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* * * 

 

Introductory Remarks 
 
 The structure of this classical electrodynamics course is quite traditional. Namely, in order to 
address the most important subjects of the field, which involve not only charged point particles but also 
conducting, dielectric, and magnetic media, the electromagnetic interactions are discussed in parallel 
with simple models of the electric and magnetic properties of most common materials.  

 Also following tradition, I use this part of my series (notably Chapter 2) as a convenient platform 
for the discussion of various methods of the solution of partial differential equations, including the use 
of the most important systems of curvilinear orthogonal coordinates and special functions.  

 One more traditional part of classical electrodynamics is an introduction to special relativity (in 
Chapter 9) because although this topic includes a substantial classical mechanics component, it is the 
electrodynamics that makes a relativistic analysis unavoidable. 
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Chapter 1. Electric Charge Interaction 

This chapter reviews the basics of electrostatics – the description of interactions between stationary (or 
relatively slowly moving) electric charges. Much of this material should be known to the reader from 
their undergraduate studies;1 because of that, the explanations are very brief. 

 

1.1. The Coulomb law 

 A quantitative discussion of classical electrodynamics, starting from the electrostatics, requires 
common agreement on the meaning of the following notions:2 

 - electric charges qk, as revealed, most explicitly, by observation of electrostatic interaction 
between the charged particles;  
 - point charges – the charged particles so small that their position in space, for the given 
problem, may be completely described (in the given reference frame) by their radius-vectors rk; and 
 - electric charge conservation – the fact that the algebraic sum of all charges qk  inside any 
closed volume is conserved unless the charged particles cross the volume’s border. 

  I will assume that these notions are well known to the reader. Using them, the Coulomb law3 for 
the interaction of two stationary point charges may be formulated as follows: 
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where Fkk’ denotes the electrostatic (Coulomb) force exerted on the charge number k by the charge 
number k’, separated from it by distance Rkk’ – see Fig. 1.  

 

 

 

 

 

 

1 For remedial reading, I can recommend, for example, D. Griffiths, Introduction to Electrodynamics, 4th ed., 
Pearson, 2015. 
2 On top of the more general notions of the classical Newtonian space, point particles and forces, as used in 
classical mechanics – see, e.g., CM Sec. 1.1. 
3 Formulated in 1785 by Charles-Augustin de Coulomb, on the basis of his earlier experiments, in turn rooted in 
prior studies of electrostatic phenomena, with notable contributions by William Gilbert, Otto von Guericke, 
Charles François de Cisternay Du Fay, Benjamin Franklin, and Henry Cavendish. 

Coulomb  
law 

Fig. 1.1. Coulomb force directions (for the case qkqk’ > 0). 
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 I am confident that this law is very familiar to the reader, but a few comments may still be due: 

(i) Flipping the indices k and k’, we see that Eq. (1) complies with the 3rd Newton law: the 
reciprocal force is equal in magnitude but opposite in direction: Fk’k = –Fkk’. 

 (ii) Since the vector Rkk’  rk – rk’, by its definition, is directed from point rk’ toward point rk 
(Fig. 1), Eq. (1) correctly describes the experimental fact that charges of the same sign (i.e. with qkqk’ > 
0) repulse, while those with opposite signs (qkqk’ < 0) attract each other.  

(iii) In some textbooks, the Coulomb law (1) is given with the qualifier “in free space” or “in 
vacuum”. However, actually, Eq. (1) remains valid even in the presence of any other charges – for 
example, of internal charges in a quasi-continuous medium that may surround the two charges (number 
k and k’) under consideration.  The confusion stems from the fact, to be discussed in detail in Chapter 3 
below, that in some cases it is convenient to formally represent the effect of the other charges as an 
effective (rather than actual!) modification of the Coulomb law.  

