change either the shape or size of the rod’s cross-sections, but leads just to their mutual rotation 
about a certain central line. Using a reference frame with the origin on that line, this assumption 
immediately enables the calculation of Cartesian components of the displacement  vector dq, by using 
Eq. (6) with d = nzdz: 

   .0,,  zzyzx dqxdzxddqydzyddq    (7.85) 

From here, we can calculate all Cartesian elements (9) of the symmetrized strain tensor: 

     xssysssssss zyyzzxxzyxxyzzyyxx 2
,

2
,0,0


 .   (7.86) 

The first of these equalities means that the elementary volume does not change, i.e. we are dealing with 
purely shear deformation. As a result, all nonzero elements of the stress tensor, calculated from Eqs. 
(32), are proportional to the shear modulus alone:30  

     .,,0,0 xy zyyzzxxzyxxyzzyyxx    (7.87) 

30 Note that for this problem, with a purely shear deformation, using the alternative elastic moduli E and  would 
be rather unnatural. If needed, we may always use the second of Eqs. (48):  = E/2(1 + ). 

Fig. 7.10. Rod torsion. Just as 
in Fig. 8, the couples of forces 
F are just vivid representations 
of the opposite torques . 
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 Now it is straightforward to use this result to calculate the full torque as an integral over the 
cross-section’s area A:  

                       .)()( dxdyyxydFxdFd
A

xzyz

A

xy

A

zz    Fr    (7.88) 

Using Eq. (87), we get z = Iz, i.e.  

         dxdyyxIIC
A

zz   )(   where, 22 .    (7.89) 

 Again, just as in the case of thin rod bending, we have got an integral, in this case Iz, similar to a 
moment of inertia, this time for the rotation about the z-axis passing through a certain point of the cross-
section. For any axially symmetric cross-section, this has to be its central point. Then, for example, for 
the practically important case of a uniform round pipe with internal radius R1 and external radius R2,  
Eq. (89) yields 

             4
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2
2 RRdC
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   .    (7.90) 

In particular, for the solid rod of radius R (which may be treated as a pipe with R1 = 0 and R2 = R), this 
result gives the following torsional rigidity  

         4

2
RC 

 ,      (7.91a) 

while for a hollow pipe of small thickness t  << R, Eq. (90) is reduced to  

        tRC 32 .      (7.91b) 

Note that per unit cross-section area A (and hence per unit mass of the rod) the thin pipe’s rigidity is 
twice higher than that of a solid rod:  

    2
rod  round  solid

2
pipe  roundthin  2

1
R

A

C
R

A

C    .   (7.92) 

This fact is one reason for the broad use of thin pipes in engineering and physical experiment design. 

 However, for rods with axially asymmetric cross-sections, Eq. (89) gives wrong results. For 
example, for a narrow rectangle of area A = wt with t << w, it yields the expression C = tw3/12 
[WRONG!], which is even functionally different from the correct result – cf. Eq. (104) below. The 
reason for this error is that the above analysis does not describe possible bending qz(x, y) of the rod’s 
cross-section in the direction along the rod. (For axially-symmetric rods, such bending is evidently 
forbidden by the symmetry, so Eq. (89) is valid, and the results (90)-(92) are absolutely correct.)  

 Let us describe31 this counter-intuitive effect by taking  

      ),,( yxqz       (7.93) 

31 I would not be terribly shocked if the reader skipped the balance of this section at the first reading. Though the 
calculation described in it is very elegant, instructive, and typical for the theory of elasticity (and for good physics 
as a whole!), its results will not be used in other chapters of this course or other parts of this series. 
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(where   is some function to be determined), but still keeping Eq. (87) for two other components of the 
displacement vector. The addition of   does not perturb the equality to zero of the diagonal elements of 
the strain tensor, as well as of sxy and syx, but contributes to other off-diagonal elements: 
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   (7.94) 

and hence to the corresponding elements of the stress tensor: 
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    (7.95)  

 Now let us find the requirement imposed on the function (x,y) by the fact that the stress force 
component parallel to the rod’s axis, 
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 ,  (7.96) 

has to vanish at the rod’s surface(s), i.e. at a cross-section’s border. The coordinates {x, y} of any point 
at the border may be considered as unique functions, x(l) and y(l), of the arc l of that line – see Fig. 11.  

 

 

 

 

 

 

 

 
 As this sketch shows, the elementary area ratios participating in Eq. (96) may be readily 
expressed via the derivatives of these functions: dAx/dA = sin = dy/dl, dAy/dA = cos = –dx/dl, so we 
may write 
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   (7.97) 

Introducing, instead of , a new function (x,y), defined by its derivatives as 
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   (7.98) 

we may rewrite Eq. (97) as 
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    (7.99) 

so the function   has to be constant at each border of the cross-section. 

Fig. 7.11. Deriving Eq. (99). 
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 In particular, for a singly-connected cross-section, limited to just one continuous border line (as 
in Fig. 11), this constant is arbitrary, because according to Eqs. (98), its choice does not affect the 
longitudinal deformation function (x,y) and hence the deformation as a whole. Now let us use the 
definition (98) of  (x, y) to calculate the 2D Laplace operator of this function: 
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   (7.100) 

This is a 2D Poisson equation (frequently met, for example, in electrostatics), but with a very simple, 
constant right-hand side. Plugging Eqs. (98) into Eqs. (95), and those into Eq. (88), we may express the 
torque z, and hence the torsional rigidity C, via the same function: 
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             (7.101a) 

Sometimes, it is easier to use this result in either of its two different forms. The first of them may 
be readily obtained from Eq. (101a) using the integration by parts: 
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while the proof of one more form,  

             dxdyC
A

yx

2

,4    ,              (7.101c) 

is left for the reader’s exercise. Thus, if we need to know the rod’s rigidity alone, it is sufficient to 
calculate the function (x, y) from Eq. (100) with the boundary condition border = const, and then plug it 
into any of Eqs. (101). Only if we are also curious about the longitudinal deformation (93) of the cross-
section, we may continue by using Eq. (98) to find the function (x,y) describing this deformation.  

 Let us see how this recipe works for the two examples discussed above. For the round cross-
section of radius R, both the Poisson equation (100) and the boundary condition,  = const at x2 + y2 = 
R2, are evidently satisfied by the following axially symmetric function: 
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1 22  yx      (7.102) 

For this case, Eq. (101a) yields 
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i.e. the same result (89) that we had for   = 0. Indeed, plugging Eq. (102) into Eqs. (98), we see that in 
this case /x = /y = 0, so (x,y) = const, i.e. the cross-section is not bent. (As was discussed in 
Sec. 1, a uniform translation dqz =   = const does not constitute a deformation.)  

 Now, turning to a rod with a narrow rectangular cross-section A = wt  with t  << w, we may use 
this strong inequality to solve the Poisson equation (100) approximately, neglecting the second 
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derivative of  along the wider dimension (say, y). The remaining 1D differential equation d2/d2x = –1, 
with boundary conditions x=+t/2 = x =-t/2,  has an obvious solution:  = –x2/2 + const. Plugging this 
expression into any form of Eq. (101), we get the following (correct!) result for the torsional rigidity: 
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1 3wtC        (7.104) 

 Now let us have a look at the cross-section bending law (93) for this particular case. Using Eqs. 
(98), we get 
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   (7.105) 

Integrating these differential equations over the cross-section, and taking the integration constant (again, 
not contributing to the deformation) for zero, we get a beautifully simple result: 

        xyqxy z     i.e., .     (7.106) 

It means that the longitudinal deformation of the rod has a “propeller bending” form: while the regions 
near the opposite corners (on the same diagonal) of the cross-section bend toward one direction of the z-
axis, the corners on the other diagonal bend in the opposite direction. (This qualitative conclusion 
remains valid for rectangular cross-sections with any “aspect ratio” t/w.)  

 For rods with several surfaces, i.e. with cross-sections limited by several boundaries (say, hollow 
pipes), finding the function (x, y) requires a bit more care and Eq. (103b) has to be modified because 
the function may be equal to a different constant at each boundary. Let me leave the calculation of the 
torsional rigidity for this case for the reader’s exercise.  

  

7.7. 3D acoustic waves 

 Now moving from the statics to dynamics, we may start with Eq. (24), which may be 
transformed into the vector form exactly as this was done for the static case at the beginning of Sec. 4. 
Comparing Eqs. (24) and (52), we immediately see that the result may be represented as 
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 Let us use this general equation for the analysis of the perhaps most important type of time-
dependent deformations: acoustic waves. First, let us consider the simplest case of a virtually infinite, 
uniform elastic medium, with no external forces: f = 0. In this case, due to the linearity and homogeneity 
of the equation of motion, and taking clues from the analysis of the simple 1D model (see Fig. 6.4a) in 
Secs. 6.3-6.5,32 we may look for a particular time-dependent solution in the form of a sinusoidal, 
linearly polarized, plane traveling wave 
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32 Note though that Eq. (107) is more complex than the simple wave equation (6.40). 

Elastic 
continuum: 

dynamics 
 

Plane, 
sinusoidal 

wave 



Essential Graduate Physics                 CM: Classical Mechanics 

 

 

Chapter 7            Page 26 of 38 

where a is the constant complex amplitude of a wave (now a vector!), and k is the wave vector, whose 
magnitude is equal to the wave number k. The direction of these two vectors should be clearly 
distinguished: while a determines the wave’s polarization, i.e. the direction of particle displacements, 
the vector k is directed along the spatial gradient of the full phase of the wave  

             at argΨ  rk ,     (7.109) 

i.e. along the direction of the wave front propagation. 

 The importance of the angle between these two vectors may be readily seen from the following 
simple calculation. Let us point the z-axis of an (inertial) reference frame along the direction of vector k, 
and the x-axis in such direction that the vector q, and hence a, lie within the {x, z} plane. In this case, all 
variables may change only along the z-axis, i.e.  = nz(/z), and the amplitude vector may be 
represented as the sum of just two Cartesian components: 

      .zzxx aa nna       (7.110) 

 Let us first consider a longitudinal wave, with the particle motion along the wave direction: ax = 
0, az = a. Then the vector q in Eq. (107) describing this wave, has only one (z-) component, so q = 
qz/z and (q) =  nz(2q/z2), and the Laplace operator gives the same expression: 2q = nz(2q/z2). 
As a result, Eq. (107), with f = 0, is reduced to a 1D wave equation 
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similar to Eq. (6.40). As we already know from Sec. 6.4, this equation is indeed satisfied with the  
solution (108), provided that  and k obey a linear dispersion relation,  = vlk, with the following 
longitudinal wave velocity: 
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 The last expression allows for a simple interpretation. Let us consider a static experiment, similar 
to the tensile test experiment shown in Fig. 6, but with a sample much wider than l in both directions 
perpendicular to the force. Then the lateral contraction is impossible (sxx = syy = 0), and we can calculate 
the only finite stress element, zz, directly from Eq. (34) with Tr (s) = szz: 
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We see that the numerator in Eq. (112) is nothing more than the static elastic modulus for such a 
uniaxial deformation, and it is recalculated into the velocity exactly as the spring constant in the 1D 
waves considered in Secs. 6.3-6.4 – cf. Eq. (6.42).  

 Formula (114) becomes especially simple in fluids, where  = 0, and the wave velocity is 
described by the well-known expression 
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Note, however, that for gases, with their high compressibility and temperature sensitivity, the value of K 
participating in this formula may differ, at high frequencies, from that given by Eq. (40), because fast 
compressions/extensions of gas are usually adiabatic rather than isothermal. This difference is 
noticeable in Table 1, one of whose columns lists the values of vl for representative materials. 

 Now let us consider an opposite case of transverse waves with ax = a, az = 0. In such a wave, the 
displacement vector is perpendicular to nz, so q = 0, and the second term on the right-hand side of Eq. 
(107) vanishes. On the contrary, the Laplace operator acting on such vector still gives the same non-zero 
contribution 2q = nz(2q/z2) to Eq. (107), so the equation yields 
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and we again get the linear dispersion relation,  = vtk, but with a different velocity: 33 
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 We see that the speed of the transverse waves depends exclusively on the shear modulus  of the 
medium.34 This is also very natural: in such waves, the particle displacements q = nxq are perpendicular 
to the elastic forces dF = nzdF, so only one element xz of the stress tensor is involved. Also, the strain 
tensor sjj’ has no diagonal elements, Tr (s) = 0, so  is the only elastic modulus actively participating in 
Hooke’s law (32). In particular, fluids cannot carry transverse waves at all (formally, their velocity 
(116) vanishes), because they do not resist shear deformations. For all other materials, the longitudinal 
waves are faster than the transverse ones.35 Indeed, for all known natural materials’  Poisson’s ratio is 
positive so the velocity ratio that follows from Eqs. (112) and (116), 
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is above 2  1.4. For the most popular construction materials, with   0.3, Poisson’s ratio is about 2 – 
see Table 1. 

 Let me emphasize again that for both the longitudinal and the transverse waves, the dispersion 
relation between the wave number and frequency is linear:  = vk.  As was already discussed in Chapter 
6, in this case of acoustic waves (or just “sound”), the phase and group velocities are equal, and waves 
of more complex form, consisting of several (or many) Fourier components of the type (108), preserve 

33 Just as in Chapter 6, let me emphasize that the wave velocities we are discussing in this section and Sec. 8 
below have nothing to do with particle velocities q/t. For example, in the transverse wave we are discussing 
now, vt is the velocity in the z-direction, while the particles of the medium move across it, in the x-direction. Also, 
vl and vt do not depend on the wave amplitudes, while the particle velocities are proportional to them. 
34 Because of that, one can frequently meet the term shear waves. Note also that in contrast to the transverse 
waves in the simple 1D model analyzed in Chapter 6 (see Fig. 6.4a), those in a 3D continuum do not need a pre-
stretch tension T. We will return to the effect of tension in the next section. 
35 Because of this difference between vl and vt, in geophysics, the longitudinal waves are known as P-waves (with 
the letter P standing for “primary”) because they arrive at the detection site, say from an earthquake, first – before 
the transverse waves, called the S-waves, with S standing for “secondary”. (An alternative, also quite logical, 
decoding of these abbreviations is “pressure waves” and “shear waves”.) 
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their form during propagation. This means that both Eqs. (111) and (115) are satisfied by solutions of 
the type (6.41): 
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tftzq ),( ,     (7.118) 

where the functions f describe the propagating waveforms. (However, if the initial wave is a mixture,  
of the type (110), of the longitudinal and transverse components, then these components, propagating 
with different velocities, will “run from each other”.) As one may infer from the analysis of a periodic 
system model in Chapter 6, the wave dispersion becomes essential at very high (hypersound) 
frequencies where the wave number k becomes close to the reciprocal distance d between the particles 
of the medium (e.g., atoms or molecules), and hence the approximation of the medium as a continuum, 
used through this chapter, becomes invalid.    

 As we already know from Chapter 6, besides the velocity, the waves of each type are 
characterized by one more important parameter, the wave impedance Z – for acoustic waves frequently 
called the acoustic impedance of the medium. Generalizing Eq. (6.46) to the 3D case, we may define the 
impedance as the ratio of the force per unit area (i.e. the corresponding element of the stress tensor) 
exerted by the wave, and the particles’ velocity. For the longitudinal waves, 
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Plugging in Eqs. (108), (112), and (113), we get 

            ,)3/4( 2/1
l  KZ      (7.120) 

in a clear analogy with the first of Eqs. (6.48). Similarly, for the transverse waves, the appropriately 
modified definition, Zt  xz/(qx/z), yields 

         .2/1
t Z       (7.121) 

 Just like in the 1D models studied in Chapter 6, one role of the wave impedance is to scale the 
power P carried by the wave. For plane 3D waves in infinite media, with their infinite wave front area, 
it is more appropriate to speak about the power density, i.e. power p  = dP/dA per unit area of the front, 
and characterize it by not only its magnitude, 
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but also the direction of the energy propagation, that (for a plane acoustic wave in an isotropic medium) 
coincides with the direction of the wave vector: p  pnk. Using the definition (18) of the stress tensor, 
the Cartesian components of this Umov vector36 may be expressed as 

36 Named after N. A. Umov, who introduced this concept in 1874 – ten years before a similar notion for 
electromagnetic waves (see, e.g., EM Sec. 6.4) was suggested by J. Poynting. In a dissipation-free elastic medium, 
the Umov vector obeys the continuity equation (v2/2 + u)/t + p = 0, with u given by Eq. (52), which 
expresses the conservation of the total (kinetic plus potential) energy of the elastic deformation. 
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Returning to plane waves propagating along axis z, and acting exactly like in Sec. 6.4, for both the 
longitudinal and transverse waves we again arrive at Eq. (6.49), but for p rather than P (due to a 
different definition of the wave impedance – per unit area rather than per particle chain). For the 
sinusoidal waves of the type (108), it yields  
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with Z being the corresponding impedance – either Zl or Zt. 

 Just as in the 1D case, one more important effect, in which the notion of impedance is crucial, is 
the partial wave reflection from at an interface between two media. The two boundary conditions, 
necessary for the analysis of the reflection, may be obtained from the continuity of the vectors q and dF. 
(The former condition is evident, while the latter one may be obtained by applying the 2nd Newton law 
to any infinitesimal volume dV = dAdz, where the segment dz straddles the interface.) Let us start from 
the simplest case of the normal incidence on a plane interface between two uniform media, each with its 
own elastic moduli and mass density. Due to the symmetry of the system, it is obvious that the 
longitudinal/transverse incident wave may only excite similarly polarized reflected and transferred 
waves. As a result, we may literally repeat the calculations of Sec. 6.4, again arriving at the fundamental 
relations (6.55) and (6.56), with the replacement of Z and Z’ with the corresponding values of either Zl 
(120) or  Zt (121). Thus, at the normal incidence, the wave reflection is determined solely by the 
acoustic impedances of the media, while the sound velocities are not involved. 

 The situation, however, becomes more complicated at a nonzero incidence angle  (i) (Fig. 12), 
where the transmitted wave is generally also refracted, i.e. propagates under a different angle, ’  (i), 
beyond the interface. Moreover, at (i)    0 the directions of particle motion (vector q) and of the stress 
forces (vector dF) in the incident wave are neither exactly parallel nor exactly perpendicular to the 
interface, and thus this wave may serve as an actuator for the reflected and refracted waves of both 
polarizations – see Fig. 12, drawn for the particular case when the incident wave is transverse. The 
corresponding four angles, t

(r), t
(r), ’l,

 ’t, may be readily related to t(i) by the “kinematic” condition 
that the incident wave, as well as the reflected and refracted waves of both types, must have the same 
spatial distribution along the interface plane, i.e. for the interface particles participating in all five 
waves. According to Eq. (108), the necessary boundary condition is the equality of the tangential 
components (in Fig. 12, kx), of all five wave vectors: 
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Since the acoustic wave vector magnitudes k, at fixed frequency , are inversely proportional to the 
corresponding wave velocities, we immediately get the following relations: 
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so generally all four angles are different. (This is of course an analog of the well-known Snell law in 
optics – where, however, only transverse waves are possible.)  These relations show that, just like in 
optics, the direction of a wave propagating into a medium with lower velocity is closer to the normal (in 
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Fig. 12, to the z-axis). In particular, this means that if v’ > v, the acoustic waves, at larger angles of 
incidence, may exhibit the effect of total internal reflection, so well known from optics37, when the 
refracted wave vanishes.  In addition, Eqs. (126) show that in acoustics, the reflected longitudinal wave, 
with velocity vl > vt, may vanish at sufficiently large angles of the transverse wave incidence. 

 

 

 

 

 

 

  

 

 All these facts automatically follow from general expressions for amplitudes of the reflected and 
refracted waves via the amplitude of the incident wave. These relations are straightforward to derive 
(again, from the continuity of the vectors q and dF), but since they are much bulkier than those in the 
electromagnetic wave theory (where they are called the Fresnel formulas38), I would not have 
time/space to spell out and discuss them. Let me only note that, in contrast to the case of normal 
incidence, these relations involve eight media parameters: the impedances Z, Z’, and the velocities v, v’ 
on both sides of the interface, and for both the longitudinal and transverse waves. 

 There are other interface effects as well. Within certain frequency ranges, interfaces and surfaces 
of elastic solids may sustain so-called surface acoustic waves (SAW), in particular, the Rayleigh waves 
and the Love waves.39 The main feature that distinguishes such waves from their bulk (longitudinal and 
transverse) counterparts discussed above, is that the displacement amplitudes are largest at the interface 
and decay exponentially into the bulk of both adjacent media, so the waves cannot be plane in the usual 
sense of being independent of two Cartesian coordinates. 

 For an analysis of such waves, it is important that in a uniform medium, even non-plane elastic 
waves may be always separated into independent longitudinal and transverse components. Indeed, it is 
straightforward (and hence left for the reader) to prove that Eq. (107) may be satisfied by a vector sum 
q(r, t) = ql(r, t) + qt(r, t), with the former component having zero curl (ql = 0) and propagating with 
the velocity (112), and the latter component having zero divergence (qt = 0) and propagating with the 
velocity (116). The plane waves qlnz and qtnx analyzed above certainly fall into these two categories, but 
in more general waves, there may be no clear association between the longitudinal and transverse 
components and their polarization. 

   This is true, in particular, in the Rayleigh waves, where the particle displacement vector q may 
be represented as the sum ql + qt, each of the vectors having more than one Cartesian component. In 

37 See, e.g., EM Sec. 7.5. 
38 Their discussion may be also found in EM Sec. 7.5. 
39 Named, respectively, after Lord Rayleigh (born J. Strutt, 1842-1919) who has theoretically predicted the very 
existence of surface acoustic waves, and A. Love (1863-1940). 