 (iv) The constant  in Eq. (1) depends on the system of units we use. In the Gaussian units,  is 
set to 1, for the price of introducing a special unit of charge (the statcoulomb) that would make 
experimental data compatible with Eq. (1) if the force Fkk’ is measured in the Gaussian units (dynes). On 
the other hand, in the International  System (“SI”) of units, the charge’s unit is one coulomb 
(abbreviated C), and  is different from 1: 

                   
0

SI 4

1


  ,      (1.2) 

where 0  8.85410-12 is called the electric constant.4  

 Unfortunately, the continuing struggle between zealous proponents of these two systems of units 
bears all the not-so-nice features of a religious war, with a similarly slim chance for any side to win it in 
any foreseeable future. In my humble view, each of these systems has its advantages and handicaps (to 
be noted on several occasions below), and every educated physicist should have no problem with using 
any of them. Following insisting recommendations of international scientific unions, I am using the SI 
units throughout my series. However, for the readers’ convenience, in this course (where the difference 
between the Gaussian and SI systems is especially significant) I will write the most important formulas 
with the constant (2) clearly displayed – for example, the combination of Eqs. (1) and (2) as 
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so the formal transfer to the Gaussian units may be performed just by dropping the front fraction. (In the 
rare cases when the transfer is not obvious, I will duplicate formulas in the Gaussian units.)  

Besides Eq. (3), another key experimental law of electrostatics is the linear superposition 
principle: the electrostatic forces exerted on some point charge (say, qk) by other charges add up as 
vectors, forming the net force 

4 Since 2018, one coulomb is defined, in the “legal” metrology, as a certain exactly fixed number of the 
fundamental electric charges e, and the “legal” SI value of 0 is not more exactly equal to 107/4c2 (where c is the 
speed of light) as it was before, but remains extremely close to that fraction, with the relative difference of the 
order of 10-10 – see appendix UCA: Selected Units and Constants. In this series, this minute difference is ignored. 

 in  
SI units 
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where the summation is extended over all charges but qk, and the partial force Fkk’ is described by Eq. 
(3). The fact that the sum is restricted to k’  k means that a point charge, in statics, does not interact 
with itself. This fact may look obvious from Eq. (3), whose right-hand side diverges at rk  rk’, but 
becomes less evident (though still true) in quantum mechanics – where the charge of even an elementary 
particle is effectively spread around some volume, together with the particle’s wavefunction.5 

Now we may combine Eqs. (3) and (4) to get the following expression for the net force F acting 
on a probe charge q located at point r: 
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This equality implies that it makes sense to introduce the notion of the electric field (as an entity 
independent of q), whose distribution in space is characterized by the following vector: 
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formally called the electric field strength – but much more frequently, just the “electric field”. In these 
terms, Eq. (5) becomes 
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Being just convenient is electrostatics, the notion of the field becomes unavoidable for the description of 
time-dependent phenomena (such as electromagnetic waves, see Chapter 7 and on), where the 
electromagnetic field shows up as a specific form of matter, different from the usual “material” particles 
– even though quantum electrodynamics (to be reviewed in QM Chapter 9) offers their joint description. 

 Many real-world problems involve multiple point charges located so closely that it is possible to 
approximate them with a continuous charge distribution. Indeed, let us consider a group of many (dN >> 
1) close charges, located at points rk’, all within an elementary volume d3r’. For relatively distant field 
observation points, with r – rk’  >> dr’, the geometrical factor in the corresponding terms of Eq. (7) is 
essentially the same. As a result, these charges may be treated as a single elementary charge dQ(r’). 
Since at dN >> 1, this elementary charge is proportional to the elementary volume d3r’, we can define 
the local 3D charge density (r’) by the following relation: 
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and rewrite Eq. (7) as an integral (over the volume containing all essential charges): 
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5 Note that some widely used approximations, e.g., the density functional theory (DFT) of multiparticle systems, 
essentially violate this law, thus limiting their accuracy and applicability – see, e.g., QM Sec. 8.4. 
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Note that for a continuous, smooth charge density (r’), the integral in Eq. (9) does not diverge at R  
r – r’  0, because in this limit, the fraction under the integral increases as R-2, i.e. slower than the 
decrease of the elementary volume d3r’, proportional to R3. 