Fig. 7.12. Deriving the “kinematic” 
conditions (126) of the acoustic wave 
reflection and refraction (for the case of 
a transverse incident wave). 
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contrast to the bulk waves, the longitudinal and transverse components are coupled via their interaction 
with the interface, and as a result, propagate with a single velocity vR. A straightforward analysis of the 
Rayleigh waves on the surface of an elastic solid (i.e. its interface with free space) yields the following 
equation for vR: 
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According to this formula, and Eqs. (112) and (116), for realistic materials with the Poisson index 
between 0 and ½, the Rayleigh waves are slightly (by 4 to 13%) slower than the bulk transverse waves – 
and hence substantially slower than the bulk longitudinal waves.  

 In the simplest case a “1D-plane” Rayleigh wave, independent of one Cartesian coordinate, the 
net vector q has just two Cartesian components (each contributed by ql and qt): one parallel to the 
propagation direction and hence to the interface, and another one normal to it. As a result, the trajectory 
of each particle in the wave is an ellipse in the plane normal to the interface. In contrast, the Love waves 
are purely transverse, with q oriented parallel to the interface. However, the interaction of these waves 
with the interface reduces their velocity vL in comparison with that (vt) of the bulk transverse waves,  
keeping it within the narrow interval between vt and vR:  

               ltLR vvvv  .     (7.128) 

 The practical importance of surface acoustic waves is that their amplitude decays very slowly 
with distance r from their point-like source: a  1/r1/2, while any bulk waves decay much faster, as a  
1/r. (Indeed, in the latter case the power P  a2, emitted by such source, is distributed over a spherical 
surface area proportional to r2, while in the former case all the power goes into a thin surface circle 
whose length scales as r.) At least two areas of applications of the surface acoustic waves have to be 
mentioned: geophysics (for earthquake detection and the Earth crust seismology), and electronics (for 
signal processing, with a focus on frequency filtering). Unfortunately, I cannot dwell on these 
interesting topics and I have to refer the reader to special literature.40 

 

7.8. Elastic waves in restricted geometries 

 From what was discussed at the end of the last section, it should be pretty clear that generally, 
the propagation of acoustic waves in elastic bodies of finite size is rather complicated. There is, 
however, one important limit in which several important simple results may be readily obtained. This is 
the limit of (relatively) low frequencies, where the corresponding wavelength is much larger than at 
least one dimension of the system.  

 Let us consider, for example, various waves that may propagate along thin rods, in this case 
“thin” meaning that the characteristic size a of the rod’s cross-section is much smaller than not only the 
length of the rod but also the wavelength  = 2/k. In this case, there is a considerable range z of 
distances along the rod,  
         za ,     (7.129) 

40 See, for example, K. Aki and P. Richards, Quantitative Seismology, 2nd ed., University Science Books, 2002; 
and D. Morgan, Surface Acoustic Waves, 2nd ed., Academic Press, 2007. 
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in that we can neglect the material’s inertia, and apply the results of our earlier static analyses. For 
example, for a longitudinal wave of stress, which is essentially a wave of periodic tensile extensions  
and compressions of the rod, within the range (129) we may use the static relation (42): 

          .zzzz Es       (7.130) 

In this simple case, it is easier to use the general equation of elastic dynamics not in its vector form 
(107), but rather in the precursor, Cartesian-component form (25), with fj = 0. For the plane waves of 
stress, propagating along the z-axis, only one component (with j’  z) of the sum on the right-hand side 
of that equation is not equal to zero, and it is reduced to 
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In our current case of longitudinal waves, all components of the stress tensor but zz are equal to zero. 
With zz from Eq. (130), and using the definition szz = qz/z, Eq. (131) is reduced to a simple 1D wave 
equation, 
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which shows that the velocity of such tensile waves is 
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 Comparing this result with Eq. (112), we see that the tensile wave velocity, for any realistic 
material with a positive Poisson’s ratio, is lower than the velocity vl of longitudinal waves in the bulk of 
the same material. The reason for this difference is simple: in thin rods, the cross-section is free to 
oscillate (e.g., shrink in the longitudinal extension phase of the passing wave),41 so the effective force 
resisting the longitudinal deformation is smaller than in a border-free space. Since (as it is clearly visible 
from the wave equation), the scale of the force determines that of v2, this difference translates into 
slower waves in rods. Of course, as the wave frequency is increased to ka ~ 1, there is a (rather 
complicated and cross-section-depending) crossover from Eq. (133) to Eq. (112). 

 Proceeding to transverse waves on rods, let us first have a look at long bending waves for which 
the condition (129) is satisfied, so the vector q = nxqx (with the x-axis being the bending direction – see 
Fig. 8) is virtually constant in the whole cross-section. In this case, the only element of the stress tensor 
contributing to the net transverse force Fx is xz, so the integral of Eq. (131) over the cross-section is 
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Now, if Eq. (129) is satisfied, we again may use the static local relations (75)-(77), with all derivatives 
d/dz duly replaced with their partial form /z, to express the force Fx via the bending deformation qx. 
Plugging these relations into each other one by one, we arrive at a rather unusual differential equation 

41 For this reason, the tensile waves can be called longitudinal only in a limited sense: while the stress wave is 
purely longitudinal: xx = yy = 0, the strain wave is not: sxx = syy = –szz  0, i.e. q(r, t)  nzqz.
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Looking for its solution in the form of a sinusoidal wave (108), we get the following dispersion 
relation:42 

           .42 k
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EI y


        (7.136) 

This relation means that the bending waves are not acoustic at any frequency, and cannot be 
characterized by a single velocity that would be valid for all wave numbers k, i.e. for all spatial Fourier 
components of a waveform. According to our discussion in Sec. 6.3, such strongly dispersive systems 
cannot pass non-sinusoidal waveforms too far without changing their waveform rather considerably.  

 This situation changes, however, if the rod is pre-stretched with a tension force T – just as in the 
discrete 1D model that was analyzed in Sec. 6.3. The calculation of the effect of this force is essentially 
similar; let us repeat it for the continuous case, for a minute neglecting the bending stress – see Fig. 13.  

 

 

 

 

 

 

 
 Still sticking to the limit of small angles , the additional vertical component dT x of the net force 
acting on a small rod fragment of length dz is T x(z – dz) – T x(z) = T y(z + dz) – Ty(z)  T (y/z)dz, 
so Fx/z = T (y/z). With the geometric relation (77) in its partial-derivative form qx/z = y, this 
additional term becomes T (2qx/z2). Now adding it to the right-hand side of Eq. (135), we get the 
following dispersion relation  

           242 1
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Since the product A in the denominator of this expression is just the rod’s mass per unit length (which 
was denoted  in Chapter 6), at low k (and hence low frequencies), this expression is reduced to the 
linear dispersion law, with the velocity given by Eq. (6.43): 
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So Eq. (137) describes a smooth crossover from the “guitar-string” acoustic waves to the highly 
dispersive bending waves (136). 

42 Note that since the “moment of inertia” Iy, defined by Eq. (70), may depend on the bending direction (unless the 
cross-section is sufficiently symmetric), the dispersion relation (136) may give different results for different 
directions of the bending wave polarization. 
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Fig. 7.13. Additional forces in a thin rod 
(“string”), due to the background tension T. 
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  Now let us consider another type of transverse waves in thin rods – the so-called torsional 
waves, which are essentially the dynamic propagation of the torsional deformation discussed in Sec. 6. 
The easiest way to describe these waves, again within the limits (129), is to write the equation of 
rotation of a small segment dz of the rod about the z-axis, passing through the “center of mass” of its 
cross-section, under the difference of torques  = nzz  applied on its ends – see Fig. 10:  
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where Iz is the “moment of inertia” defined by Eq. (91), which now, after its multiplication by dz, i.e. 
by the mass per unit area, has turned into the genuine moment of inertia of a dz-thick slice of the rod. 
Dividing both sides of Eq. (139) by dz, and using the static local relation (84), z  = C = C(z/z), we 
get the following differential equation 
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Just as Eqs. (111), (115), and (132), this equation describes an acoustic (dispersion-free) wave, which 
propagates  with the following frequency-independent velocity 
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 As we have seen in Sec. 6, for rods with axially-symmetric cross-sections, the torsional rigidity 
C is described by the simple relation (89), C = Iz, so Eq. (141) is reduced to Eq. (116) for the 
transverse waves in infinite media. The reason for this similarity is straightforward: in a torsional wave, 
particles oscillate along small arcs  (Fig. 14a), so if the rod’s cross-section is round, its surface is stress-
free, and does not perturb or modify the motion in any way, and hence does not affect the transverse 
velocity. 

 

 

 

 

 

 
 
 

 This fact raises an interesting issue of the relation between the torsional and circularly polarized 
waves. Indeed, in Sec. 7, I have not emphasized enough that Eq. (116) is valid for a transverse wave 
polarized in any direction perpendicular to the wave vector k (in our notation, directed along the z-axis). 
In particular, this means that such waves are doubly degenerate: any isotropic elastic continuum can 
carry simultaneously two non-interacting transverse waves propagating in the same direction with the 
same velocity (116), with two mutually perpendicular linear polarizations (directions of the vector a), 

Fig. 7.14. Particle trajectories in two 
different transverse waves with the same 
velocity: (a) torsional waves in a thin 
round rod and (b) circularly polarized 
waves in an infinite (or very broad) 
sample. 

(a)      (b) 
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for example, directed along the x- and y-axes.43 If both waves are sinusoidal (108), with the same 
frequency, each point of the medium participates in two simultaneous sinusoidal motions within the [x, 
y] plane: 

           ,ΨcosRe,ΨcosRe )()(  







 

yyyxxx AeaqAeaq tkzitkzi  (7.142) 

where   kz – t + x, and   y – x. Basic geometry tells us that the trajectory of such a motion on 
the [x, y] plane is an ellipse (Fig. 15), so such waves are called elliptically polarized. The most important 
particular cases of such polarization are: 

 (i)   = 0 or : a linearly-polarized wave, with the displacement vector a is directed at angle   = 
tan-1(Ay/Ax) to the x-axis; and 

 (ii)   =  /2 and Ax = Ay: two possible circularly-polarized waves, with the right or left 
polarization, respectively.44  

 

 

 

 

 

 

 
 
 Now comparing the trajectories of particles in the torsional wave in a thin round rod (or pipe) 
and the circularly polarized wave in a broad sample (Fig. 14), we see that, despite the same wave 
propagation velocity, these transverse waves are rather different. In the former case (Fig. 14a) each 
particle moves back and forth along an arc, with the arc’s length different for different particles (and 
vanishing at the rod’s center), so the waves are not plane. On the other hand, in a circularly polarized 
wave, all particles move along similar, circular trajectories, so such a wave is plane. 

 To conclude this chapter, let me briefly mention the opposite limit when the size of the body, 
from whose boundary the waves are completely reflected,45 is much larger than the wavelength. In this 
case, the waves propagate almost as in an infinite 3D continuum (which was analyzed in Sec. 7), and the 
most important new effect is the finite number of wave modes in the body. Repeating the 1D analysis at 
the end of Sec. 6.5, for each dimension of a 3D cuboid of volume V = l1l2l3, and taking into account that 
the numbers kn in each of the three dimensions are independent, we get the following generalization of 

43 As was discussed in Sec. 6.3, this is also true in the simple 1D model shown in Fig. 6.4a.   
44 The circularly polarized waves play an important role in quantum mechanics, where they may be most naturally 
quantized, with their elementary excitations (in the case of mechanical waves we are discussing, called phonons) 
having either positive or negative angular momentum Lz = . 
45 For acoustic waves, such a condition is easy to implement. Indeed, from Sec. 7 we already know that the strong 
inequality of the wave impedances Z is sufficient for such reflection. The numbers in Table 1 show that, for 
example, the impedance of a longitudinal wave in a typical metal (say, steel) is almost two orders of magnitude 
higher than that in air, ensuring their virtually full reflection from the surface.  

Fig. 7.15. The trajectory of a particle in an 
elliptically polarized transverse wave, within 
the plane perpendicular to the direction of 
wave propagation. 
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Eq. (6.75) for the number N of different traveling waves with wave vectors within a relatively small 
volume d3k of the wave vector space:  
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where k >>> 1/l1,2,3 is the center of this volume, and g is the number of different possible wave modes 
with the same wave vector k. For the mechanical waves analyzed above, with one longitudinal mode, 
and two transverse modes with different polarizations, g = 3.  

 Note that since the derivation of Eqs. (6.75) and (143) does not use other properties of the waves 
(in particular, their dispersion relations), this mode counting rule is ubiquitous in physics, being valid, in 
particular, for electromagnetic waves (where g = 2) and quantum “de Broglie waves” (i.e. 
wavefunctions), whose degeneracy factor g is usually determined by the particle’s spin.46 

   

7.9. Exercise problems 

 7.1. Derive Eqs. (16). 

 Hint: Besides basic calculus and the definition of the cylindrical coordinates, you may like to use 
Eq. (4.7) with d = (d)nz. 
 
 7.2. A uniform thin sheet of an isotropic elastic material, of 
thickness t and area A >> t2,  is compressed by two plane, parallel, broad, 
rigid surfaces – see the figure on the right. Assuming that there is no 
slippage between the sheet and the surfaces, calculate the relative 
compression (-t/t) as a function of the compressing force. Compare the 
result with that for the tensile stress calculated in Sec. 3. 
 
 7.3. Two opposite edges of a thin but wide sheet of an isotropic elastic material are clamped in 
two rigid, plane, parallel walls that are pulled apart with force F, along the sheet’s length l. Find the 
relative extension l/l of the sheet in the direction of the force and its relative compression t/t in the 
perpendicular direction, and compare the results with Eqs. (45)-(46) for the tensile stress and with the 
solution of the previous problem. 
 
  
 7.4. Calculate the radial extension R of a thin, long, round cylindrical 
pipe due to its rotation with a constant angular velocity  about its symmetry 
axis (see the figure on the right), in terms of the elastic moduli E and .  

7.5.* A static force F is exerted on an inner point of a uniform and isotropic elastic body. 
Calculate the spatial distribution of the deformation created by the force, assuming that far from the 
point of its application and the points we are interested in, the body’s position is kept fixed.

46 See, e.g., EM Secs. 7.8 and QM Sec. 1.7. 
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 7.6. A long uniform rail with the cross-section shown in the figure 
on the right is being bent with the same (small) torque twice: first within the 
xz-plane and then within the yz-plane. Assuming that t << l, find the ratio of 
the bending deformations in these two cases. 
 
 7.7. Two thin rods of the same length and mass are made of 
the same isotropic and elastic material. The cross-section of one of 
them is a circle, while the other one is an equilateral triangle – see 
the figure on the right. Which of the rods is stiffer for bending 
along its length? Quantify the relation. Does the result depend on 
the bending plane’s orientation? 
 
 7.8. A  thin, uniform, initially straight elastic beam is placed on 
two point supports at the same height – see the figure on the right. . 
Calculate the support placements that: 

 (i) ensure that the beam ends are horizontal, and 
 (ii) minimize the largest deflection of the beam from the 
horizontal baseline. 

 Hint: For Task (ii), an approximate answer (with an accuracy better than 1%) is acceptable. 

7.9. Calculate the largest longitudinal compression force T  
that may be withstood by a thin, straight, elastic rod without 
buckling (see the figure on the right) for each of the shown cases: 

 (i) the rod’s ends are clamped, and 
 (ii) the rod is free to turn about the support points. 
 

7.10. A thin elastic pole with a square cross-section of area A = aa is firmly dug into the ground 
in the vertical position, sticking out by height h >> a.  

 (i) What largest compact mass M may be placed straight on the top of a light pole without 
stability loss? 
 (ii) In the absence of such an additional mass, how massive a uniform pole may be to retain its 
stability? 

 Hint: For Task (ii), you may use the same WKB approximation as in Problem 6.18. 
 
 7.11. Calculate the potential energy of a small and slowly changing, but otherwise arbitrary 
bending deformation of a uniform, initially straight elastic rod. Can the result be used to derive the 
dispersion relation (136)? 
 
 7.12. Calculate the torsional rigidity of a long uniform rod whose cross-section is an ellipse with 
semi-axes a and b.  
 
 7.13. Calculate the potential energy of a small but otherwise arbitrary torsional deformation z(z) 
of a uniform and straight elastic rod. 
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 7.14. Calculate the spring constant   dF/dl of a 
coil made of a uniform elastic wire with a circular cross-
section of diameter d, wound as a dense round spiral of N 
>> 1 turns of radius R >> d – see the figure on the right. 
 
 

 
7.15. The coil studied in the previous problem is now used as what is 

sometimes called the torsion spring – see the figure on the right. Find the 
corresponding spring constant d/d, where  is the torque of the external forces F 
relative to the center of the coil (point 0). 

 
 

 7.16. Use Eqs. (99) and (100) to recast Eq. (101b) for the torsional rigidity C of a thin rod into 
the form given by Eq. (101c). 
 
 7.17.* Generalize Eq. (101b) to the case of rods with more than one cross-section’s boundary. 
Use the result to calculate the torsional rigidity of a thin round pipe, and compare it with Eq. (91). 
 
 7.18. Prove that in a uniform isotropic medium, an arbitrary (not necessarily plane) elastic wave 
may be decomposed into a longitudinal wave with ql = 0 and a transverse wave with qt = 0, and 
find the equations satisfied by these functions. 
 
 7.19.* Use the wave equations derived in the solution of the previous problem and the semi-
quantitative description of the Rayleigh surface waves given in Sec. 7 of the lecture notes, to calculate 
the structure of the waves and to derive Eq. (127). 
 
 7.20.* Calculate the modes and frequencies of free radial oscillations of a sphere of radius R, 
made of a uniform elastic material. 
 
 7.21. A long steel wire has a circular cross-section with a 3-mm diameter and is pre-stretched 
with a constant force of 10 N. Which of the longitudinal and transverse waves with frequency 1 kHz has 
the largest group velocity in the wire? Accept the following parameters for the steel (see Table 1): E = 
170 GPa,  = 0.30,  = 7.8 g/cm3. 
 
 7.22. Define and calculate the wave impedances for (i) tensile and (ii) 
torsional waves in a thin rod, that are appropriate in the long-wave limit. Use 
the results to calculate the fraction of each wave’s power P reflected from a 
firm connection of a long rod with a round cross-section to a similar rod with a 
twice smaller diameter – see the figure on the right.  
 
 7.23. Calculate the fundamental frequency of small transverse standing waves on a free uniform 
thin rod, and the position of displacement nodes in this mode.  

 Hint: A numerical solution of the final transcendental equation is acceptable.
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Chapter 8. Fluid Mechanics 

This chapter describes the basic notions of fluid mechanics, discusses a few core problems of statics and 
dynamics of ideal and viscous fluids, and gives a very brief review of such a complicated phenomenon 
as turbulence. In addition, the viscous fluid flow discussion is used as a platform for an elementary 
introduction to numerical methods of the partial differential equation solution – whose importance 
extends well beyond this particular field. 

 

8.1. Hydrostatics 

The mechanics of fluids (defined as the materials that cannot keep their geometric form on their 
own, and include both liquids and gases) is both more simple and more complex than that of elastic 
solids, with the simplifications mostly in statics.1 Indeed, fluids, by definition, cannot resist static shear 
deformations. There are two ways to express this fact. First, we can formally take the shear modulus , 
describing this resistance, to equal zero. Then Hooke’s law (7.32) shows that the stress tensor is 
diagonal: 
      .jj'jjjj'         (8.1) 

Alternatively, the same conclusion may be reached just by looking at the stress tensor definition (7.19) 
and/or Fig. 7.3, and saying that in the absence of shear stress, the elementary interface dF has to be 
normal to the area element dA, i.e. parallel to the vector dA. 

 Moreover, in fluids at equilibrium, all three diagonal elements jj of the stress tensor have to be 
equal at each point. To prove that, it is sufficient to single out (mentally rather than physically), from a 
static fluid, a small volume in the shape of a right prism, with mutually perpendicular faces normal to 
the two directions we are interested in – in Fig. 1, along the x- and y-axes. 

 

 

 

 

 

 

 The prism is in equilibrium if each Cartesian component of the vector of the total force exerted 
on all its faces equals zero. For the x-component, this balance may be expressed as xxdAx – 
(dA)cos = 0. However, from the geometry (Fig. 1), dAx = dAcos, so the above expression yields 
  = xx. A similar argument for the y-component gives   = yy, so xx  = yy. Changing the 
orientation of the prism, we can get such equalities for any pair of diagonal elements of the stress tensor, 
jj, so all three of them have to be equal. 

1 It is often called hydrostatics because water has always been the most important liquid for the human race and 
hence for science and engineering. 

Fig. 8.1. Proving the pressure isotropy. 
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  This common diagonal element of the stress matrix is usually denoted as (-P), because in the 
vast majority of cases, the parameter P, called pressure, is positive. Thus we arrive at the key relation 
(which was already mentioned in Sec. 7.2): 

       jj'jj'  P .      (8.2) 

In the absence of bulk forces, pressure should be constant through the volume of fluid, due to the 
translational symmetry. Let us see how this result is affected by bulk forces. With the simple stress 
tensor (2), the general condition of equilibrium of a continuous medium, expressed by Eq. (7.25) with 
the left-hand side equal to zero, becomes 

      0



 j
j

f
r

P ,     (8.3) 

and may be re-written in the following convenient vector form: 

       .0 fP      (8.4) 

In the simplest case of a heavy fluid with mass density , in a uniform gravity field f = g,  the equation 
of equilibrium becomes, 
      0 gP ,     (8.5) 

with only one nonzero component – near the Earth’s surface, the vertical one. If, in addition, the fluid 
may be considered incompressible, with its density  constant,2 this equation may be readily integrated 
over the vertical coordinate (say, y) to give the so-called Pascal equation:3  

               ,const gyP      (8.6) 

where the direction of the y-axis is taken opposite to that of vector g. 

 Two manifestations of this key equation are well known. The first one is the fact that in 
interconnected vessels filled with a fluid, its pressure is equal at all points at the same height (y), 
regardless of the vessel shape, provided that the fluid is in equilibrium.4 In particular, if a heavy liquid 
has an open surface, then in equilibrium, it has to be horizontal – at least, not too close to the retaining 
walls (see Sec. 2). 

 The second manifestation of Eq. (6) is the buoyant force Fb exerted by a liquid on a (possibly, 
partly) submerged body, i.e. the vector sum of the elementary pressure forces dF = PdA exerted on all 
elementary areas dA of the submerged part of the body’s surface – see Fig. 2. According to Eq. (6), with 
the constant equal to zero (corresponding to zero pressure at the liquid’s surface taken for y = 0, see Fig. 
2a), the vertical component of this elementary force is  

2 As was discussed in Sec. 7.3 in the context of Table 7.1, this is an excellent approximation, for example, for 
human-scale experiments with water. 
3 The equation, and the SI unit of pressure 1 Pa  1N/m2, are named after Blaise Pascal (1623-1662) who not only 
pioneered hydrostatics, but also invented the first mechanical calculator, and made several other important 
contributions to mathematics – and to Christian philosophy! 
4 This simple fact opens wide opportunities for the engineering field of hydraulics, in particular enabling a very 
simple and efficient way to magnify forces, using interconnected hydraulic cylinders of different diameters. 

Pressure 
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       hy gydAdAgydAdFdF   coscoscos P .   (8.7) 

where dAh = cosdA is the horizontal footprint (say, dxdz) of the elementary area dA. Now integrating 
this relation over all the surface, we get the total vertical buoyant force:5 

         ,b gVdAygF h

S

        (8.8) 

where V is the volume of the submerged part of the body’s volume, while  is the liquid’s density, so by 
magnitude, Fb equals the weight of the liquid that would fill the submerged volume. 

 

 

 

 

 

 

 

 

 This well-known Archimedes principle may be proved even more simply using the following 
argument: the liquid’s pressure forces, and hence the resulting buoyant force, cannot depend on what is 
inside the body’s volume. Hence Fb would be the same if we filled the volume V in question with a 
liquid similar to the surrounding one. But in this case, the liquid should be still in equilibrium even if the 
surface is completely flexible, so both forces acting on its inner part, the buoyant force Fb and the inner 
liquid’s weight mg = Vg, have to be equal and opposite, thus proving Eq. (8) again. 

 Despite the simplicity of the Archimedes principle, its erroneous formulations, such as “The 
buoyant force’s magnitude is equal to the weight of the displaced liquid” [WRONG!] creep from one 
undergraduate textbook to another, leading to application errors. A typical example is shown in Fig. 2b, 
where a solid vertical cylinder with the base area A is pressed into a liquid inside a container of 
comparable size, pushing the liquid’s level up by distance a. The correct answer for the buoyant force, 
following from Eq. (8), is  
         bagAgVF  b ,     (8.9a) 

because the volume V of the submerged part of the cylinder is evidently A(a + b). But the wrong 
formulation cited above, using the term displaced liquid, would give a different answer: 

        gAbgVF   displacedb . [WRONG!]   (8.9b) 

(The latter result is correct only asymptotically, in the limit b/a .) 

 Another frequent error in hydrostatics concerns the angular stability of a freely floating body – 
the problem of vital importance for the boat/ship design. It is sometimes claimed that the body is stable 

5 The force is vertical, because the horizontal components of the elementary forces dF exerted on opposite 
elementary areas dA, at the same height y, cancel. 
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only if the so-called buoyancy center, the effective point of buoyant force application (in Fig, 3, point 
B),6 is above the center of mass (C) of the floating body. However, as Fig. 3 shows, this is unnecessary; 
indeed in the shown case, point B remains below point C, even at a small tilt. Still, in this case, the 
torque created by the pair of forces Fb and mg tries to return the body to the equilibrium position, which 
is therefore stable. As Fig. 3 shows, the actual condition of the angular stability may be expressed as the 
requirement for point M (in shipbuilding, called the metacenter of the ship’s hull) to be above the ship’s 
center of mass C.7 

  

 

 

 

 

 

 

 To conclude this section, let me note that the integration of Eq. (4) may be more complex in the 
case if the bulk forces f depend on position,8 and/or if the fluid is substantially compressible. In the 
latter case, Eq. (4) has to be solved together with the medium-specific equation of state  = (P) 

describing its compressibility law – whose example is given by Eq. (7.38) for ideal gases:   mN/V = 
mP/kBT, where m is the mass of one gas molecule. 

 

8.2. Surface tension effects 

 Besides the bulk (volume-distributed) forces, one more possible source of pressure is surface 
tension. This effect results from the difference between the potential energy of atomic interactions on 
the interface between two different fluids and that in their bulks, and thus may be described by an 
additional potential energy  
           AU i ,      (8.10) 

where A is the interface area, and   is called the surface tension constant – or just the “surface tension”. 
For a stable interface of any two fluids,  is always positive.9 For surfaces of typical liquids (or their 
interfaces with air), at room temperature, the surface tension equals a few 10-2 J/m2,10 corresponding to 

6 A simple calculation, similar to the one resulting in Eq. (8), but for the total torque rather than the total force, 
shows that B is just the center of mass of the submerged volume V filled with any uniform material. 
7 It is easy (and hence is left for the reader) to prove that a small tilt of the body leads to a small lateral 
displacement of point B, but does not affect the position of the metacenter M. 
8 A simple example of such a problem is given by the fluid equilibrium in a container rotating with a constant 
angular velocity . If we solve such a problem in a reference frame rotating together with the container, the real 
bulk forces should be complemented by the centrifugal “force” (4.93), depending on r. 
9 Indeed, if the   of the interface of certain two fluids is negative, it self-reconfigures to decrease Ui, i.e. to 
increase Ui, by increasing the interface area, i.e. fragments the system into a macroscopically uniform solution.  
10 For a better feeling of this number, one should remember that 1 J/m2  1 N/m. 
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Fig. 8.3. Angular stability of a 
floating body. 
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the potential energy Ui of a few 10-2 eV per surface molecule – i.e. just a fraction of the full binding (or 
“cohesive”) energy of the same liquid, which is typically of the order of 10-1 eV per molecule.  

 In the absence of other forces, the surface tension makes a liquid drop spherical to minimize its 
surface area A at a fixed volume. For the analysis of the surface tension effects for more complex 
geometries, and in the presence of other forces, it is convenient to reduce them to a certain additional 
effective pressure drop Pef at the interface. To calculate Pef, let us consider the condition of 
equilibrium of a small part dA of a smooth interface between two fluids (Fig. 2), in the absence of bulk 
forces.  

 

 

 

 

 

 

 If the pressures P1,2 on the two sides of the interface are different, the work of stress forces on 

fluid 1 at a small virtual displacement r = nr of the interface (where n = dA/dA is the unit vector 
normal to the interface) equals11 
              21 PP  rdAW .     (8.11) 

For equilibrium, this work has to be compensated by an equal change of the interface energy, Ui = 
(dA). Differential geometry tells us that in the linear approximation in r, the relative change of the 
elementary surface area, corresponding to a fixed solid angle d, may be expressed as 

                
 

21 R

r

R

r

dA

dA 
 ,     (8.12) 

where R1,2 are the so-called principal radii of the interface curvature.12 Combining Eqs. (10)-(12), we 
get the following Young-Laplace formula:13 

                









21
ef21

11
Δ

RR
PPP .    (8.13) 

11 This equality follows from the general relation (7.30), with the stress tensor elements expressed by Eq. (2), but 
in this simple case of the net stress force dF = (P1 – P2)dA parallel to the interface element vector dA, it may be 

even more simply obtained just from the definition of work: W = dFr at the virtual displacement r = nr. 
12 This general formula may be readily verified for a sphere of radius r (for which R1 = R2 = r and dA = r2d, so 
(dA)/dA =  (r2)/r2 = 2r/r), and for a round cylindrical interface of radius R (for which R1 = r, R2 = , and dA = 
rddz, so (dA)/dA =  r/r). For more on curvature, see, for example, M. do Camo, Differential Geometry of 
Curves and Surfaces, 2nd ed., Dover, 2016. 
13 This result (not to be confused with Eq. (15), called Young’s equation) was derived in 1806 by Pierre-Simon 
Laplace (of the Laplace operator/equation fame) on the basis of the first analysis of the surface tension effects by 
Thomas Young (yes, the same Young who performed the famous two-slit experiment with light!) a year earlier.  

2P
1P

2,1R

r

dA
 dAdA 

Fig. 8.4. Deriving the Young-Laplace 
formula (13). 
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 In particular, this formula shows that the additional pressure created by surface tension inside a 
spherical drop of a liquid, of radius R, equals 2/R, i.e. decreases with R. In contrast, according to Eqs. 
(5)-(6), the pressure effects of bulk forces, for example gravity, grow as gR. The comparison of these 
two pressure components shows that if the drop radius (or more generally, the characteristic linear size 
of a liquid’s sample) is much larger than the so-called capillary length 

       
2/1

c

2










g
a




,     (8.14) 

the surface tension may be safely ignored – as will be done in all following sections of this chapter, 
besides a brief discussion at the end of Sec. 4. For the water surface, or more exactly its interface with 
air at ambient conditions,   0.073 J/m2, while   1,000 kg/m3, so ac  4 mm. 

 On the other hand, in very narrow tubes, such as blood capillary vessels with radius a ~ 1 m, 
i.e. a << ac, the surface tension effects are very important. The key notion for the analysis of these 
effects is the contact angle c (also called the “wetting angle”) at an equilibrium edge of a liquid wetting 
a solid – see Fig. 5.  

 

 

 

 

 

 
 According to its definition (10), the constant  may be interpreted as a force (per unit length of 
the interface boundary) directed normally to the boundary, and “trying” to reduce the interface area. As 
a result, the balance of horizontal components of the three such forces, shown in Fig. 5a, immediately 
yields the Young’s equation 

            sgclgsl cos   ,     (8.15) 

where the indices of the three constants  correspond to three possible interfaces between the liquid, 
solid, and gas. For the so-called hydrophilic surfaces that “like to be wet” by a particular liquid (not 
necessarily water), meaning that sl < sg, this relation yields cosc  > 0, i.e. c  < /2 – the situation 
shown in Fig. 5a. On the other hand, for hydrophobic surfaces with sl > sg, Eq. (15) yields larger 
contact angles, c  > /2 – see Fig. 5b. 

 Let us use this notion to solve the simplest and perhaps the most practically important problem 
of this field – find the height h of the fluid column lifted by the surface tension forces in a narrow 
vertical tube made of a hydrophilic material, assuming its internal surface to be a round cylinder of 
radius a – see Fig. 6. Inside an incompressible fluid, pressure drops with height according to the Pascal 
equation (6), so just below the surface, P  P0 – gh, where P0 is the background (e.g., atmospheric) 
pressure. This means that at a << h, the pressure variation along the concave surface (called the 
meniscus) of the liquid is negligible, so according to the Young-Poisson equation (13), the sum (1/R1 + 
1/R2) has to be virtually constant along the surface. Due to the axial symmetry of the problem, this 
means that the surface has to be a part of a sphere. From the contact angle definition, the radius R of the 

Fig. 8.5. Contact angles 
for (a) hydrophilic and 
(b) hydrophobic surfaces. 
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sphere is equal to a/cosc – see Fig. 6. Plugging this relation into Eq. (3) with P1 – P2 = gh, we get the 
following result for h: 

               
a

gh ccos2 
  .     (8.16a) 

 In hindsight, this result might be obtained more directly – by requiring the total weight gV = 
g(a2h) of the lifted liquid’s column to be equal to the vertical component Fcosc of the full surface 
tension force F = p, acting on the perimeter p = 2a of the meniscus. Using the definition (11) of the 
capillary length ac, Eq. (16a) may be represented as the so-called Jurin rule: 

                
a

a

a

a
h

2
c

c

2
c cos   ;     (8.16b) 

according to our initial assumption h >> a, Eq. (16) is only valid for narrow tubes, with radius a << ac.   

 

 

 

 

 

 

  

 
   
 This capillary rise is the basic mechanism of lifting water with nutrients from roots to the 
branches and leaves of plants, so the tallest tree heights correspond to the Jurin rule (16), with cosc  1, 
and the pore radius a limited from below by a few microns, because of the viscosity effects restricting 
the fluid discharge – see Sec. 5 below.  

 

8.3. Kinematics 

 In contrast to the stress tensor, which is frequently very simple – see Eq. (2), the strain tensor is 
not a very useful notion in fluid mechanics. Indeed, besides a very few situations,14 typical problems of 
this field involve fluid flow, i.e. a state when the velocity of fluid particles has some nonzero time 
average. This means that the trajectory of each particle is a long line, and the very notion of its 
displacement q from the initial position becomes impracticable. However, the particle’s velocity v  
dq/dt remains a very useful notion, especially if it is considered as a function of the observation point r 
and (generally) time t. In an important class of fluid dynamics problems, the so-called stationary (or 
“steady”, or “static”) flow, the velocity defined in this way does not depend on time, v = v(r).  

14 One of them is sound propagation, where the particle displacements q are typically small, so the results of Sec. 
7.7 are applicable. As a reminder, they show that in fluids, with  = 0, the transverse sound cannot propagate, 
while the longitudinal sound can – see Eq. (7.114). 

a

Fig. 8.6. Liquid’s rise in a vertical capillary tube. 
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 There is, however, a price to pay for the convenience of this notion: namely, due to the 
difference between the vectors q and r, the particle’s acceleration a = d2q/dt2 (that participates, in 
particular, in the 2nd Newton law) cannot be calculated just as the time derivative of the velocity v(r, t). 
This fact is evident, for example, for the static flow case, in which the acceleration of individual fluid 
particles may be very significant even if v(r) does not depend on time – just think about the acceleration 
of a drop of water flowing over the Niagara Falls’ rim, first accelerating fast and then virtually stopping 
below, while the water velocity v at every particular point, as measured from a bank-based reference 
frame, is nearly constant. Thus the primary task of fluid kinematics is to express a via v; let us do this.  

 Since each Cartesian component vj of the velocity v has to be considered as a function of four 
independent scalar variables: three Cartesian components rj of the vector r and time t, its full time 
derivative may be represented as 

         
dt

dr

r

v

t

v

dt

dv j

j j

jjj '
3

1' '

 







 .     (8.17) 

Let us apply this general relation to a specific set of infinitesimal changes {dr1, dr2, dr3} that follows a 
small displacement dq of a certain particle of the fluid: dr = dq = vdt, i.e.  

         dtvdr jj  .      (8.18) 

In this case, dvj/dt is the jth component aj of the particle’s acceleration a, so Eq. (17) yields the following 
key relation of fluid kinematics: 

           .
3

1' '
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j
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j
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v
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t

v
a      (8.19a) 

Using the del operator , this result may be rewritten in the following compact vector form:15 

               vv
v

a )( 




t

.     (8.19b) 

This relation already signals the main technical problem of fluid dynamics: many equations involving 
the particle’s acceleration are nonlinear in velocity, excluding such a powerful tool as the linear 
superposition principle (which was used so frequently in the previous chapters of this course) from the 
applicable mathematical arsenal.  

 One more basic relation of fluid kinematics is the so-called continuity equation, which is 
essentially just the differential version of the mass conservation law. Let us mark, inside a fluid flow, an 
arbitrary volume V limited by a stationary (time-independent) surface S. The total mass of the fluid 
inside the volume may change only due to its flow through the boundary: 

     
SS

n

V

drdvrd
dt

d

dt

dM
,23 Av    (8.20a) 

15 Note that the operator relation d/dt = /t + (v) is applicable to an arbitrary (scalar or vector) function; it is 
frequently called the convective derivative. (Alternative adjectives, such as “Lagrangian”, “substantial”, or 
“Stokes”, are sometimes used for this derivative as well.) The relation has numerous applications well beyond the 
fluid dynamics – see, e.g., EM Chapter 9 and QM Chapter 1. 
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where the elementary area vector dA is defined just as in Sec. 7.2 – see Fig. 7.  

 

 

 

 

 

 

 
 Now using the same divergence theorem that has been used several times in this course,16 the 
surface integral in Eq. (20a) may be transformed into the integral of (v) over the volume V, so the 
relation may be rewritten as 

           03 





 



 rd
tV

j


,     (8.20b) 

where the vector j  v is called either the mass flux density (or the “mass current”). Since Eq. (20b) is 
valid for an arbitrary stationary volume V, the function under the integral has to vanish at any point: 

                 0



j
t


.       (8.21) 

 Note that similar continuity equations are valid not only for mass but also for other conserved 
physics quantities (e.g., the electric charge, probability, etc.), with the proper re-definitions of  and j.17 

 

8.4. Dynamics: Ideal fluids 

 Let us start our discussion of fluid dynamics from the simplest case when the stress tensor obeys 
Eq. (2) even in motion. Physically, this means that the fluid viscosity effects, leading to mechanical 
energy loss, are negligible. (The conditions of this assumption will be discussed in the next section.) 
Then the equation of motion of such an ideal fluid (essentially the 2nd Newton law for its unit volume) 
may be obtained from Eq. (7.25) using the simplifications of its right-hand side, discussed in Sec. 1:  

                 .fa  P      (8.22) 

Now using the basic kinematic relation (19), we arrive at the following Euler equation:18 

       fvv
v





P
t

.     (8.23) 

 Generally, this equation has to be solved together with the continuity equation (21) and the 
equation of state of the particular fluid,  = (P ). However, as we have already discussed, in many 

16 If the reader still needs a reminder, see MA Eq. (12.1). 
17 See, e.g., EM Sec. 4.1, QM Sec. 1.4, and SM Sec. 5.6. 
18 It was derived in 1755 by the same Leonhard Euler whose name has already been (reverently) mentioned 
several times in this course. 

Fig. 8.7. Deriving the continuity equation. 
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situations, the compressibility of water and other important liquids is very low and may be ignored, so  
may be treated as a given constant. Moreover, in many cases, the bulk forces f are conservative and may 
be represented as a gradient of a certain potential function u(r) – the potential energy per unit volume:  

            uf ;       (8.24) 

for example, for a uniform, vertical gravity field, u(r) = gy, where y is measured from some (arbitrary) 
horizontal level. In this case, the right-hand side of Eq. (23) becomes  –(P + u). For these cases, it is 
beneficial to recast the left-hand of that equation as well, using the following well-known identity of 
vector algebra19 

        vvvv 
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As a result, the Euler equation takes the following form:  
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    (8.26) 

 In a stationary flow, the first term of this equation vanishes. If the second term, describing fluid’s 
vorticity, is zero as well, then Eq. (26) has the first integral of motion, 

            const
2

2  vu


P ,     (8.27) 

called the Bernoulli equation.20 Numerous examples of the application of Eq. (27) to simple problems of 
stationary flow in pipes, both with and without the Earth gravity field, should be well known to the 
readers from their undergraduate courses, so I hope I can skip their discussion without much harm. 

 In the general case, an ideal fluid may have vorticity, so Eq. (27) is not always valid. Moreover, 
due to the absence of viscosity in an ideal fluid, the vorticity, once created, does not decrease along the 
so-called streamline – the fluid particle’s trajectory, to which the velocity is tangential at every point.21 
Mathematically, this fact22 is expressed by the following Kelvin theorem: (v)dA = const along any 
small contiguous group of streamlines crossing an elementary area dA.23  

 However, in many important cases, the vorticity is negligible. For example, even if the vorticity 
exists in some part of the fluid volume (say, induced by local turbulence, see Sec. 6 below), it may 
decay due to the fluid’s viscosity, to be discussed in Sec. 5, well before it reaches the region of our 
interest. (If this viscosity is sufficiently small, its effects on the fluid’s flow in the region of interest are 

19 It readily follows, for example, from MA Eq. (11.6) with g = f = v. 
20 Named after Daniel Bernoulli (1700-1782), not to be confused with Jacob Bernoulli or one of several Johanns 
of the same famous Bernoulli family, which gave the world so many famous mathematicians and scientists. 
21 Perhaps the most spectacular manifestation of the vorticity conservation is the famous toroidal vortex rings 
(see, e.g., a nice photo and a movie at https://en.wikipedia.org/wiki/Vortex_ring), predicted in 1858 by H. von 
Helmholtz, and then demonstrated by P. Tait in a series of spectacular experiments with smoke in the air. The 
persistence of such a ring, once created, is only limited by the fluid’s viscosity – see the next section. 
22 This theorem was first formulated (verbally) by Hermann von Helmholtz. 
23 Its proof may be found, e.g., in Sec. 8 of L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed., Butterworth-
Heinemann, 1987. 
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negligible, i.e. the ideal-fluid approximation is still acceptable.) Another important case is when a solid 
body of an arbitrary shape is embedded into an ideal fluid whose flow is uniform (meaning, by 
definition, that v(r,t) = v0 = const) at large distances,24 its vorticity is zero everywhere. Indeed, since 
v = 0 at the uniform flow, the vorticity is zero at distant points of any streamline, and according to 
the Kelvin theorem, should equal zero everywhere. 