 Let me emphasize the dual use of Eq. (9). In the case when (r) is a continuous function 
representing the average charge defined by Eq. (8), Eq. (9) is not valid at distances r – rk’   of the order 
of the distance between the adjacent point charges, i.e. does not describe rapid variations of the electric 
field at these distances. Such approximate, smoothly changing field E(r), is called macroscopic; we will 
repeatedly return to this notion in the following chapters. On the other hand, Eq. (9) may be also used 
for the description of the exact (frequently called microscopic) field of discrete point charges, by 
employing the notion of Dirac’s delta function, which is the mathematical description of a very sharp 
function equal to zero everywhere but one point, and still having a finite integral (equal to 1).6 Indeed, in 
this formalism, a set of point charges qk’ located in points rk’ may be represented by the pseudo-
continuous density  
         .)()(

'
'' 

k
kk 'q' rrr       (1.10) 

Plugging this expression into Eq. (9), we return to its exact, discrete version (7). In this sense, Eq. (9) is 
exact, and we may use it as the general expression for the electric field. 

  

1.2. The Gauss law 

 Due to the extension of Eq. (9) to point (“discrete”) charges, it may seem that we do not need 
anything besides it to solve any problem of electrostatics. In practice, however, this is not quite true – 
first of all, because the direct use of Eq. (9) frequently leads to complex calculations. Indeed, let us try 
to solve a problem that is conceptually very simple: find the electric field induced by a spherically 
symmetric charge distribution with density (r’) – see Fig. 2.  

 

  

 

 

 

 

 
 We may immediately use the problem’s symmetry to argue that the electric field should be also 
spherically symmetric, with only one component in the spherical coordinates: E(r)= E(r)nr, where nr  
r/r is the unit vector in the direction of the field observation point r. Taking this direction for the polar 
axis of a spherical coordinate system, we can use the evident axial symmetry of the system to reduce Eq. 
(9) to 

6 See, e.g., MA Sec. 14. The 2D (areal) charge density  and the 1D (linear) density  may be defined absolutely 
similarly to the 3D (volumic) density  :  dQ = d2r, dQ = dr. Note that the approximations in that either   0 
or   0 imply that   is formally infinite at the charge location; for example, the model in that a plane z = 0 is 
charged with areal density    0, means that  = (z), where (z) is Dirac’s delta function. 

Fig. 1.2. One of the simplest problems of 
electrostatics: the electric field produced by 
a spherically-symmetric charge distribution. 
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where , ’, and R are the geometrical parameters marked in Fig. 2. Since  and R may be readily 
expressed via r’ and ’, using the auxiliary parameters a and h,  
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Eq. (11) may be eventually reduced to an explicit integral over r’ and ’,  and worked out analytically, 
but that would require some effort. 

  For other problems, the integral (9) may be much more complicated, defying an analytical 
solution. One could argue that with the present-day abundance of computers and numerical algorithm 
libraries, one can always resort to numerical integration. This argument may be enhanced by the fact 
that numerical integration is based on the replacement of the required integral by a discrete sum, and the 
summation is much more robust to the (unavoidable) rounding errors than the finite-difference schemes 
typical for the numerical solution of differential equations. These arguments, however, are only partly 
justified, since in many cases the numerical approach runs into a problem sometimes called the curse of 
dimensionality – the exponential dependence of the number of needed calculations on the number of 
independent parameters of the problem.7 Thus, despite the proliferation of numerical methods in 
physics, analytical results have an everlasting value, and we should try to get them whenever we can. 
For our current problem of finding the electric field generated by a fixed set of electric charges, large 
help may come from the so-called Gauss law. 

 To derive it, let us consider a single point charge q inside a smooth closed surface S (Fig. 3), and 
calculate the product End

2r, where d2r is an elementary area of the surface (which may be well 
approximated with a plane fragment of that area), and En  En is the component of the electric field at 
that point, normal to the plane.  