 In such cases, the velocity distribution, as any curl-free vector field, may be represented as a 
gradient of some effective potential function, 

          .v        (8.28) 

Such potential flow may be described by a simple differential equation. Indeed, the continuity equation 
(21) for a steady flow of an incompressible fluid is reduced to v = 0. Plugging Eq. (28) into this 
relation, we get the scalar Laplace equation, 

          02   ,      (8.29) 

which should be solved with appropriate boundary conditions. For example, the fluid flow may be 
limited by solid bodies, inside which the fluid cannot penetrate. Then the fluid velocity v at the solid 
body boundaries should not have a normal component; according to Eq. (28), this means 

       0surfaces 


n


.     (8.30) 

On the other hand, if at large distances the fluid flow is known, e.g., uniform, then: 

      rat ,const0v .    (8.31) 

 As the reader may already know (for example, from a course on electrodynamics25), the Laplace 
equation (29) is analytically solvable in several simple (symmetric) but important situations. Let us 
consider, for example, the case of a round cylinder, with radius R, immersed into a flow with the initial 
velocity v0 perpendicular to the cylinder’s axis (Fig. 8). For this problem, it is natural to use the 
cylindrical coordinates, with the z-axis coinciding with the cylinder’s axis. In this case, the velocity 
distribution is obviously independent of z, so we may simplify the general expression of the Laplace 
operator in cylindrical coordinates26 by taking /z = 0. As a result, Eq. (29) is reduced to27 
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    (8.32) 

The general solution of this equation may be obtained using the variable separation method, similar to 
that used in Sec. 6.5 – see Eq. (6.67). The result is28 

24 This case is very important, because the motion of a solid body, with a constant velocity u, in the otherwise 
stationary fluid, gives exactly the same problem (with v0 = -u), in a reference frame bound to the body. 
25 See, e.g., EM Secs. 2.3-2.8. 
26 See, e.g., MA Eq. (10.3). 
27 Let me hope that the letter , used here to denote the magnitude of the 2D radius vector  = {x, y}, will not be 
confused with the fluid’s density   – which does not participate in this boundary problem. 
28 See, e.g., EM Eq. (2.112). Note that the most general solution of Eq. (32) also includes a term proportional to 
, but in our geometry, this term should be zero for such a single-valued function as the velocity potential. 
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where the coefficients an and bn have to be found from the boundary conditions (30) and (31). Choosing 
the x-axis to be parallel to the vector v0 (Fig. 8a), so x = cos, we may spell out these conditions in the 
following form: 

             ,at ,0 R



     (8.34) 

             ,at ,cos 00 Rv        (8.35) 

where 0 is an arbitrary constant, which does not affect the velocity distribution and may be taken for 
zero. The condition (35) is incompatible with any term of the sum (33) except the term with n = 1 (with 
s1 = 0 and c1a1 = –v0), so Eq. (33) is reduced to 

         .cos11
0  











bc

v      (8.36) 

Now, plugging this solution into Eq. (34), we get c1b1 = –v0R
2, so, finally, 

          .cos
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 Figure 8a shows the surfaces of constant velocity potential  given by Eq. (37a). To find the 
fluid velocity, it is easier to rewrite that result in the Cartesian coordinates x = cos, y = sin: 
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Fig. 8.8. The flow of an ideal, incompressible fluid around a cylinder: (a) equipotential surfaces and 
(b) streamlines. 
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From here, we may readily calculate the Cartesian components of the fluid’s velocity: 29 
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   (8.38) 

These expressions show that the maximum fluid’s speed is achieved at the transverse diameter’s ends ( 
= R,  =  /2), where v = 2v0, while at the longitudinal diameter’s ends ( = R,  = 0, ), the velocity 
vanishes – the so-called stagnation points. 

 Now the pressure distribution may be calculated by plugging Eqs. (38) into the Bernoulli 
equation (27) with u(r) = 0. The result shows that the pressure reaches its maximum at the stagnation 
points, while at the ends of the transverse diameter x = 0, where the velocity is largest, it is lower by 
2v0

2. Note that the distributions of both the velocity and the pressure are symmetric with respect to the 
transverse axis x = 0, so the fluid flow does not create any net drag force in its direction. It may be 
shown that this result, which stems from the conservation of the mechanical energy of an ideal fluid, 
remains valid for a solid body of arbitrary shape moving inside an infinite volume of an ideal fluid – the 
so-called D’Alembert paradox. However, if a body moves near an ideal fluid’s surface, its energy may 
be transformed into that of the surface waves, and the drag becomes possible. 

 Speaking about the surface waves: the description of such waves in a gravity field30 is one more 
classical problem of the ideal fluid dynamics.31 Let us consider an open surface of an ideal liquid of 
density  in a uniform gravity field f = g = -gny – see Fig. 9.  

 

 

 

 

 

 

 
  

 If the wave amplitude A  is sufficiently small, we may neglect the nonlinear term (v)v  A2 in 
the Euler equation (23) in comparison with the first term, v/t, which is linear in A. For a wave with 

29 Figure 8b shows the flow streamlines. They may be found by the integration of the obvious equation dy/dx = 
vy(x, y)/vx(x, y). For our simple problem, this may be done analytically, giving y(1 – R2/2) = const, where the 
constant is specific for each streamline. 
30 The alternative, historical term “gravity waves” for this phenomenon may nowadays lead to confusion with the 
relativistic effect of gravity waves – which may propagate in free space. 
31 It was solved by Sir George Biddell Airy (1801-19892), of the Airy functions’ fame. (He was also a prominent 
astronomer and, in particular, established Greenwich as the prime meridian.) 

Fig. 8.9. Small surface wave on a deep 
heavy liquid. Dashed lines show particle 
trajectories. (For clarity, the 
displacement amplitude A is strongly 
exaggerated.) 
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frequency  and wave number k, the particle’s velocity v = dq/dt is of the order of A, so this 
approximation is legitimate if 2A  >> k(A)2, i.e. when  

            ,1kA       (8.39)  

i.e. when the wave’s amplitude A is much smaller than its wavelength  = 2/k. Due to this assumption, 
we may neglect the liquid vorticity effects, and (for an incompressible fluid) again use the Laplace 
equation (29) for the wave’s analysis. Looking for its solution in the natural form of a sinusoidal wave, 
uniform in one of the horizontal directions (x),  

         



  )()(Re tkziey  ,     (8.40) 

we get a very simple equation 
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k
dy

d
,     (8.41) 

with an exponential solution (properly decaying at y  -),  = Aexp{ky}, so Eq. (40) becomes 

               tkzeee kytkziky
AA   



  cosRe )( ,   (8.42) 

where the last form is valid if A is real – which may be always arranged by a proper selection of the 
origins of z and/or t. Note that the rate k of the wave’s decay in the vertical direction is exactly equal to 
the wave number of its propagation in the horizontal direction – along the fluid’s surface. Because of 
that, the trajectories of fluid particles are exactly circular – see Fig. 9. Indeed, using Eqs. (28) and (42) 
to calculate velocity components,  

       ,sin,cos,0 tkzek
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vtkzek
y

vv kyky
AzAyx 









  (8.43) 

we see that vy and vz, at the same height y, have equal real amplitudes, and are phase-shifted by /2. This 
result becomes even more clear if we use the velocity definition v = dq/dt to integrate Eqs. (43) over 
time to recover the particle displacement law q(t). Due to the strong inequality (39), the integration may 
be done at fixed y and z: 

                 AAAzAy

k
qtkzeqqtkzeqq kyky 


 with  ,cos,sin . (8.44) 

Note that the phase of oscillations of vz coincides with that of qy. This means, in particular, that at the 
wave’s “crest”, particles are moving in the direction of the wave’s propagation – see arrows in Fig. 9. 

 It is remarkable that all this picture follows from the Laplace equation alone! The “only” 
remaining feature to calculate is the dispersion law (k), and for that, we need to combine Eq. (42) with 
what remains, in our linear approximation, of the Euler equation (23). In this approximation, and with 
the bulk force potential u = gy, the equation is reduced to 
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This equality means that the function in the parentheses is constant in space; at the surface, and at 
negligible surface tension, it should be equal to the pressure P0 above the surface (say, the atmospheric 
pressure), which we assume to be constant. This means that on the surface, the contributions to P  that 
come from the first and the third terms in Eq. (45) have to compensate for each other. Let us take the 
average surface position for y = 0; then the surface with waves is described by the relation y(z, t) = qy(y, 
z, t) – see Fig. 9. Due to the strong relation (39), we can use Eqs. (42) and (44) with y = 0, so the above 
compensation condition yields 

                 0sinsin  tkz
k

gtkz AA 


 .   (8.46) 

This condition is identically satisfied on the whole surface (and for any A) as soon as  

          gk2 ,      (8.47) 

 This equality is the dispersion relation we were looking for. Looking at this very simple result 
(which includes just one constant, g), note, first of all, that it does not involve the fluid’s density. This is 
not too surprising, because due to the weak equivalence principle, particle masses always drop out from 
the solutions of problems involving gravitational forces alone. Second, the dispersion law (47) is 
strongly nonlinear, and in particular, does not have an acoustic wave limit at all. This means that the 
surface wave propagation is strongly dispersive, with both the phase velocity uph  /k = g/ and the 
group velocity ugr  d/dk = g/2  uph/2 diverging at   0.32  

 This divergence is an artifact of our assumption of the infinitely deep liquid. A rather 
straightforward generalization of the above calculations to a layer of a finite thickness h, using the 
additional boundary condition vyy=-h = 0, yields a more general dispersion relation:33 

                khgk tanh2  .     (8.48) 

It shows that relatively long waves, with  >> h, i.e. with kh << 1, propagate without dispersion (i.e. 
have /k = const  u), with the following velocity: 

           2/1ghu  .      (8.49) 

For the Earth’s oceans, this velocity is rather high, close to 250 m/s (!) for the average ocean depth h  5 
km. This result explains, in particular, the very fast propagation of tsunami waves.   

 In the opposite limit of very short waves (large k), Eq. (47) also does not give a good description 
of typical experimental data, due to surface tension effects  – see Sec. 2 above. Using Eq. (13), it is easy 
(and hence also left for the reader’s exercise) to show that their account leads (at kh >> 1) to the 
following modification of Eq. (47): 

      



3
2 k

gk  .     (8.50) 

32 Here, unlike in Chapters 6 and 7, the wave velocity is denoted by the letter u to avoid any chance of confusion 
with the velocity v (43) of the liquid’s particles. 
33 This calculation (left for the reader’s exercise), shows also that at finite h, the particle trajectories are elliptical 
rather than circular, becoming more and more stretched in the wave propagation direction near the bottom of the 
layer. 
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According to this formula, the surface tension is important at wavelengths smaller than the capillary 
constant ac given by Eq. (14). Much shorter waves, for that Eq. (50) yields   k3/2, are called the 
capillary waves – or just “ripples”. 

  

8.5. Dynamics: Viscous fluids 

 The viscosity of many fluids, at not overly high velocities, may be described surprisingly well by 
adding, to the static stress tensor (2), additional elements proportional to the velocity v  dq/dt: 

            )(~
''' vjjjjjj   P .     (8.51) 

In view of our experience with Hooke’s law (7.32) expressing a stress tensor proportional to particle 
displacements q, we may expect a similar expression with the replacement q  v = dq/dt: 
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where ejj’ are the elements of the symmetrized strain derivative tensor: 
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Experiment confirms that Eq. (52) gives a good description of the viscosity effects in a broad range of 
isotropic fluids. The coefficient  is called either the shear viscosity, or the dynamic viscosity, or just 
viscosity, while   is called the second (or bulk) viscosity. 

 In the most frequent case of virtually incompressible fluids, Tr (e) = d[Tr (s)]/dt = (dV/dt)/V = 0, 
so the term proportional to   vanishes, and  is the only important viscosity parameter.34 Table 1 shows 
the approximate values of the viscosity, together with the mass density , for several representative 
fluids.  

 

 

 

 

 

 

 

 

 
 

34 Probably the most important effect we miss by neglecting  is the attenuation of the (longitudinal) acoustic 
waves, into which the second viscosity makes a major contribution – whose (rather straightforward) analysis is 
left for the reader’s exercise. 

 Table 8.1. Important parameters of several representative fluids (approximate values) 

Fluid (all at 300 K, until indicated otherwise)  (mPas)  (kg/m3) 

Glasses 1021–1024 2,200–2,500 

Earth magmas (at 800 to 1,400 K) 104–1014 2,200–2,800 

Machine oils (SAE 10W – 40 W) 65-320 900 

Water 0.89 1,000 

Mercury  1.53 13,530 

Liquid helium 4 (at 4.2K, 105 Pa) 0.019 130 

Air (at 105 Pa) 0.018 1.3 
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 One can see that  may vary in very broad limits; the extreme cases of fluids are glasses (which, 
somewhat counter-intuitively, are not stable solids even at room temperature, but rather may “flow”, 
though extremely slowly, until they eventually crystallize) and liquid helium (whose viscosity is of the 
order of that of gases,35 despite its much higher density). 

 Incorporating the additional elements of jj’ to the equation (23) of fluid motion, absolutely 
similar to how it was done at the derivation of Eq. (7.107) of the elasticity theory, and with the account 
of Eq. (19), we arrive at the famous Navier-Stokes equation:36 
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.   (8.53) 

 The apparent simplicity of this equation should not mask a big range of phenomena that are 
described by it (notably turbulence – see the next section), and the enormous complexity of some 
solutions even for some simple geometries. In most problems interesting for practice, the only option is 
to use numerical methods, but due to a large number of parameters (, , , plus geometrical parameters 
of the involved bodies, plus the distribution of bulk forces f, plus boundary conditions), this way is 
strongly plagued by the curse of dimensionality that was discussed in the end of Sec. 5.8.   

 Let us see how the Navier-Stokes equation works, on several simple examples. As the simplest 
case, let us consider the so-called Couette flow of an incompressible fluid layer between two wide, 
horizontal plates (Fig. 10), caused by their mutual sliding with a constant relative velocity v0. 

 

 

 

 

 

 

 Let us assume a laminar (vorticity-free) fluid flow. (As will be discussed in the next section, this 
assumption is only valid within certain limits.) Then we may use the evident symmetry of the problem, 
to take, in the coordinate frame shown in Fig. 10, v = nzv(y). Let the bulk forces be vertical, f = nyf, so 
they do not give an additional drive to the fluid flow. Then for the stationary flow (v/t = 0), the 
vertical, y-component of the Navier-Stokes equation is reduced to the static Pascal equation (6), showing 
that the pressure distribution is not affected by the plate (and fluid) motion. In the horizontal, z-
component of the equation, only one term, 2v, survives, so for the only Cartesian component of the 
fluid’s velocity we get the 1D Laplace equation 

           .0
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      (8.54) 

35 Actually, at even lower temperatures (for He 4, at T < T  2.17 K), helium becomes a superfluid, i.e. loses its 
viscosity completely, as a result of the Bose-Einstein condensation – see, e.g., SM Sec. 3.4. 
36 Named after Claude-Louis Navier (1785-1836) who had suggested the equation, and Sir George Gabriel Stokes 
(1819-1903) who has demonstrated its relevance by solving the equation for several key situations. 
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 In contrast to the ideal fluid (see, e.g., Fig. 8b), the relative velocity of a viscous fluid and a solid 
wall it flows by should approach zero at the wall,37 so Eq. (54) should be solved with boundary 
conditions 

             








.at ,

,0at ,0
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v      (8.55) 

Using the evident solution to this boundary problem, v(y) = (y/d)v0, illustrated by the arrows in Fig. 10, 
we can now calculate the horizontal drag force acting on a unit area of each plate. For the bottom plate, 
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       (8.56) 

(For the top plate, the derivative v/y has the same value, but the sign of dAy has to be changed to 
reflect the direction of the outer normal to the solid surface, so we get a similar force but with the 
negative sign.) The well-known result (56) is often used, in undergraduate physics courses, for a 
definition of the dynamic viscosity , and indeed shows its meaning very well.38 

 As the next, slightly less trivial example let us consider the so-called Poiseuille problem:39 
finding the relation between the constant external pressure gradient   -P/z applied along a round 
pipe with internal radius R (Fig. 11) and the so-called discharge Q – defined as the mass of fluid flowing 
through the pipe’s cross-section in unit time. 

 

 

 

  

 

 Again assuming a laminar flow, we can involve the problem’s uniformity along the z-axis and its 
axial symmetry to infer that v = nzv(), and P  = -z + f(, ) + const (where  = {, } is again the 2D 
radius vector rather than the fluid density), so the Navier-Stokes equation (53) for an incompressible 
fluid (with v = 0) is reduced to the following 2D Poisson equation:  

           v2
2 .      (8.57) 

After spelling out the 2D Laplace operator in polar coordinates for our axially-symmetric case / = 0, 
Eq. (57) becomes a simple ordinary differential equation, 

37 This is essentially an additional experimental fact, which that may be understood as follows. The tangential 
component of the velocity should be continuous at the interface between two viscous fluids, in order to avoid 
infinite stress – see Eq. (52), and solid may be considered as an ultimate case of fluid, with infinite viscosity. 
38 The very notion of viscosity  was introduced (by nobody other than the same Sir Isaac Newton) via a formula 
similar to Eq. (56), so any effect resulting in a drag force proportional to velocity is frequently called Newtonian 
viscosity. 
39 It was solved by G. Stokes in 1845 to explain the experimental results obtained by Gotthilf Hagen in 1839 and 
(independently) by Jean Poiseuille in 1840-41. 

Fig. 8.11. The Poiseuille problem. 
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which has to be solved on the segment 0    R, with the following boundary conditions: 
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(The latter condition is required by the axial symmetry.) A straightforward double integration yields: 
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so the (easy) integration of the mass flow density over the cross-section of the pipe, 
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     (8.61) 

immediately gives us the so-called Poiseuille (or “Hagen-Poiseuille”) law for the fluid’s discharge: 
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The most prominent (and practically important) feature of this result is a very strong dependence of the 
discharge on the pipe’s radius.  

 Of course, the 2D Poisson equation (57) is so readily solvable not for each cross-section shape. 
For example, consider a very simple, square-shaped cross-section with side a (Fig. 12).  

 

 

 

 

 

 

 

 In this case, it is natural to use the Cartesian coordinates aligned with the cross-section’s sides, 
so Eq. (57) becomes 
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and has to be solved with boundary conditions 

         ayxv ,0,at  ,0  .     (8.64) 

 For this boundary problem, analytical methods such as the variable separation lead to answers in 
the form of infinite sums (series), which ultimately require computers anyway – at least for their plotting 
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Fig. 8.12. Application of the finite-difference 
method with a very coarse mesh (with step h 
= a/2) to the problem of viscous fluid flow in 
a pipe with a square cross-section. 
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and comprehension. Let me use this pretext to discuss how explicitly numerical methods may be used 
for such problems – or for any partial differential equations involving the Laplace operator. The simplest 
of them is the finite-difference method40 in which the function to be calculated, f(r), is represented by its 
values f(r1), f(r2), … in discrete points of a rectangular grid (frequently called mesh) of the 
corresponding dimensionality – Fig. 13.  

 

   

 

 

 

 

 
  
 In Sec. 5.7, we have already discussed how to use such a grid to approximate the first derivative 
of the function – see Eq. (5.97). Its extension to the second derivative is straightforward – see Fig. 13a:41 
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  (8.65) 

The relative error of this approximation is of the order of h24f/rj
4, quite acceptable in many cases. As a 

result, the left-hand side of Eq. (63), treated on a square mesh with step h (Fig. 13b), may be 
approximated with the so-called five-point scheme: 
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(The generalization to the seven-point scheme, appropriate for 3D problems, is straightforward.) Let us 
apply this scheme to the tube with the square cross-section, using an extremely coarse mesh with step h 
= a/2, shown in Fig. 12. In this case, the fluid velocity v should equal zero at the walls, i.e. at all points 
of the five-point scheme except for the central point (in which the velocity obviously reaches its 
maximum), so Eqs. (63) and (66) yield42 
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   (8.67) 

40 For more details see, e.g., R. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 
41 As a reminder, at the beginning of Sec. 6.4 we have already discussed the reciprocal transition – from a similar 
sum to the second derivative in the continuous limit (h  0). 
42 Note that the value (67) of vmax is exactly the same as given by the analytical formula (60) for the round cross-
section with the radius R = a/2. This is not an occasional coincidence. The velocity distribution given by (60) is a 
quadratic function of both x and y. For such functions, with all derivatives higher than 2f/rj

2 equal to zero, 
equation (66) is exact rather than approximate. 
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Fig. 8.13. The idea of the finite-
difference method in (a) one and 
(b) two dimensions. 
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 This result for the maximal velocity is only ~20% different from the exact value. Using a slightly 
finer mesh with h = a/4, which gives a readily solvable system of three linear equations for three 
different velocity values (the exercise left for the reader), brings us within just a couple of percent from 
the exact result. So numerical methods may be practically more efficient than the “analytical” ones, 
even if the only available tool is a calculator app on your smartphone rather than an advanced computer.  

 Of course, many practical problems of fluid dynamics do require high-performance computing, 
especially in conditions of turbulence with its complex, irregular spatial-temporal structure – see the 
next section). In such cases, the finite-difference approach discussed above may become unsatisfactory, 
because it implies the same accuracy of the derivative approximation through the whole area of interest. 
A more powerful (but also much more complex for implementation) approach is the finite-element 
method in which the discrete-point mesh is based on triangles with unequal sides and is (in most cases, 
automatically) generated from the system geometry, giving more mesh points at the location(s) of the 
higher gradients of the calculated function (Fig. 14), and hence a better calculation accuracy for the 
same total number of points. Unfortunately, I do not have time/space to go into the details of that 
method, so the interested reader is referred to the special literature on this subject.43 

  

 

 

 

 

 

 

 

 

  
  
 
 Before proceeding to our next topic, let me mention one more important problem that is 
analytically solvable using the Navier-Stokes equation: a slow motion of a solid sphere of radius R, with 
a constant velocity v0, through an incompressible viscous fluid – or equivalently, a slow flow of the 
fluid (uniform at large distances) around an immobile sphere. In the limit v  0, the second term on the 
left-hand side of Eq. (53) is negligible (just as at the surface wave analysis in Sec. 3), the equation takes 
the form 

         ,for  ,02  rRvP     (8.68) 

and should be complemented with the incompressibility condition v = 0 and the boundary conditions 

43 I can recommend, e.g., C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element 
Method, Dover, 2009, or T. Hughes, The Finite Element Method, Dover, 2000. 

Fig. 8.14. A typical finite-element 
mesh generated automatically for a 
system with relatively complex 
geometry – a round cylindrical shell 
inside another one, with mutually 
perpendicular axes. (Adapted from 
the original by I. Zureks, 
https://commons.wikimedia.org/w/in
dex.php?curid=2358783, under the 
CC license BY-SA 3.0.) 



Essential Graduate Physics                 CM: Classical Mechanics 
 

 

Chapter 8            Page 22 of 30 

              
.at  ,

 ,at    0,

0 



r

 Rr 

vv

v
     (8.69) 

In spherical coordinates, with the polar axis directed along the vector v0, this boundary problem has 
axial symmetry (so v/ = 0 and v = 0), and allows the following analytical solution: 
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Now calculating the tensor elements (52b) at r = R, using them to find the stress tensor elements from 
Eq. (52a), and integrating the elementary forces (7.18) over the surface of the sphere, it is 
straightforward to obtain the famous Stokes formula  for the drag force acting on the sphere:44 

       .6 0RvF        (8.71) 

For water drops with a 1-micron diameter, usually taken for the border between aerosols and droplets, 
descending in the ambient-condition air under their own weight, it predicts an equilibrium velocity v of 
close to 0.1 meters per hour, with the further scaling v  R2.45 (Note, however, that at R below ~10 m, 
corrections due to air molecule discreteness become noticeable.) 

 For what follows in the next section, it is convenient to recast this result into the following form: 
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where Cd is the drag coefficient defined as 
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with A  R2 being the sphere’s cross-section “as seen by the incident fluid flow”, and Re is the so-
called Reynolds number.46 In the general case, the number is defined as 

              

vl

eR  ,      (8.74) 

where l is the linear-size scale of the problem, and v is its velocity scale. (In the particular case of Eq. 
(72) for the sphere, l is identified with the sphere’s diameter D = 2R, and v with v0). The physical sense 
of these two definitions will be discussed in the next section. 

 

44 This formula played an important role in the first precise (better than 1%) calculation of the fundamental 
electric charge e by R. Millikan and H. Fletcher from their famous oil drop experiments in 1909-1913. 
45 These numbers are of key importance not only for the recent heated discussions of contagious disease 
transmission, but also for many other fields including atmospheric physics. For example, for an average water 
droplet in clouds, with R ~ 10 m, Eq. (71) (even with a due account of a slightly lower air viscosity at typical 
cloud heights) yields the descent velocity of the order of 10 m/hr, substantiating the correct answer to the popular 
high-school question, “Why clouds do not fall?” (The answer is: water droplets do descend, but so slowly that 
they has ample time to evaporate near the lower surface of the cloud, so the cloud as a whole may maintain its 
height.) 
46 This notion was introduced in 1851 by the same G. Stokes but eventually named after O. Reynolds who 
popularized it three decades later. 
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8.6. Turbulence 

 As Fig. 15 shows, the Stokes result (71)-(72) is only valid at Re << 1, while for larger values of 
the Reynolds number, i.e. at higher velocities v0, the drag force is larger. This very fact is not quite 
surprising, because at the derivation of the Stokes’ result, the nonlinear term (v)v in the Navier-Stokes 
equation (53), which scales as v2, was neglected in comparison with the linear terms, scaling as v. What 
is more surprising is that the function Cd(Re) exhibits such a complicated behavior over many orders of 
the velocity’s magnitude, giving a hint that the fluid flow at large Reynolds numbers should be also very 
complicated. Indeed, the reason for this complexity is a gradual development of very intricate, time-
dependent fluid patterns, called turbulence, rich with vortices – for example, see Fig. 16. These vortices 
are especially pronounced in the region behind the moving body (the so-called wake), while the region 
before the body remains almost unperturbed. As Fig. 15 indicates, the turbulence exhibits rather 
different behaviors at various velocities (i.e. values of Re), and sometimes changes rather abruptly – see, 
for example, the significant drag’s drop at Re  5105. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 In order to understand the conditions of this phenomenon, let us estimate the scale of various 
terms of the Navier-Stokes equation (53) for a generic body with characteristic size l, moving in an 
otherwise static incompressible fluid, with velocity v. In this case, the time scale of possible non-
stationary phenomena is given by the ratio l/v,47 so we arrive at the following estimates: 

47 The time scale of phenomena in externally-driven systems may be different; for example, for forced oscillations 
with frequency , it may be the oscillation period T   2/. For such problems, the ratio S  (l/v)/T, commonly 
called either the Strouhal number or the reduced frequency, serves as another dimensionless constant. 

Fig. 8.15. The drag coefficient for a sphere and a thin round disk as functions of the Reynolds number. 
Adapted from F. Eisner, Das Widerstandsproblem, Proc. 3rd Int. Cong. on Appl. Mech., Stockholm, 1931. 
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uniform 

fluid flow 

solid  
sphere 

Fig. 8.16. A snapshot of the turbulent tail (wake) behind a sphere moving in a fluid with a high Reynolds 
number, showing the so-called von Kármán vortex street. Adapted from the original (actually, a very nice 
animation, http://www.mcef.ep.usp.br/staff/jmeneg/cesareo/vort2.gif) by Cesareo de La Rosa Siqueira, as 
a copyright-free material, available at https://commons.wikimedia.org/w/index.php?curid=87351. 
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(I have skipped the term P because as we have seen in the previous section, in typical fluid flow 
problems, it balances the viscosity term, and hence is of the same order of magnitude.)  

  

 

 

 

 

 

 

 

 

 Estimates (75) show that the relative importance of the terms may be characterized by two 
dimensionless ratios.48 The first of them is the so-called Froude number49 
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which characterizes the relative importance of the gravity – or, upon appropriate modification, of other 
bulk forces. In most practical problems (with the important exception of surface waves, see Sec. 4 
above), F >> 1 so the gravity effects may be neglected. 

 Much more important is another ratio, the Reynolds number (74), which may be rewritten as 
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 ,     (8.77)  

and hence is a measure of the relative importance of the fluid particle’s inertia in comparison with the 
viscosity effects.50 So again, it is natural that for a sphere, the role of the vorticity-creating term (v)v 

48 For substantially compressible fluids (e.g., gases), the most important additional dimensionless parameter is the 
Mach number M  v/vl,  where vl = (K/)1/2  is the velocity of the longitudinal sound – which is, as we already 
know from Chapter 7, the only wave mode possible in an infinite fluid. Especially significant for practice are 
supersonic effects (including the shock wave in the form of the famous Mach cone with half-angle M = sin-1M-1) 
that arise at M > 1. For a more thorough discussion of these issues, I have to refer the reader to more specialized 
texts – either  Chapter IX of the Landau-Lifshitz volume cited above or Chapter 15 in I. Cohen and P. Kundu, 
Fluid Mechanics, 4th ed., Academic Press, 2007 – which is generally a good book on the subject. 
49 Named after William Froude (1810-1879), one of the applied hydrodynamics pioneers. 
50 Note that the “dynamic” viscosity   participates in this number (and many other problems of fluid dynamics) 
only in the combination /, which thereby has deserved a special name of kinematic viscosity.  

Equation term: 
 
Order of magnitude: 
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becomes noticeable already at Re ~ 1 – see Fig. 15. What is very counter-intuitive is the onset of 
turbulence in systems where the laminar (turbulence-free) flow is formally an exact solution to the 
Navier-Stokes equation for any Re. For example, at Re > Ret   2,100 (with l  2R and v  vmax) the 
laminar flow in a round pipe, described by Eq. (60), becomes unstable, and the resulting turbulence 
decreases the fluid discharge Q in comparison with the Poiseuille law (62). Even more strikingly, the 
critical value of Re is rather insensitive to the pipe wall roughness and does not diverge even in the limit 
of perfectly smooth walls. 

 Since Re >> 1 in many real-life situations, turbulence is very important for practice. (Indeed, the 
values of  and  for water listed in Table 1 imply that even for a few-meter-sized object, such as a 
human body or a small boat, Re > 1,000 at any speed above just ~1 mm/s.) However, despite nearly a 
century of intensive research, there is no general, quantitative analytical theory of this phenomenon, and 
most results are still obtained either by rather approximate analytical treatments, or by the numerical 
solution of the Navier-Stokes equations using the approaches discussed in the previous section, or in 
experiments (e.g., on scaled models51 in wind tunnels). A rare exception is the relatively recent 
theoretical result by S. Orszag (1971) for the turbulence threshold in a flow of an incompressible fluid 
through a gap of thickness t between two parallel plane walls (see Fig. 10): Ret  5,772 (for l  t/2 and v 
 vmax). However, even for this simplest geometry, the analytical theory still cannot predict the 
turbulence patterns at Re > Ret. Only certain general, semi-quantitative features of turbulence may be 
understood from simple arguments.  

 For example, Fig. 15 shows that within a very broad range of Reynolds numbers, from ~102 to 
~3105, Cd of a thin round disk perpendicular to the incident flow, Cd is very close to 1.1 for any Re > 
103, and that of a sphere is not too far away. The approximate equality Cd  1, meaning that the drag 
force F is close to v0

2A/2, may be understood (in the picture where the object is moved by an external 
force F with the velocity v0 through a fluid that was initially at rest) as the equality of the force-
delivered power Fv0 and the fluid’s kinetic energy (v0

2/2)V created in volume V = v0A in unit time. This 
relation would be exact if the object gave its velocity v0 to each and every fluid particle its cross-section 
runs into, for example by dragging all such particles behind itself. In reality, much of this kinetic energy 
goes into vortices, where the particle velocity may differ from v0, so the equality Cd  1 is only 
approximate. 

 Another important general effect is that at very high values of Re, fluid flow at the leading 
surface of solid objects forms a thin, highly turbulent boundary layer that matches the zero relative 
velocity of the fluid at the surface with its substantial velocity in the outer region, which is almost free 
of turbulence and many cases, of other viscosity effects. This fact, clearly visible in Fig. 16, enables 
semi-quantitative analyses of several effects, for example, the so-called Magnus lift force52 Fl exerted 
(on top of the usual drag force Fd) on rotating objects, and directed across the fluid flow – see Fig. 17.  

 An even more important application of this concept is an approximate analysis of the forces 
exerted on non-rotating airfoils (such as aircraft wings) with special cross-sections forming sharp angles 
at their back ends. Such a shape minimizes the airfoil’s contacts with the vortex street it creates in its 

51 The crucial condition of correct modeling is the equality of the Reynolds numbers (74) (and if relevant, also of 
the Froude numbers and/or the Mach numbers) of the object of interest and its model. 
52 Named after G. Magnus, who studied this effect in detail in 1852, though it had been described much earlier (in 
1672) by I. Newton, and by B. Robins after him (in 1742). 
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wake, and allows the thin boundary layer to extend over virtually all of its surface, enhancing the lift 
force. 

 

 

 

 
 

Unfortunately, due to the time/space restrictions, for a more detailed discussion of these results I 
have to refer the reader to more specialized literature,53 and will conclude this chapter with a brief 
discussion of just one issue: can turbulence be explained by a single mechanism? (In other words, can it 
be reduced, at least on a semi-quantitative level, to a set of simpler phenomena that are commonly 
considered “well understood”?) Apparently, the answer is no,54 though nonlinear dynamics of simpler 
systems may provide some useful insights.  

 In the middle of the last century, the most popular qualitative explanation of turbulence had been 
the formation of an “energy cascade” that would transfer the energy from the regular fluid flow to a 
hierarchy of vortices of various sizes.55 With our background, it is easier to retell that story in the time-
domain language (with the velocity v serving as the conversion factor), using the fact that in a rotating 
vortex, each Cartesian component of a particle’s radius vector oscillates in time, so to some extent the 
vortex plays the role of an oscillatory motion mode.  

 Let us consider the passage of a solid body between two, initially close, small parts of the fluid. 
The body pushes them apart, but after its passage, these partial volumes are free to return to their initial 
positions. However, the dominance of inertia effects at motion with Re >> 1 means that the volumes 
continue to oscillate for a while about those equilibrium positions. (Since elementary volumes of an 
incompressible fluid cannot merge, these oscillations take the form of rotating vortices – see Fig. 16 
again.)  

Now, from Sec. 5.8 we know that intensive oscillations in a system with the quadratic 
nonlinearity, in this case, provided by the convective term (v)v, are equivalent, for small 
perturbations, to the oscillation of the system’s parameters at the corresponding frequency. On the other 
hand, as was briefly discussed in Sec. 6.7, in a system with two oscillatory degrees of freedom, a 
periodic parameter change with frequency p may lead to the non-degenerate parametric excitation 
(“down-conversion”) of oscillations with frequencies 1,2 satisfying the relation 1 + 2 = p. 
Moreover, the spectrum of oscillations in such a system also has higher combinational frequencies such 
as (p + 1),  thus pushing the oscillation energy up the frequency scale (“up-conversion”). In the 
presence of other oscillatory modes, these oscillations may in turn produce, via the same nonlinearity, 
even higher frequencies, etc. In a fluid, the spectrum of these “oscillatory modes” (actually, vortex 

53 See, e.g., P. Davidson, Turbulence, Oxford U. Press, 2004.  
54 The following famous quote is attributed to Werner Heisenberg on his deathbed: “When I meet God, I will ask 
him two questions: Why relativity? And why turbulence? I think he will have an answer for the first question.” 
Though probably inaccurate, this story reflects rather well the frustration of the fundamental physics community, 
renowned for their reductionist mentality, with the enormous complexity of phenomena that obey simple (e.g., the 
Navier-Stokes) equations, i.e. from the reductionist point of view, do not describe any new physics. 
55 This picture was suggested in 1922 by Lewis F. Richardson. 
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Fig. 8.17. The Magnus effect. 
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structures) is essentially continuous, so the above arguments make very plausible a sequential transfer of 
the energy from the moving body to a broad range of oscillatory modes – whose frequency spectrum is 
limited from above by the energy dissipation due to the fluid’s viscosity. When excited, these modes 
interact (in particular, mutually phase-lock) via the system’s nonlinearity, creating the complex motion 
we call turbulence.   

 Though not having much quantitative predictive power, such handwaving explanations, which 
are essentially based on the excitation of a large number of effective degrees of freedom, had been 
dominating the turbulence reviews until the mid-1960s. At that point, the discovery (or rather re-
discovery) of quasi-random motions in classical dynamic systems with just a few degrees of freedom 
altered the discussion substantially. Since this phenomenon, called deterministic chaos, extends well 
beyond the fluid dynamics, I will devote to it a separate (albeit short) next chapter, and in its end will 
briefly return to the discussion of turbulence. 

 

8.7. Exercise problems 
  
 8.1. For a mirror-symmetric but otherwise arbitrary shape of a ship’s hull, derive an explicit 
expression for the height of its metacenter M – see Fig. 3. Spell out this expression for a rectangular 
hull. 
 
 
 8.2. Neglecting surface tension, find the stationary shape of the open 
surface of an incompressible heavy fluid in a container rotated about its 
vertical axis with a constant angular velocity   – see the figure on the right. 

8.3. In the first order in the so-called flattening f  (Re – Rp)/Rp << 1 of the Earth (where Re and 
Rp are, respectively, its equatorial and polar radii), calculate it within a simple model in that our planet is 
a uniformly-rotating nearly-spherical fluid ball, whose gravity field is dominated by a relatively small 
spherical core. Compare your result with the experimental value of f, and discuss the difference.  

 Hint: You may use experimental values Re  6,378 km, Rp  6,357 km, and g  9.807 m/s2. 
 

 8.4.* Use two different approaches to calculate the stationary shape of the 
surface of an incompressible liquid of density  near a vertical plane wall, in a 
uniform gravity field – see the figure on the right. In particular, find the height h 
of the liquid’s rise at the wall surface as a function of the contact angle c. 
 
 

8.5.* A soap film with surface tension   is stretched between two 
similar, coaxial, thin, round rings of radius R – see the figure on the right. 
Neglecting gravity, calculate the equilibrium shape of the film, and the external 
force needed for keeping the rings at distance d. 
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8.6. A solid sphere of radius R has been placed into a vorticity-free steady flow, with velocity v0, 
of an ideal incompressible fluid. Find the spatial distribution of the fluid’s velocity and pressure, and in 
particular their extreme values. Compare the results with those obtained in Sec. 4 for a round cylinder. 

 
 8.7.* Solve the same problem for a long and thin solid strip of width 2w, with its plane normal to 
the unperturbed fluid flow. 

 Hint: You may like to use the so-called elliptic coordinates {, } defined by their relations with 
the Cartesian coordinates {x, y}: 

  ,0with  ,sinsinh,coscosh CyCx , 

where C is a constant; in these coordinates, 
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8.8. A small source, located at distance d from a plane wall of a container 

filled with an ideal incompressible fluid of density , injects additional fluid 
isotropically, with a time-independent mass current (“discharge”) Q  dM/dt – 
see the figure on the right.  Calculate the fluid’s velocity distribution and its 
pressure on the wall, created by the flow. 

 Hint: Recall the charge image method in electrostatics,56 and contemplate 
its possible analog. 
 
 8.9. Calculate the average kinetic, potential, and full energies (per unit area) of a traveling 
sinusoidal wave, of a small amplitude qA, on the surface of an ideal, incompressible, deep liquid of 
density , in a uniform gravity field g. 

 
8.10. Calculate the average power carried by the surface wave discussed in the previous problem 

(per unit width of its front), and relate the result to the wave’s energy. 
 
 8.11. Derive Eq. (48) for the surface waves on a finite-thickness layer of an incompressible ideal 
liquid. 
 

8.12. The utmost simplicity of Eq. (49) for the velocity of waves on a relatively shallow (h << ) 
layer of an ideal incompressible liquid implies that they may be described using a very simple physical 
picture. Develop such a picture, and verify that it yields the same expression for the velocity. 
 
 8.13. Extend the solution of the previous problem to calculate the energy and power of the 
shallow-layer waves, and use the result to explain the high tides on some ocean shores, for two models: 

 (i) the water depth h decreases gradually toward the shore, and 
 (ii) h decreases sharply, at some distance l from the shore – as it does on the ocean shelf border. 
 

56 See, e.g., EM Secs. 2.9, 3.3, and 4.3. 
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 8.14.* Derive the differential equation describing 2D propagation of relatively long ( >> h) 
surface waves in a plane layer of thickness h, of an ideal incompressible liquid. Use this equation to 
calculate the longest standing wave modes in a layer covering a spherical planet of radius R >> h, and 
their frequencies. 

 Hint: The second task requires some familiarity with the basic properties of spherical 
harmonics.57 
 

8.15. Calculate the velocity distribution and the dispersion relation of the waves propagating 
along the horizontal interface of two ideal, incompressible liquids of different densities. 
 
 8.16. Derive Eq. (50) for the capillary waves (“ripples”). 
 

8.17. Use the finite-difference approximation for the Laplace operator, with the mesh step h = 
a/4, to find the maximum velocity and the total discharge Q of an incompressible viscous fluid’s flow 
through a long tube with a square-shaped cross-section of side a. Compare the results with those 
described in Sec. 5 for the same problem with the mesh step h = a/2 and for a pipe with a circular cross-
section of the same area. 

 

8.18. A layer, of thickness h, of a heavy, viscous, 
incompressible liquid flows down a long and wide inclined plane, 
under its own weight – see the figure on the right. Calculate the 
liquid’s stationary velocity distribution profile and its discharge per 
unit width. 
 

 8.19. An external force moves two coaxial round disks of radius R, with an incompressible 
viscous fluid in the gap between them, toward each other with a constant velocity u. Calculate the 
applied force in the limit when the gap’s thickness t is already much smaller than R. 
 
 8.20. Calculate the drag torque exerted on a unit length of a solid round cylinder of radius R that 
rotates about its axis with an angular velocity , inside an incompressible fluid with viscosity , kept 
static far from the cylinder. 
 

8.21. Solve a similar problem for a sphere of radius R, rotating about one of its principal axes. 

 Hint: You may like to use the following expression for the relevant element of the strain 
derivative tensor ejj’ in spherical coordinates: 
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 8.22. Calculate the tangential force (per unit area) exerted by an incompressible fluid, with 
density  and viscosity , on a broad solid plane placed over its surface and forced to oscillate along it 
with amplitude a and frequency . 

  

57 See, e.g., EM Sec. 2.8 and/or QM Sec. 3.6. 

g

?)( xv

h

,


0

x



Essential Graduate Physics                 CM: Classical Mechanics 
 

 

Chapter 8            Page 30 of 30 

  
 8.23. Calculate the frequency and the damping factor of longitudinal 
oscillations of a mercury column, of the total length l, in a U-shaped mercury 
manometer (see the figure on the right), assuming that its tube has a round cross-
section with a relatively small radius R. Formulate the quantitative conditions of 
validity of your result and check whether they are fulfilled for the following 
parameters: l = 1 m and R = 0.25 mm. 
 
 8.24. A barge, with a flat bottom of area A,  
floats in shallow water, with clearance h << A1/2 – see 
the figure on the right. Analyze the time dependence of 
the barge’s velocity V(t), and the water’s velocity 
profile, after the barge’s engine has been turned off. 
Discuss the limits of large and small values of the 
dimensionless parameter M/Ah. 

 
 8.25.* Derive a general expression for mechanical energy loss rate in an incompressible fluid that 
obeys the Navier-Stokes equation, and use this expression to calculate the attenuation coefficient of the 
surface waves, assuming that the viscosity is small. (Quantify this condition). 

 
 8.26. Use the Navier-Stokes equation to calculate the coefficient of attenuation of a sinusoidal 
plane acoustic wave. 
 
 8.27.* Use two different approaches for a semi-quantitative calculation of the Magnus lift force 
Fl exerted by an incompressible fluid of density  on a round cylinder of radius R, with its axis normal 
to the fluid’s velocity v0, which rotates about the axis with an angular velocity  – see Fig. 17. Discuss 
the relation of the results. 
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Chapter 9. Deterministic Chaos 

This chapter gives a very brief review of chaotic phenomena in deterministic maps and dynamic systems 
with and without dissipation, and an even shorter discussion of the possible role of chaos in fluid 
turbulence.  
 

9.1. Chaos in maps 

The possibility of quasi-random dynamics of deterministic systems with a few degrees of 
freedom (nowadays called deterministic chaos – or just “chaos”) had been noticed before the 20th 
century,1 but became broadly recognized only after the publication of a 1963 paper by theoretical 
meteorologist Edward Lorenz. In that work, he examined numerical solutions of the following system of 
three nonlinear, ordinary differential equations, 
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as a rudimentary model of heat transfer through a horizontal layer of fluid separating two solid plates. 
(Experiment shows that if the bottom plate is kept hotter than the top one, the fluid may exhibit 
turbulent convection.) He has found that within a certain range of the constants a1,2,3, the solution to Eq. 
(1) follows complex, unpredictable, non-repeating trajectories in the 3D q-space. Moreover, the 
functions qj(t) (where j = 1, 2,3) are so sensitive to initial conditions qj(0) that at sufficiently large times 
t, solutions corresponding to slightly different initial conditions become completely different.  

 Very soon it was realized that such behavior is typical for even simpler mathematical objects 
called maps, so I will start my discussion of chaos from these objects. A 1D map is essentially a rule for 
finding the next number qn+1 of a discrete sequence numbered by the integer index n, in the simplest 
cases using only its last known value qn. The most famous example is the so-called logistic map:2 

       ).1()(1 nnnn qrqqfq       (9.2) 

 The basic properties of this map may be understood using its (hopefully, self-explanatory) 
graphical representation shown in Fig. 1.3  One can readily see that at r < 1 (Fig. 1a) the logistic map 
sequence rapidly converges to the trivial fixed point q(0) = 0 because each next value of q is less than the 
previous one. However, if r is increased above 1 (as in the example shown in Fig. 1b), the fixed point 

1 It may be traced back at least to an 1892 paper by the same Jules Henri Poincaré who was already reverently 
mentioned in Chapter 5. Citing it: “…it may happen that small differences in the initial conditions produce very 
great ones in the final phenomena. […] Prediction becomes impossible.” 
2 Its chaotic properties were first discussed in 1976 by Robert May, though the map itself is one of the simple 
ecological models repeatedly discussed much earlier and may be traced back at least to the 1838 work by Pierre 
François Verhulst.  
3 Since the maximum value of the function f(q), achieved at q = ½, equals r/4, the mapping may be limited to 
segment x = [0, 1], if the parameter r is between 0 and 4. Since all interesting properties of the map, including 
chaos, may be found within these limits, I will discuss only this range of r. 
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q(0) becomes unstable. Indeed, at qn << 1, the map yields qn+1  rqn, so at r > 1, the values qn grow with 
each iteration. Instead of the unstable point q(0) = 0, in the range 1 < r < r1, where r1  3, the map has a 
stable fixed point q(1) that may be found by plugging this value into both parts of Eq. (2): 

                   ),1( )1()1()1()1( qrqqfq      (9.3) 

giving q(1) = 1 – 1/r  – see the leftmost branch of the plot shown in Fig. 2. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 However, at r > r1 = 3, the fixed point q(1) also becomes unstable. To prove that, let us take 

nn qqq ~)1(  , assume that the deviation nq~ from the fixed point q(1) is small, and linearize the map (2) 

in nq~  – just as we repeatedly did for differential equations earlier in this course. The result is 

    nnnqqn qrqqrq
dq

df
q ~)2(~)21(~~ )1(

1 )1( 
 .   (9.4) 
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Fig. 9.2. The fixed points and 
chaotic regions of the logistic 
map. Adapted, under the CCO 
1.0 Universal Public Domain 
Dedication, from the original 
by Jordan Pierce, available at 
http://en.wikipedia.org/wiki/Lo
gistic_map. (A very nice live 
simulation of the map is also 
available on this website.)

Fig. 9.1. Graphical analysis of the logistic map for: (a) r  < 1 and (b) r > 1. 
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It shows that at 0 < 2 – r  < 1, i.e. at 1 < r  < 2, the deviations nq~ decrease monotonically. At  –1 < 2 – r 

< 0, i.e. in the range 2 < r  < 3, the deviations’ sign alternates, but their magnitude still decreases – as in 
a stable focus, see Sec. 5.6. However, at –1 < 2 – r, i.e. r > r1  3, the deviations grow by magnitude, 
while still changing their sign, at each step. Since Eq. (2) has no other fixed points, this means that at n 
 , the values qn do not converge to one point; rather, within the range r1 < r < r2, they approach a 
limit cycle of alternation of two points, q+ and q–, that satisfy the following system of algebraic 
equations: 
                       qfqqfq , .     (9.5) 

These points are also plotted in Fig. 2, as functions of the parameter r. What has happened at the point r1 
= 3 is called the period-doubling bifurcation.  

 The story repeats at r = r2  1 + 6  3.45, where the system goes from the 2-point limit cycle to 
a 4-point cycle, then at r = r3  3.54, where the limit cycle begins to consist of 8 alternating points, etc. 
Most remarkably, the period-doubling bifurcation points rn, at that the number of points in the limit 
cycle doubles from 2n-1 points to 2n points, become closer and closer to each other. Numerical 
simulations show that at n  , these points obey the following asymptotic behavior: 

            ...6692.4...,5699.3  where,   


r
C

rr
nn    (9.6) 

The parameter  is called the Feigenbaum constant; for other maps, and some dynamic systems  (see the 
next section), period-doubling sequences follow a similar law, but with different values of .  

 More important for us, however, is what happens at r > r. Numerous numerical experiments, 
repeated with increasing precision,4 have confirmed that here the system is disordered, with no 
reproducible limit cycle, though (as Fig. 2 shows) at r  r, all sequential values qn are still confined to a 
few narrow regions.5 However, as parameter r is increased well beyond r, these regions broaden and 
merge. This is the so-called deep chaos, with no apparent order at all.6   

 The most important feature of the chaos (in this and any other system) is the exponential 
divergence of trajectories. For a 1D map, this means that even if the initial conditions q1 in two map 
implementations differ by a very small amount q1, the difference qn between the corresponding 
sequences qn is growing, on average, exponentially with n. Such exponents may be used to characterize 
chaos. Indeed, an evident generalization of the linearized Eq. (4) to an arbitrary point qn is 

     .,ΔΔ 1 nqqnnnn dq

df
eqeq        (9.7) 

4 The reader should remember that just like the usual (“nature”) experiments, numerical experiments also have 
limited accuracy, due to unavoidable rounding errors. 
5 The geometry of these regions is essentially fractal, i.e. has a dimensionality intermediate between 0 (which any 
final set of geometric points would have) and 1 (pertinent to a 1D continuum). An extensive discussion of fractal 
geometries and their relation to deterministic chaos may be found, for example, in the book by B. Mandelbrot, 
The Fractal Geometry of Nature,  W. H. Freeman, 1983. 
6 This does not mean that chaos depth is always a monotonic function of r. As Fig. 2 shows, within certain 
intervals of this parameter, the chaotic behavior suddenly disappears, being replaced, typically, with a few-point 
limit cycle, just to resume on the other side of the interval. Sometimes (but not always!) the “route to chaos” on 
the borders of these intervals follows the same Feigenbaum sequence of period-doubling bifurcations.  

Feigenbaum 
bifurcation 
sequence 
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Let us assume that q1 is so small that N first values qn are relatively close to each other. Then using Eq. 
(7) iteratively for these steps, we get 
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 Numerical experiments show that in most chaotic regimes, at N   such a sum fluctuates about 
an average, which grows as N, with the parameter 
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called the Lyapunov exponent,7 being independent of the initial conditions. The bottom panel in Fig. 3 
shows  as a function of the parameter r for the logistic map (2). (Its top panel shows the same pattern 
as Fig. 2, which is reproduced here just for the sake of comparison.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Note that at r < r,  is negative, indicating the sequence’s stability, besides the points r1, r2, … 
where  would become positive if the limit cycle changes (bifurcations) had not brought it back into the 
negative territory. However, at r > r,  becomes positive, returning to negative values only in limited 
intervals of stable limit cycles. It is evident that in numerical experiments (which dominate the studies 
of deterministic chaos) the Lyapunov exponent may be used as a good measure of the chaos’ depth.8 

7 After Alexandr Mikhailovich Lyapunov (1857-1918), famous for his studies of the stability of dynamic systems.  
8 N-dimensional maps that relate N-dimensional vectors rather than scalars, may be characterized by N Lyapunov 
exponents rather than one. For chaotic behavior, it is sufficient for just one of them to become positive. For such 
systems, another measure of chaos, the Kolmogorov entropy, may be more relevant. This measure and its relation 
with the Lyapunov exponents are discussed, for example, in SM Sec. 2.2. 

Lyapunov 
exponent 
 

Fig. 9.3. The Lyapunov exponent 
for the logistic map. Adapted, with 
permission, from the monograph by 
Schuster and Just (cited below). © 
Wiley-VCH Verlag GmbH & Co. 
KGaA. 
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 Despite the abundance of results published for particular maps,9 and several interesting 
observations (like the already discussed existence of the Feigenbaum bifurcation sequences), to the best 
of my knowledge, nobody can yet predict the patterns like those shown in Fig. 2 and 3 by just studying 
the mapping rule itself, i.e. without carrying out actual numerical experiments. Unfortunately, the 
understanding of deterministic chaos in other systems is not much better. 

 
9.2. Chaos in dynamic systems 

 Proceeding to the discussion of chaos in dynamic systems, it is more natural, with our 
background, to illustrate this discussion not with the Lorenz equations, but with the system of equations 
describing a dissipative pendulum driven by a sinusoidal external force, which was repeatedly discussed 
in Chapter 5. Introducing two new variables, the normalized momentum p  (dq/dt)/0, and the external 
force’s full phase   t, we may rewrite Eq. (5.42), describing the pendulum, in a form similar to Eq. 
(1), i.e. as a system of three first-order ordinary differential equations:  

             

.

,cos)/(2sin 000
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fpqp

pq ,
    (9.10) 

 Figure 4 shows several results of a numerical solution of Eq. (10).10 In all cases, parameters , 
0, and f0 are fixed, while the external frequency  is gradually changed. For the case shown on the top 
two panels, the system still tends to a stable periodic solution, with very low contents of higher 
harmonics. If the external force frequency is reduced by a just few percent, the 3rd subharmonic may be 
excited. (This effect has already been discussed in Sec. 5.8 – see, e.g., Fig. 5.15.) The next row shows 
that just a small further reduction of the frequency  leads to a new tripling of the period, i.e. the 
generation of a complex waveform with the 9th subharmonic. Finally (see the bottom panels of Fig. 4), 
even a minor further change of  leads to oscillations without any visible period, e.g., to the chaos.  

 In order to trace this transition, a direct inspection of the oscillation waveforms q(t) is not very 
convenient, and trajectories on the phase plane [q, p] also become messy if plotted for many periods of 
the external frequency. In situations like this, the Poincaré (or “stroboscopic”) plane, already discussed 
in Sec. 5.6, is much more useful. As a reminder, this is essentially just the phase plane [q, p], but with 
the points highlighted only once a period, e.g., at   = 2n, with n = 1, 2, …  On this plane, periodic 
oscillations of frequency  are represented just as one fixed point – see, e.g. the top panel in the right 
column of Fig. 4. The 3rd subharmonic generation, shown on the next panel, means the oscillation 
period’s tripling and is represented as the splitting of the fixed point into three. It is evident that this 
transition is similar to the period-doubling bifurcation in the logistic map, besides the fact (already 
discussed in Sec. 5.8) that in systems with an antisymmetric nonlinearity, such as the pendulum (10), the 
3rd subharmonic is easier to excite. From this point, the 9th harmonic generation (shown on the 3rd panel 
of Fig. 4), i.e. one more splitting of the points on the Poincaré plane, may be understood as one more 
step on the Feigenbaum-like route to chaos – see the bottom panel of that figure. 

9 See, e.g., Chapters 2-4 in H. Schuster and W. Just, Deterministic Chaos, 4th ed., Wiley-VCH, 2005, or Chapters 
8-9 in J. Thompson and H. Stewart, Nonlinear Dynamics and Chaos, 2nd ed., Wiley, 2002. 
10 In the actual simulation, a small term q, with  << 1, has been added to the left-hand side of this equation. This 
term slightly tames the trend of the solution to spread along the q-axis, and makes the presentation of results 
easier, without affecting the system’s dynamics too much. 
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Fig. 9.4. Oscillations in a pendulum with weak damping, δ/ω0 = 0.1, driven by a sinusoidal external 
force with a fixed effective amplitude f0/0

2 = 1, and several close values of the frequency  (listed on 
the panels). Left panel column: the oscillation waveforms q(t) recorded after certain initial transient 
intervals. Right column: representations of the same processes on the Poincaré plane of the variables 
[q, p], with the q-axis turned vertically, for the convenience of comparison with the left panels. 
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 So, the transition to chaos in dynamic systems may be at least qualitatively similar to that in 1D 
maps, with a law similar to Eq. (6) for the critical values of some parameter of the system (in Fig. 4, 
frequency ), though with a system-specific value of the coefficient . Moreover, we may consider the 
first two differential equations of the system (10) as a 2D map that relates the vector {qn+1, pn+1} of the 
coordinate and momentum, measured at   = 2(n + 1), with the previous value {qn, pn} of that vector, 
reached at   = 2n.  

 Unfortunately, this similarity also implies that the deterministic chaos in dynamic systems is at 
least as complex, and is as little understood, as in maps. For example, Fig. 5 shows (a part of) the phase 
diagram of the externally-driven pendulum, with the red bar marking the route to chaos traced in Fig. 4, 
and shading/hatching styles marking different oscillation regimes. One can see that the pattern is at least 
as complex as that shown in Figs. 2 and 3, and, besides a few features,11 is equally unpredictable from 
the form of the equation. 

 

 

 

 

 

 

 

 

 

 

 

 

  
 Are there any valuable general results concerning the deterministic chaos in dynamic systems? 
The most important (though an almost evident) result is that this phenomenon is impossible in any 
system described by one or two first-order differential equations with time-independent right-hand sides. 
Indeed, let us start with a single equation 

          ),(qfq        (9.11) 

where f(q) is any single-valued function. This equation may be directly integrated to give 

            const,
)(
 

q

q'f

dq'
t      (9.12) 

showing that the relation between q and t is unique and hence does not leave any place for chaos.  

11 In some cases, it is possible to predict a parameter region where chaos cannot happen, due to the lack of any 
instability-amplification mechanism. Unfortunately, typically the analytically predicted boundaries of such a 
region form a rather loose envelope of the actual (numerically simulated) chaotic regions. 

Fig. 9.5. The phase diagram of an externally driven 
pendulum with weak damping (δ/0 = 0.1). The 
regions of oscillations with the basic period are not 
shaded; the notation for other regions is as follows. 
Doted: subharmonic generation; cross-hatched: 
chaos; hatched: either chaos or the basic period 
(depending on the initial conditions); hatch-dotted: 
either the basic period or subharmonics. Solid lines 
show the boundaries of single-regime regions, 
while dashed lines are the boundaries of the regions 
where several types of motion are possible. (Figure 
courtesy by V. Kornev.) 
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 Next, let us explore a system of two such equations: 
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     (9.13) 

Consider its phase plane shown schematically in Fig. 6. In a “usual” system, the trajectories approach 
either some fixed point (Fig. 6a) describing static equilibrium, or a limit cycle (Fig. 6b) describing 
periodic oscillations. (Both notions are united by the term attractor because they “attract” trajectories 
launched from various initial conditions.) On the other hand, phase plane trajectories of a chaotic system 
of equations that describe physical variables (which cannot be infinite), should be confined to a limited 
phase plane area, and simultaneously cannot start repeating each other. (This topology is frequently 
called the strange attractor.) For that, the 2D trajectories need to cross – see, e.g., point A in Fig. 6c.  

 

 

 

 

 

 

 

 

 However, in the case described by Eqs. (13), such a crossing is clearly impossible, because 
according to these equations, the tangent of a phase plane trajectory is a unique function of the  
coordinates{q1, q2}: 
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Thus, in this case, the deterministic chaos is impossible.12 It becomes, however, readily possible if the 
right-hand sides of a system similar to Eq. (13) depend either on other variables of the system or time. 
For example, if we consider the first two differential equations of the system (10), in the case f0 = 0 they 
have the structure of the system (13), and hence the chaos is impossible – even at δ < 0 when (as we 
know from Sec. 5.4) the system allows self-excitation of oscillations, leading to a limit-cycle attractor. 
However, if  f0  0, this argument does not work any longer, and (as we have already seen) the system 
may have a strange attractor – which is, for dynamic systems, a synonym for the deterministic chaos.  

 Thus, chaos is only possible in autonomous dynamic systems described by three or more 
differential equations of the first order.13  

12 A mathematically strict formulation of this statement is called the Poincaré-Bendixon theorem, which was 
proved by Ivar Bendixon in 1901. 
13 Since a typical dynamic system with one degree of freedom is described by two such equations, the number of 
first-order equations describing a dynamic system is sometimes called the number of its half-degrees of freedom. 
This notion is very useful and popular in statistical mechanics – see, e.g., SM Sec. 2.2 and on. 
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Fig. 9.6. Attractors in dynamical systems: (a) a fixed point, (b) a limit cycle, and (c) a strange attractor. 
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9.3. Chaos in Hamiltonian systems 

 The last conclusion is of course valid for Hamiltonian systems, which are just a particular type of 
dynamic systems. However, one may wonder whether these systems, which feature at least one first 
integral of motion, H = const, and hence are more “ordered” than the systems discussed above, can 
exhibit chaos at all. The answer is yes because such systems still can have mechanisms for the 
exponential growth of a small initial perturbation.  

 As the simplest way to show it, let us consider the so-called mathematical billiard, i.e. system 
with a ballistic particle (a “ball”) moving freely by inertia on a horizontal plane surface (“table”) limited 
by rigid walls. In this idealized model of the usual game of billiards, the ball’s velocity v is conserved 
when it moves on the table, and when it runs into a wall, the ball is elastically reflected from it as from a 
mirror,14 with the reversal of the sign of the normal velocity vn, and the conservation of the tangential 
velocity v, and hence without any loss of its kinetic (and hence the full) energy 

               222

22  nv
m

v
m

THE .    (9.15) 

This model, while being a legitimate 2D dynamic system,15 allows geometric analyses for several simple 
table shapes. The simplest of them is a rectangular billiard of area ab (Fig. 7), whose analysis may be 
readily carried out just by the replacement of each ball reflection event with the mirror reflection of the 
table in that wall – see the dashed lines on panel (a).  

 

 

 

 

 

  

  

 Such analysis (left for the reader’s pleasure :-) shows that if the tangent of the ball launching 
angle  is commensurate with the side length ratio:   

            ,tan
a

b

n

m
      (9.16) 

where n and m are non-negative integers without common integer multipliers, the ball returns exactly to 
the launch point O, after bouncing m times from each wall of length a, and n times from each wall of 
length b. (Red lines in Fig. 7a show an example of such a trajectory for n = m = 1, while blue lines, for 
m = 3, n = 1.) The larger is the sum (m + n), the more complex is such a closed “orbit”.  

14 A more scientific-sounding name for such a reflection is specular – from the Latin word “speculum” meaning a 
metallic mirror. 
15 Indeed, it is fully described by the following Lagrangian function: L = mv2/2 – U(), with U() = 0 for the 2D 
radius vectors  belonging to the table area, and U() = + outside the area. 

a

b

0


O O

(a)          (b) 

Fig. 9.7. Ball motion on 
a rectangular billiard at 
(a) a commensurate, and 
(b) an incommensurate 
launch angle.  
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 Finally, if (n + m)  , i.e. tan and b/a are incommensurate (meaning that their ratio is an 
irrational number), the trajectory covers all of the table area, and the ball never returns exactly to the 
launch point. Still, this is not genuine chaos. Indeed, a small shift of the launch point O shifts all the 
trajectory fragments by the same displacement. Moreover, at any time t, each of Cartesian components 
vj(t) of the ball’s velocity (with coordinate axes parallel to the table sides) may take only two values, 
vj(0), and hence may vary only as much as the initial velocity is being changed.  

 In 1963, i.e. well before E. Lorenz’s work, Yakov Sinai showed that the situation changes 
completely if an additional wall, in the shape of a circle, is inserted into the rectangular billiard (Fig. 8). 
For most initial conditions, the ball’s trajectory eventually runs into the circle (see the red line on panel 
(a) as an example), and the further trajectory becomes essentially chaotic. Indeed, let us consider the 
ball’s reflection from a circle-shaped wall – Fig. 8b. Due to the conservation of the tangential velocity, 
and the sign change of the normal velocity component, the reflection obeys a simple law: r = i. Figure 
8b shows that as the result, the magnitude of a small difference  between the angles of two close 
trajectories (as measured in the lab system), doubles at each reflection from the curved wall. This means 
that the small deviation grows along the ball trajectory as 

              2ln020~ NeN N   ,    (9.17) 

where N is the number of reflections from the convex wall.16  As we already know, such exponential 
divergence of trajectories, with a positive Lyapunov exponent, is the main feature of deterministic 
chaos.17 

   

 

 

 

 

 

 The most important new feature of the dynamic chaos in Hamiltonian systems is its dependence 
on initial conditions. (In the systems discussed in the previous two sections, that lack the integrals of 
motion, the initial conditions are rapidly “forgotten”, and the chaos is usually characterized after an 
initial transient period – see, e.g., Fig. 4.) Indeed, even a Sinai billiard allows periodic motion, along 
closed orbits, under certain initial conditions – see the blue and green lines in Fig. 8a as examples. Thus 

16 Superficially, Eq. (17) is also valid for a plane wall, but as was discussed above, a billiard with such walls 
features a full correlation between sequential reflections, so angle  always returns to its initial value. In a Sinai 
billiard, such correlation disappears. Concave walls may also make a billiard chaotic; a famous example is the 
stadium billiard, suggested by Leonid Bunimovich in 1974, with two straight, parallel walls connecting two semi-
circular, concave walls. Another example, which allows a straightforward analysis (first carried out by Martin 
Gutzwiller in the 1980s), is the so-called Hadamard billiard: an infinite (or rectangular) table with a non-
horizontal surface of negative curvature. 
17 Curved-wall billiards are also a convenient platform for studies of quantum properties of classically chaotic 
systems (for their conceptual discussion, see QM Sec. 3.5), in particular, the features called “quantum scars” – 
see, e.g., the spectacular numerical simulation results by E. Heller, Phys. Rev. Lett. 53, 1515 (1984). 

(a)         (b) 

Fig. 9.8. (a) Motion on a Sinai 
billiard table, and (b) the 
mechanism of the exponential 
divergence of close trajectories. 
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the chaos “depth” in such systems may be characterized by the “fraction”18 of the phase space of initial 
parameters (for a 2D billiard, of the 3D space of the initial values of x, y, and ) resulting in chaotic 
trajectories. 

 This conclusion is also valid for Hamiltonian systems that are met in physics much more 
frequently than exotic billiards, for example, coupled nonlinear oscillators without damping. Perhaps the 
earliest and the most popular example is the so-called Hénon-Heiles system,19 which may be described 
by the following Lagrangian function: 
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It is straightforward to use this function to derive the corresponding Lagrange equations of motion, 
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and find their first integral of motion (physically, the energy conservation law): 
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 In the context of our discussions in Chapters 5 and 6, Eqs. (19) may be readily interpreted as 
those describing two oscillators, with small-oscillation frequencies 1 and 2, coupled only by the 
quadratic terms on the right-hand sides of the equations. This means that as the oscillation amplitudes 
A1,2, and hence the total energy E of the system, are close to zero, the oscillator subsystems are virtually 
independent, each performing sinusoidal oscillations at its own frequency. This observation suggests a 
convenient way to depict the system’s motion.20 Let us consider a Poincaré plane for one of the 
oscillators (say, with coordinate q2), similar to that discussed in Sec. 2 above, with the only difference is 
that (because of the absence of an explicit function of time in the system’s equations), the trajectory on 
the phase plane [ 22 , qq  ] is highlighted at the moments when q1 = 0.  

 Let us start from the limit A1,2  0 when the oscillations of q2 are virtually sinusoidal.  As we 
already know (see Fig. 5.9 and its discussion), if the representation point highlighting was perfectly 
synchronous with frequency 2 of the oscillations, there would be only one point on the Poincaré plane 
– see, e.g. the right top panel of Fig. 4. However, at the q1 – initiated highlighting, there is no such 
synchronism, so each period, a different point of the elliptical (at the proper scaling of the velocity, 

18 Actually, quantitative characterization of the fraction is not trivial, because it may have fractal dimensionality. 
Unfortunately, due to lack of time I have to refer the reader interested in this issue to special literature, e.g., the 
monograph by B. Mandelbrot (cited above) and references therein. 
19 It was first studied in 1964 by M. Hénon and C. Heiles as a simple model of star rotation about a galactic 
center. Most studies of this equation have been carried out for the following particular case: m2 = 2m1, m11

2= 
m22

2. In this case, by introducing new variables x  q1,  y  q2,  and   1t, it is possible to rewrite Eqs. (19) in 
a parameter-free form. All the results shown in Fig. 9 below are for this case. 
20 Generally, the system has a trajectory in 4D space, e.g., that of coordinates q1,2 and their time derivatives, 
although the first integral of motion (20) means that for each fixed energy E, the motion is limited to a 3D 
subspace. Still, this is one dimension too many for a convenient representation of the motion. 

Hénon- 
Heiles  

system 
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circular) trajectory is highlighted, so the resulting points, for certain initial conditions, reside on a circle 
of radius A2. If we now vary the initial conditions, i.e. redistribute the initial energy between the 
oscillators, but keep the total energy E constant, on the Poincaré plane we get a set of ellipses.  

 Now, if the initial energy is increased, the nonlinear interaction of the oscillations starts to 
deform these ellipses, causing also their crossings – see, e.g., the top left panel of Fig. 9. Still, below a 
certain threshold value of E, all Poincaré points belonging to a certain initial condition sit on a single 
closed contour. Moreover, these contours may be calculated approximately, but with pretty good 
accuracy, using a straightforward generalization of the method discussed in Sec. 5.2.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 However, starting from some value of energy, certain initial conditions lead to sequences of 
points scattered over parts of the Poincaré plane, with a nonzero area – see the top right panel of Fig. 9. 
This means that the corresponding oscillations q2(t) do not repeat from one (quasi-) period to the next 
one – cf. Fig. 4 for the dissipative, forced pendulum. This is chaos.22 Still, some other initial conditions 

21 See, e.g., M. Berry, in: S. Jorna (ed.), Topics in Nonlinear Dynamics, AIP Conf. Proc. No. 46, AIP, 1978, pp. 
16-120. 
22 This fact complies with the necessary condition of chaos, discussed at the end of Sec. 2, because Eqs. (19) may 
be rewritten as a system of four differential equations of the first order. 

Fig. 9.9. Poincaré planes of the Hénon- 
Heiles system (19), in notation y  q2, for three 
values of the dimensionless energy e  E/E0, 
with E0  m11

2/2.  Adapted from M. 
Hénon and C. Heiles, The Astron. J. 69, 73 
(1964). © AAS, reproduced with permission. 
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lead to closed contours.  This feature is similar to that in Sinai billiards and is typical for Hamiltonian 
systems. As the energy is increased, larger and larger parts of the Poincaré plane correspond to the 
chaotic motion, signifying deeper and deeper chaos – see the bottom panel of Fig. 9. 

 

9.4. Chaos and turbulence 

 This extremely short section consists of essentially just one statement, extending the discussion 
in Sec. 8.5. The (re-) discovery of the deterministic chaos in systems with just a few degrees of freedom 
in the 1960s has changed the tone of the debates concerning turbulence origins, very considerably. At 
first, an extreme point of view that equated the notions of chaos and turbulence, became the debate’s 
favorite.23 However, after the initial excitement, a significant role of the Richardson-style energy-
cascade mechanisms, involving many degrees of freedom, were rediscovered and could not be ignored 
any longer. To the best knowledge of this author, who is a distant albeit interested observer of that field, 
most experimental and numerical-simulation data carry features of both mechanisms, so the debate 
continues.24 Due to the age difference, most readers of these notes have much better chances than the 
author to see where this discussion eventually leads.25 

 

9.5. Exercise problems 

9.1. Generalize the reasoning of Sec. 1 to an arbitrary 1D map qn+1 = f(qn), with the function f(q) 
differentiable at all points of interest. In particular, derive the condition of stability of an N-point limit 
cycle q(1)  q(2)  … q(N)  q(1)…  
 
 9.2. Use the stability condition derived in the previous problem, to analyze the possibility of 
deterministic chaos in the so-called tent map, with 

 
  .20with 

 ,1½for  ,1

,½0for          ,









 r

qqr

qrq
qf  

  
 9.3. Find the conditions of existence and stability of fixed points of the so-called standard circle 
map: 

nnn q
K

qq 


2sin
21  , 

where qn are real numbers defined modulo 1 (i.e. with qn + 1 identified with qn), while  and K are 
constant parameters. Discuss the relevance of the result for phase locking of self-oscillators – see, e.g., 
Sec. 5.4. 
 

23 An important milestone in that way was the work by S. Newhouse et al.,  Comm. Math. Phys. 64, 35 (1978), 
who proved the existence of a strange attractor in a rather abstract model of fluid flow. 
24 See, e.g., U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge U. Press, 1996.  
25 The reader interested in deterministic chaos as such may like to have a look at a very popular book by S. 
Strogatz, Nonlinear Dynamics and Chaos, Westview, 2001. 
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 9.4. Find the conditions of existence and stability of fixed points of the so-called Hénon map:26 

.10with  ,

,1

1

2
1









bbqp

paqq

nn

nnn
 

 
 9.5. Is the deterministic chaos possible in our “testbed” problem shown in Fig. 2.1? What if an 
additional periodic external force is applied to the bead? Explain your answers. 

 

 

  

 

26 This map, first explored by M. Hénon in 1976 (for a particular set of constants a and b), has played an important 
historic role in the study of strange attractors.  
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Chapter 10. A Bit More of Analytical Mechanics 

This concluding chapter reviews two alternative approaches to analytical mechanics, whose major 
value is a closer parallel to quantum mechanics in general and its quasiclassical (WKB) approximation 
in particular. One of them, the Hamiltonian formalism, is also convenient for the derivation of an 
important asymptotic result, the adiabatic invariance, for classical systems with slowly changing 
parameters.  

 

10.1. Hamilton equations 

Throughout this course, we have seen how analytical mechanics, in its Lagrangian form, is 
invaluable for solving various particular problems of classical mechanics. Now let us discuss several 
alternative formulations1 that may not be much more useful for this purpose, but shed additional light on 
possible extensions of classical mechanics, most importantly to quantum mechanics. 

 As was already discussed in Sec. 2.3, the partial derivative pj  L/ jq  participating in the 

Lagrange equation (2.19), 

      ,0







jj q

L

q

L

dt

d


     (10.1) 

may be considered as the generalized momentum corresponding to the generalized coordinate qj, and the 
full set of these momenta may be used to define the Hamiltonian function (2.32): 

                
j

jj LqpH  .     (10.2) 

Now let us rewrite the full differential of this function2 in the following form:  
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    (10.3) 

According to the definition of the generalized momentum, the second terms of each sum over j in the 
last expression cancel each other, while according to the Lagrange equation (1), the derivative L/qj is 
equal to jp , so 

             




j

jjjj dqpdpqdt
t

L
dH  .    (10.4) 

 So far, this is just a universal identity. Now comes the main trick of Hamilton’s approach: let us 
consider H as a function of the following independent arguments: time t, the generalized coordinates qj,  

1 Due to not only William Rowan Hamilton (1805-1865), but also Carl Gustav Jacob Jacobi (1804-1851).  
2 Actually, this differential was already spelled out (but partly and implicitly) in Sec. 2.3 – see Eqs. (2.33)-(2.35). 
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and the generalized momenta pj – rather than generalized velocities jq  as in the Lagrangian formalism. 

With this new commitment, the general “chain rule” of differentiation of a function of several arguments 
gives 

          






















j

j
j

j
j

dp
p

H
dq

q

H
dt

t

H
dH ,    (10.5) 

where dt, dqj, and dpj are independent differentials. Since Eq. (5) should be valid for any choice of these 
argument differentials, it should hold in particular if they correspond to the real law of motion, for 
which Eq. (4) is valid as well. The comparison of Eqs. (4) and (5) gives us three relations: 

        .
t

L

t

H








      (10.6) 
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j q

H
p

p

H
q








      (10.7) 

Comparing the first of them with Eq. (2.35), we see that 

         ,
t

H

dt

dH




       (10.8) 

meaning that the function H(t, qj, pj) can change in time only via its explicit dependence on t. Two Eqs. 
(7) are even more substantial: provided that such function H(t, qj, pj) has been calculated, they give us 
two first-order differential equations (called the Hamilton equations) for the time evolution of the 
generalized coordinate and generalized momentum of each degree of freedom of the system.3  

Let us have a look at these equations for the simplest case of a system with one degree of 
freedom, with the Lagrangian function (3.3): 

           ).,(
2 ef

2ef tqUq
m

L        (10.9) 

In this case, qmqLp  ef/  , and .),(2/ ef
2

ef tqUqmLqpH    To honor our new commitment, 

we need to express the Hamiltonian function explicitly via t, q, and p (rather than q ). From the above 

expression for p, we immediately have ;/ efmpq   plugging this expression back to Eq. (9), we get 

            ).,(
2 ef

ef

2

tqU
m

p
H       (10.10) 

Now we can spell out Eqs. (7) for this particular case: 

                ,
efm

p

p

H
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      (10.11) 

            .ef

q

U

q

H
p








      (10.12) 

3 Of course, the right-hand side of each equation (7) may include coordinates and momenta of other degrees of 
freedom as well, so the equations of motion for different j are generally coupled. 

Hamilton 
equations 
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 While the first of these equations just repeats the definition of the generalized momentum 
corresponding to the coordinate q, the second one gives the equation of momentum’s change. 
Differentiating Eq. (11) over time, and plugging Eq. (12) into the result, we get: 

           .
1 ef

efef q

U

mm

p
q







      (10.13) 

So, we have returned to the same equation (3.4) that had been derived from the Lagrangian approach.4  

 Thus, Hamiltonian formalism does not give much help for the solution of this problem – and 
indeed most problems of classical mechanics. (This is why its discussion had been postponed until the 
very end of this course.) Moreover, since the Hamiltonian function H(t, qj, pj) does not include 
generalized velocities explicitly, the phenomenological introduction of dissipation in this approach is 
less straightforward than that in the Lagrangian equations, whose precursor form (2.17) is valid for 
dissipative forces as well. However, the Hamilton equations (7), which treat the generalized coordinates 
and momenta in a manifestly symmetric way, are heuristically fruitful – besides being very appealing 
aesthetically. This is especially true in the cases where these arguments participate in H in a similar way. 
For example, in the very important case of a dissipation-free linear (“harmonic”) oscillator, for which 
Uef = efq

2/2, Eq. (10) gives the symmetric form 

            .  where,
2222 ef
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p
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   (10.14) 

The Hamilton equations (7) for this system preserve that symmetry, especially evident if we introduce 
the normalized momentum  Ñ   p/mef0 (already used in Secs. 5.6 and 9.2): 

        ., 00 q
dt

d

dt

dq  
Ñ

Ñ      (10.15) 

 More practically, the Hamilton approach gives additional tools for the search for the integrals of 
motion. To see that, let us consider the full time derivative of an arbitrary function f(t, qj, pj): 
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Plugging in jq  and jp  from the Hamilton equations (7), we get 
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  .   (10.17) 

The last term on the right-hand side of this expression is the so-called Poisson bracket,5 and is defined, 
for two arbitrary functions f(t, qj, pj) and g(t, qj, pj), as 

4 The reader is strongly encouraged to perform a similar check for a few more problems, for example those listed 
at the end of the chapter, to get a better feeling of how the Hamiltonian formalism works. 
5 Named after Siméon Denis Poisson (1781-1840), of the Poisson equation and the Poisson statistical distribution 
fame. 

Dynamics  
of arbitrary 

variable 
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From this definition, one can readily verify that besides evident relations {f, f} = 0 and {f, g} = –{g, f}, 
the Poisson brackets obey the following important Jacobi identity: 

                  .0,,,,,,  gfhfhghgf     (10.19) 

 Now let us use these relations for a search for integrals of motion. First, Eq. (17) shows that if a 
function f does not depend on time explicitly, and 

           ,0, fH       (10.20) 

then df/dt = 0, i.e. that function is an integral of motion. Moreover, it turns out that if we already know 
two integrals of motion, say f and g, then the following function, 

          gfF , ,      (10.21) 

is also an integral of motion – the so-called Poisson theorem. In order to prove it, we may use the Jacobi 
identity (19) with h = H. Next, using Eq. (17) to express the Poisson brackets {g, H}, {H, g}, and {H,{f, 
g}} = {H, F} via the full and partial time derivatives of the functions f , g, and F, we get 
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so if f and g are indeed integrals of motion, i.e., df/dt = dg/dt = 0, then 
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  (10.23) 

Plugging Eq. (21) into the first term of the right-hand side of this equation, and differentiating it by 
parts, we get dF/dt = 0, i.e. F is indeed an integral of motion as well. 

 Finally, one more important role of the Hamilton formalism is that it allows one to trace the 
close formal connection between classical and quantum mechanics. Indeed, using Eq. (18) to calculate 
the Poisson brackets of the generalized coordinates and momenta, we readily get  

           .,,0,,0, jj'j'jj'jj'j pqppqq     (10.24) 

In quantum mechanics, the operators of these variables (“observables”) obey commutation relations6 

            ,ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ '''' jjjjjjjj ipqppqq     (10.25) 

where the definition of the commutator,   gffgfg ˆˆˆˆˆ,ˆ  , is to a certain extent7 similar to that (18) of 
the Poisson bracket. We see that the classical relations (24) are similar to the quantum-mechanical 
relations (25) if the following parallel has been made: 

6 See, e.g., QM Sec. 2.1. 

Poisson 
bracket 
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 .     (10.26) 

 This analogy extends well beyond Eqs. (24)-(25). For example, by making the replacement (26) 
in Eq. (17), we get 
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,   (10.27) 

which is the correct equation of operator evolution in the Heisenberg picture of quantum mechanics.8 
The parallel (26) may give important clues in the search for the proper quantum-mechanical operator of 
a given observable – which is not always elementary. 

 

10.2. Adiabatic invariance 

 One more application of the Hamiltonian formalism in classical mechanics is the solution of the 
following problem.9 Earlier in the course, we already studied some effects of time variation of 
parameters of a single oscillator (Sec. 5.5) and coupled oscillators (Sec. 6.5). However, those 
discussions were focused on the case when the parameter variation speed is comparable with the own 
oscillation frequency (or frequencies) of the system. Another practically important case is when some 
system’s parameter (let us call it ) is changed much more slowly (adiabatically10), 

         
T
1





,      (10.28) 

where T  is a typical period of oscillations in the system. Let us consider a 1D system whose 

Hamiltonian H(q, p, ) depends on time only via such a slow evolution of such parameter  = (t), and 
whose initial energy restricts the system’s motion to a finite coordinate interval – see, e.g., Fig. 3.2c.  

 Then, as we know from Sec. 3.3, if the parameter  is constant, the system performs a periodic 
(though not necessarily sinusoidal) motion back and forth the q-axis, or, in a different language, along a 
closed trajectory on the phase plane [q, p] – see Fig. 1.11 According to Eq. (8), in this case, H is constant 
along the trajectory. (To distinguish this particular value of H from the Hamiltonian function as such, I 
will call it E, implying that this constant coincides with the full mechanical energy E – as does for the 
Hamiltonian (10), though this assumption is not necessary for the calculation made below.) 

The oscillation period T  may be calculated as a contour integral along this closed trajectory: 

7 There is, of course, a conceptual difference between the “usual” products of the function derivatives 
participating in the Poisson brackets, and the operator “products” (meaning their sequential action on a state 
vector) forming the commutator.  
8 See, e.g., QM Sec. 4.6. 
9 Various aspects of this problem and its quantum-mechanical extensions were first discussed by L. Le Cornu 
(1895), Lord Rayleigh (1902), H. Lorentz (1911), P. Ehrenfest (1916), and M. Born and V. Fock (1928).
10 This term is also used in thermodynamics and statistical mechanics, where it implies not only a slow parameter 
variation (if any) but also thermal insulation of the system – see, e.g., SM Sec. 1.3. Evidently, the latter condition 
is irrelevant in our current context. 
11 As a reminder, we discussed such phase-plane representations in Chapter 5 – see, e.g., Figs. 5.5, 5.9, and 5.16. 

CM  QM 
relation 
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T .     (10.29) 

Using the first of the Hamilton equations (7), we may represent this integral as  

              dq
pH 


/

1
T .     (10.30) 

At each given point q, H = E is a function of p alone, so we may flip the partial derivative in the 
denominator just as the full derivative, and rewrite Eq. (30) as 

      dq
E

p
 


T .      (10.31) 

For the particular Hamiltonian (10), this relation is immediately reduced to Eq. (3.27), now in the form 
of a contour integral: 

            dq
qUE
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 Naively, it may look that these formulas may be also used to find the motion period’s change 
when the parameter  is being changed adiabatically, for example, by plugging the given functions 
mef() and Uef(q, ) into Eq. (32). However, there is no guarantee that the energy E in that integral 
would stay constant as the parameter changes, and indeed we will see below that this is not necessarily 
the case. Even more interestingly, in the most important case of the harmonic oscillator (Uef = efq

2/2), 
whose oscillation period T  does not depend on E (see Eq. (3.29) and its discussion), its variation in the 

adiabatic limit (28) may be readily predicted: T () = 2/0() = 2[mef()/ef()]1/2, but the dependence 

of the oscillation energy E (and hence of the oscillation amplitude) on  is not immediately obvious. 

 In order to address this issue, let us use Eq. (8) (with E = H) to represent the rate of the energy 
change with (t), i.e. in time, as 

             
dt

dH

t

H

dt

dE 








 .     (10.33) 

Since we are interested in a very slow (adiabatic) time evolution of energy, we can average Eq. (33) 
over fast oscillations in the system, for example over one oscillation period T, treating d/dt as a 
constant during this averaging. (This is the most critical point of this argumentation, because at any non-

Fig. 10.1. Phase-plane representation of periodic 
oscillations of a 1D Hamiltonian system, for two 
values of energy (schematically). 
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vanishing rate of parameter change the oscillations are, strictly speaking, non-periodic.12) The averaging 
yields 
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.    (10.34) 

Transforming this time integral to the contour one, just as we did at the transition from Eq. (29) to Eq. 
(30), and then using Eq. (31) for T , we get 
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 At each point q of the contour, H is a function of not only , but also of p, which may be also -
dependent, so if E is fixed, the partial differentiation of the relation E = H over  yields 
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Plugging the last relation to Eq.(35), we get 
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Since the left-hand side of Eq. (37) and the derivative d/dt do not depend on q, we may move them into 
the integrals over q as constants, and rewrite Eq. (37) as 

       .0
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     (10.38) 

 Now let us consider the following integral over the same phase-plane contour, 

                  pdqJ
2
1

,      (10.39) 

called the action variable. Just to understand its physical sense, let us calculate J for a harmonic 
oscillator (14). As we know very well from Chapter 5, for such an oscillator, q = Acos, p = –
mef0Asin (with  = 0t + const), so J may be easily expressed either via the oscillations’ amplitude 
A, or via their energy E = H = mef0

2A2/2: 
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  (10.40) 

12 Because of the implied nature of this conjecture (which is very close to the assumptions made at the derivation 
of the reduced equations in Sec. 5.3), new, more strict (but also much more cumbersome) proofs of the final Eq. 
(42) are still being offered in literature – see, e.g., C. Wells and S. Siklos, Eur. J. Phys. 28, 105 (2007) and/or A. 
Lobo et al., Eur. J. Phys. 33, 1063 (2012). 

Action  
variable 
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 Returning to a general system with adiabatically changed parameter ,  let us use the definition 
of J, Eq. (39), to calculate its time derivative, again taking into account that at each point q of the 
trajectory, p is a function of E and : 
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.   (10.41) 

Within the accuracy of our approximation, in which the contour integrals (38) and (41) are calculated 
along a closed trajectory, the factor dE/dt is indistinguishable from its time average, and these integrals 
coincide, so the result (38) is applicable to Eq. (41) as well. Hence, we have finally arrived at a very 
important result: at a slow parameter variation, dJ/dt = 0, i.e. the action variable remains constant: 

          constJ .      (10.42) 

This is the famous adiabatic invariance.13 In particular, according to Eq. (40), in a harmonic oscillator, 
the energy of oscillations changes proportionately to its own (slowly changed) frequency. 

Before moving on, let me briefly note that the adiabatic invariance is not the only application of 
the action variable J. Since the initial choice of generalized coordinates and velocities (and hence the 
generalized momenta) in analytical mechanics is arbitrary (see Sec. 2.1), it is almost evident that J may 
be taken for a new generalized momentum corresponding to a certain new generalized coordinate ,14 
and that the pair {J, } should satisfy the Hamilton equations (7), in particular, 

                   .
J

H

dt
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       (10.43) 

Following the commitment of Sec. 1 (made there for the “old” arguments qj, pj), before the 
differentiation on the right-hand side of Eq. (43), H should be expressed as a function (besides t) of the 
“new” arguments J and . For time-independent Hamiltonian systems, H is uniquely defined by J – see, 
e.g., Eq. (40). Hence in this case the right-hand side of Eq. (43) does not depend on either t or , so 
according to that equation,  (called the angle variable) is a linear function of time: 

               const



 t
J

H
.     (10.44) 

For a harmonic oscillator, according to Eq. (40), the derivative H/J = E/J is just 0  2/T, 

so  = 0t + const, i.e. it is just the full phase  that was repeatedly used in this course – especially in 
Chapter 5. It may be shown that a more general form of this relation, 

       
T
2





J

H
,      (10.45) 

13 For certain particular oscillators, e.g., a point pendulum, Eq. (42) may be also proved directly – an exercise 
highly recommended to the reader. 
14 This, again, is a plausible argument but not a strict proof. Indeed: though, according to its definition (39), J is 
nothing more than a sum of several (formally, the infinite number of) values of the momentum p, they are not 
independent, but have to be selected on the same closed trajectory on the phase plane. For more mathematical 
vigor, the reader is referred to Sec. 45 of Mechanics by Landau and Lifshitz (which was repeatedly cited above), 
which discusses the general rules of the so-called canonical transformations from one set of Hamiltonian 
arguments to another one – say from {p, q} to {J, }.  

Adiabatic 
invariance 
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is valid for an arbitrary system described by Eq. (10). Thus, Eq. (44) becomes 

               const2Θ 
T
t .     (10.46) 

 This means that for an arbitrary (nonlinear) 1D oscillator, the angle variable  is a convenient 
generalization of the full phase . Due to this reason, the variables J and  present a convenient tool for 
discussion of certain fine points of the dynamics of strongly nonlinear oscillators – for whose discussion 
I, unfortunately, do not have time/space.15 

 

10.3. The Hamilton principle 

 Now let me show that the Lagrange equations of motion, which were derived in Sec. 2.1 from 
the Newton laws, may be also obtained from the so-called Hamilton principle,16 namely the condition of 
a minimum (or rather an extremum) of  the following integral called action: 

         
fin

ini

t

t
LdtS ,      (10.47) 

where tini and tfin are, respectively, the initial and final moments of time, at which all generalized 
coordinates and velocities are considered fixed (not varied) – see Fig. 2. 

 

 

 

 

 

 

 

 The proof of that statement is rather simple. Considering, similarly to Sec. 2.1, a possible virtual 
variation of the motion, described by infinitesimal deviations { )(tq j , )(tq j } from the real motion, the 

necessary condition for S to be minimal is 

               0
fin

ini

 
t

t
dtLS  ,     (10.48) 

where S and L are the variations of the action and the Lagrange function, corresponding to the set 
{ )(tq j , )(tq j }. As has been already discussed in Sec. 2.1, we can use the operation of variation just 

15 An interested reader may be referred, for example, to Chapter 6 in J. Jose and E. Saletan, Classical Dynamics, 
Cambridge U. Press, 1998. 
16 It is also called the “principle of least action”. (This name may be fairer in the context of a long history of the 
development of the principle, starting from its simpler particular forms, which includes the names of P. de Fermat, 
P. Maupertuis, L. Euler, and J.-L. Lagrange.) 

Fig. 10.2. Deriving the Hamilton 
principle. 

actual 
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motion jj qq  ,
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as the usual differentiation (but at a fixed time, see Fig. 2), swapping these two operations if needed – 
see Fig. 2.3 and its discussion. Thus, we may write 

       .  
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  (10.49) 

After plugging the last expression into Eq. (48), we can integrate the second term by parts: 
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   (10.50) 

Since the generalized coordinates in the initial and final points are considered fixed (not affected 
by the variation), all qj(tini) and qj(tfin) vanish, so the second term in the last form of Eq. (50) vanishes 
as well. Now multiplying and dividing the last term of that expression by dt, we finally get 
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 (10.51) 

This relation should hold for an arbitrary set of functions qj(t), and for any time interval, and this is 
only possible if the expressions in the square brackets equal zero for all j, giving us the set of the 
Lagrange equations (2.19). So, the Hamilton principle indeed gives the Lagrange equations of motion.  

 It is fascinating to see how the Hamilton principle works for particular cases. As a very simple 
example, let us consider the usual 1D linear oscillator, with the Lagrangian function used so many times 
before in this course: 

             2
2
02

22
q

m
q

m
L


  .     (10.52) 

As we know very well, the Lagrange equations of motion for this L are exactly satisfied by any 
sinusoidal function with the frequency 0, in particular by a symmetric function of time 

              tAtqtAtq 00e0e sin that  so,cos    .   (10.53) 

On a limited time interval, say 0  0t  +/2, this function is rather smooth and may be well 
approximated by another simple, reasonably selected functions of time, for example  

          tAtqtAtq  2 that  so,1 a
2

a   ,   (10.54) 

provided that the parameter  is also selected reasonably. Let us take  = (/20)
2, so the approximate 

function qa(t) coincides with the exact function qe(t) at both ends of our time interval (Fig.3): 

                    
0

fininifinefinainieinia 2
,0  where,0,




 tttqtqAtqtq , (10.55) 

and check which of them the Hamilton principle “prefers”, i.e. which function gives the least action.  
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 An elementary calculation of the action (47) corresponding to these two functions, yields 
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, (10.56) 

with the first terms in all the parentheses coming from the time integrals of the kinetic energy, and the 
second terms, from those of the potential energy.  

 This result shows, first, that the exact function of time, for which these two contributions exactly 
cancel,17 is indeed “preferable” for minimizing the action. Second, for the approximate function, the two 
contributions to the action are rather close to the exact ones, and hence almost cancel each other, 
signaling that this approximation is very reasonable. It is evident that in some cases when the exact 
analytical solution of the equations of motion cannot be found, the minimization of S by adjusting one or 
more free parameters, incorporated into a guessed “trial” function, may be used to find a reasonable 
approximation for the actual law of motion.18 

 It is also very useful to make the notion of action S, defined by Eq. (47), more transparent by 
calculating it for the simple case of a single particle moving in a potential field that conserves its energy 
E = T + U. In this case, the Lagrangian function L = T – U may be represented as 

             ,2)(2 2 EmvETUTTUTL     (10.57) 

with a time-independent E, so 

                const.2 EtdtmvLdtS     (10.58) 

Recasting the expression under the remaining integral as mvvdt = p(dr/dt)dt = pdr, we finally get 

                  constconst 0   EtSEtdS rp ,              (10.59) 

17 Such cancellation, i.e. the equality S = 0, is of course not the general requirement; it is specific only for this 
particular example, with a specific choice of the arbitrary constant in the potential energy of the system. 
18 This is essentially a classical analog of the variational method of quantum mechanics – see, e.g., QM Sec. 2.9. 
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Fig. 10.3. Plots of the functions 
q(t) given by Eqs. (53) and (54). 
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where the time-independent integral 

          rp dS0       (10.60) 

is frequently called the abbreviated action.19  

 This expression may be used to establish one more important connection between classical and 
quantum mechanics – now in its Schrödinger picture. Indeed, in the quasiclassical (WKB) 
approximation of that picture20 a particle of fixed energy E is described by a de Broglie wave 

           ,constexp),(Ψ   tdit rkr     (10.61) 

where the wave vector k is proportional to the particle’s momentum (which is possibly a slow function 
of r) and the frequency , to its energy: 

      .,


E
 p

k      (10.62) 

Plugging these expressions into Eq. (61) and comparing the result with Eq. (59), we see that the WKB 
wavefunction may be represented as 

       ./expΨ iS      (10.63) 

 Hence the Hamilton principle (48) means that the total phase of the quasiclassical wavefunction 
should be minimal along the particle’s real trajectory. But this is exactly the so-called eikonal minimum 
principle well known from the optics (though it is valid for any other waves as well), where it serves to 
define the ray paths in the geometric optics limit – similar to the WKB approximation. Thus, the ratio 
S/ may be considered just as the eikonal, i.e. the total phase accumulation, of the de Broglie waves.21  

 Now, comparing Eq. (60) with Eq. (39), we see that the action variable J is just the change of the 
abbreviated action S0 along a single phase-plane contour, divided by 2. This means, in particular, that 
in the WKB approximation, J is the number of de Broglie waves along the classical trajectory of a 
particle, i.e. an integer value of the corresponding quantum number. If the system’s parameters are 
changed slowly, the quantum number has to stay integer, and hence J cannot change, giving a quantum-
mechanical interpretation of the adiabatic invariance. The reader should agree that this is really 
fascinating: a fact of classical mechanics may be “derived” (or at least understood) more easily from the 
quantum mechanics’ standpoint. (As a reminder, we have run into a similarly pleasant surprise at our 
discussion of the non-degenerate parametric excitation in Sec. 6.7.) 

 

 

 

19 Comparing Eq. (59) with the Hamilton principle (48), we see that if the variational trajectories are limited to 
those of only one (actual) energy E, the real motion corresponds to the minimum of not only S but S0 as well. This 
fact is called the Maupertuis principle. (Historically, this result rather than Eq. (48), was called the “principle of 
least action”, and some authors still use this terminology, so the reader’s caution is advised.) 
20 See, e.g., QM Sec. 3.1. 
21 Indeed, Eq. (63) was the starting point for R. Feynman’s development of his path-integral formulation of 
quantum mechanics – see, e.g., QM Sec. 5.3.   
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10.4. The Hamilton-Jacobi equation 

 The action S, defined by Eq. (47), may be used for one more analytical formulation of classical 
mechanics. For that, we need to make one more, different commitment: S has to be considered as a 
function of the following independent arguments: the final time point tfin (which I will, for brevity, 
denote as t in this section), and the set of generalized coordinates (but not of the generalized velocities!) 
at that point:  

            )(,
ini

tqtSLdtS j

t

t
  .     (10.64) 

 Let us calculate the variation of this (from the variational point of view, new!) function, resulting 
from an arbitrary combination of variations of the final values qj(t) of the coordinates while keeping t 
fixed. Formally this may be done by repeating the variational calculations described by Eqs. (49)-(51), 
besides that now the variations qj at the finite point (t) do not necessarily equal zero. As a result, we get 
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For the motion along the real trajectory, i.e. satisfying the Lagrange equations (2.19), the second term of 
this expression equals zero. Hence Eq. (65) shows that, for (any) fixed time t,  

          .
jj q

L

q

S







      (10.66) 

But the last derivative is nothing else than the generalized momentum pj, so 
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q
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.      (10.67) 

(As a reminder, both parts of this relation refer to the final moment t of the trajectory.) As a result, the 
full derivative of the action S[t, qj(t)] over time takes the form 
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 Now, by the definition of S, the full derivative dS/dt is nothing more than the Lagrangian 
function L, so Eq. (67) yields 

              



j
jj qpL

t

S
.      (10.69) 

However, according to the definition (2) of the Hamiltonian function H, the right-hand side of Eq. (69) 
is just (–H), and we get an extremely simply-looking Hamilton-Jacobi equation 

          .H
t

S





      (10.70) 

 This simplicity is, however, rather deceiving, because to use this equation for the calculation of 
the function S(t, qj) for any particular problem, the Hamiltonian function has to be first expressed as a 
function of time t, generalized coordinates qj, and the generalized momenta pj (which may be, according 
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Jacobi  
action 

Hamilton- 
Jacobi 

equation 
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to Eq. (67), represented just as the derivatives S/qj). Let us see how this procedure works for the 
simplest case of a 1D system with the Hamiltonian function given by Eq. (10). In this case, the only 
generalized momentum is p = S/q, so 

              ),,(
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2 ef
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ef
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    (10.71) 

and Eq. (70) is reduced to the following partial differential equation, 
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.    (10.72) 

Its solution may be readily found in the easiest case of time-independent potential energy Uef = 
Uef (q). In this case, Eq. (72) is evidently satisfied by the following variable-separated solution:  

         tqSqtS  const)(),( 0 .     (10.73) 

Plugging this solution into Eq. (72), we see that since the sum of the two last terms on the left-hand side 
of that equation represents the full mechanical energy E, the constant in Eq. (73) is nothing but (–E). 
Thus for the function S0(q) we get an ordinary differential equation 

             .0)(
2

1
ef

2

0

ef









 qU

dq

dS

m
E     (10.74) 

Integrating it, we get 

             const,)(2 2/1
efef0 dqqUEmS     (10.75) 

so, finally, the action is equal to 

           const.)(2 2/1
efef EtdqqUEmS     (10.76) 

For the case of 1D motion of a single 1D particle, i.e. for q = x, mef = m, Uef(q) = U(x), this solution is 
just the 1D case of the more general Eqs. (59)-(60), which were obtained above in a much more simple 
way. (In particular, S0 is just the abbreviated action.)  

 This particular example illustrates that the Hamilton-Jacobi equation is not the most efficient 
way for the solution of most practical problems of classical mechanics. However, it may be rather useful 
for studies of certain mathematical aspects of dynamics.22 Moreover, in the early 1950s this approach 
was extended to a completely different field – the optimal control theory, in which the role of the action 
S is played by the so-called cost function – a certain functional of a system (understood in a very general 
sense of this term), that should be minimized by an optimal choice of a control signal – a function of 
time that affects the system’s evolution in time. From the point of view of this theory, Eq. (70) is a 
particular case of a more general Hamilton-Jacobi-Bellman equation.23  

22 See, e.g., Chapters 6-9 in I. C. Percival and D. Richards, Introduction to Dynamics, Cambridge U. Press, 1983. 
23 See, e.g., T. Bertsekas, Dynamic Programming and Optimal Control, vols. 1 and 2, Aetna Scientific, 2005 and 
2007. The reader should not be intimidated by the very unnatural term “dynamic programming”, which was 
invented by the founding father of this field, Richard Bellman, to lure government bureaucrats into funding his 
research, deemed too theoretical at that time. (Presently, it has a broad range of important applications.) 
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10.5. Exercise problems 

 In each of Problems 1-3, for the given system: 

  (i) derive the Hamilton equations of motion, and 
  (ii) check whether these equations are equivalent to those derived from the Lagrangian 
formalism. 

 

 
 10.1. Our “testbed” system: a bead on a ring rotated, with a fixed angular 
velocity , about its vertical diameter – see Fig.  2.1, partly reproduced on the right.  

 

 
 

 10.2. The system considered in Problem 2.3: a pendulum hanging from a point 
whose motion x0(t) in the horizontal direction is fixed – see the figure on the right. (No 
vertical-plane constraint.) 

10.3. The system considered in Problem 2.8: a block of mass m that 
can slide, without friction, along the inclined surface of a heavy wedge of 
mass m’. The wedge is free to move, also without friction, along a horizontal 
surface – see the figure on the right. (Both motions are within the vertical 
plane containing the steepest slope line.) 
 
 10.4. Derive and solve the equations of motion of a particle with the following Hamiltonian 
function: 

 2

2

1
rp a

m
H  , 

where a is a constant scalar. 
 
 10.5. Let L be the Lagrangian function, and H the Hamiltonian function, of the same system. 
What three of the following four statements, 

,0  (iv),0  (iii),0  (ii),0  )i( 
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L

dt
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are equivalent? Give an example of when those three equalities hold, but the fourth one does not. 

10.6. Calculate the Poisson brackets of a Cartesian component of the angular momentum L of a 
particle moving in a central force field and its Hamiltonian function H, and discuss the most evident 
implication of the result. 
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 10.7. After small oscillations had been initiated in the point pendulum shown in 
Fig. on the right, the supporting string is being pulled up slowly, so that the pendulum’s 
length l is being reduced. Neglecting dissipation,  

 (i) prove by a direct calculation that the oscillation energy is indeed changing 
proportionately to the oscillation frequency, as it follows from the constancy of the 
corresponding adiabatic invariant (40); and 
 (ii) find the l-dependence of the amplitudes of the angular and linear deviations 
from the equilibrium.  
 
 10.8. The mass m of a small body that performs 1D oscillations in the potential well U(x) = ax2n, 
with n > 0, is being changed slowly, without exerting any additional direct force. Calculate the 
oscillation energy E as a function of m. 
 
 10.9. A stiff ball is bouncing vertically from the floor of an elevator whose upward acceleration 
changes very slowly. Neglecting the energy dissipation, calculate how much the bounce height h 
changes during the acceleration’s increase from 0 to g. Is your result valid for an equal but abrupt 
increase of the elevator’s acceleration? 
 
 10.10.* A 1D particle of a constant mass m moves in a time-dependent potential U(q, t) = 
m2(t)q2/2, where (t) is a slow function of time, with .2   Develop the approximate method for 

the solution of the corresponding equation of motion, similar to the WKB approximation used in 
quantum mechanics.24 Use the approximation to confirm the conservation of the action variable (40) for 
this system. 

 Hint: You may like to look for the solution to the equation of motion in the form 

      tittq  exp , 

where  and  are some real functions of time, and then make proper approximations in the resulting 
equations for these functions. 

24 See, e.g., QM Sec. 2.4. 
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