  

 

 

 

 

  

  

 

 

 

 This component may be calculated as Ecos, where   is the angle between the vector E and the 
unit vector n normal to the surface. Now let us notice that the product cos d2r is nothing more than the 

7 For a more detailed discussion of this problem, see, e.g., CM Sec. 5.8. 

(a)       (b) 

Fig. 1.3. Deriving the Gauss law: a point charge q (a) inside the volume V, and (b) outside of that volume. 
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area d2r’ of the projection of d2r onto the plane normal to the vector r connecting the charge q with the 
considered point of the surface (Fig. 3), because the angle between the elementary areas d2r’ and d2r is 
also equal to . Using the Coulomb law for E, we get 
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cos 2

2
0

22 r'd
r

q
rdErdEn 

      (1.13) 

But the ratio d2r’/r2 is nothing more than the elementary solid angle d under which the areas d2r’ and 
d2r are seen from the charge point, so End

2r may be represented just as a product of d by a constant 
(q/40). Summing these products over the whole surface, we get 
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since the full solid angle equals 4. (The integral on the left-hand side of this relation is called the  flux 
of electric field through the surface S.)  

Relation (14) expresses the Gauss law for one point charge. However, it is only valid if the 
charge is located inside the volume V limited by the surface S. To find the flux created by a charge 
located outside of this volume, we still can use Eq. (13), but have to be careful with the signs of the 
elementary contributions EndA. Let us use the common convention to direct the unit vector n out of the 
closed volume we are considering (the so-called outer normal), so the elementary product End

2r = 
(En)d2r and hence d = End

2r’/r2 is positive if the vector E is pointing out of the volume (like in the 
example shown in Fig. 3a and at the upper-right area in Fig. 3b), and negative in the opposite case (for 
example, at the lower-left area in Fig. 3b). As the latter panel shows, if the charge is located outside of 
the volume, for each positive contribution d there is always an equal and opposite contribution to the 
integral. As a result, at the integration over the solid angle, the positive and negative contributions 
cancel exactly, so 

        .02 
S

n rdE       (1.15) 

 The real power of the Gauss law is revealed by its generalization to the case of several, 
especially many charges. Since the calculation of flux is a linear operation, the linear superposition 
principle (4) means that the flux created by several charges is equal to the (algebraic) sum of individual 
fluxes from each charge, for which either Eq. (14) or Eq. (15) are valid, depending on whether the 
charge is in or out of the volume. As a result, for the total flux, we get: 
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where QV is the net charge inside volume V. This is the full version of the Gauss law.8  

In order to appreciate the problem-solving power of the law, let us revisit the problem shown in  
Fig. 2, i.e. the field of a spherical charge distribution. Due to its symmetry, which had already been 
discussed above, if we apply Eq. (16) to a sphere of a certain radius r, the electric field has to be normal 

8 The law is named after the famed Carl Gauss (1777-1855), even though it was first formulated earlier (in 1773) 
by Joseph-Louis Lagrange who was also the father-founder of analytical mechanics – see, e.g., CM Chapter 2. 

Gauss  
law 
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to the sphere at each point (i.e., En = E), and its magnitude has to be the same at all points: En = E(r). As 
a result, the flux calculation is elementary: 
      

)(4 22 rErrdEn 
.     (1.17) 

Now applying the Gauss law (16), we get: 
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so, finally, 
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where Qr is the full charge inside the sphere of radius r: 

            .)(4
0

23  


r

rr'

r dr'r'r'r'dr'Q      (1.20) 

In particular, this formula shows that the field outside of a sphere of a finite radius R is exactly 
the same as if all its charge Q = Q(R) is concentrated in the sphere’s center. (Note that this important 
result is only valid for a spherically symmetric charge distribution.) For the field inside the sphere, 
finding the electric field still requires the explicit integration (20), but this 1D integral is much simpler 
than the 2D integral (11), and in some important cases may be readily worked out analytically. For 
example, if the charge Q is uniformly distributed inside a sphere of radius R, 
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then the integration is elementary: 
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We see that in this case, the field is growing linearly from the center to the sphere’s surface, and only at 
r > R starts to decrease in agreement with Eq. (19) with constant Q(r) = Q. Note also that the electric 
field is continuous for all r (including r = R) – as for all systems with finite volumic density,  

 In order to underline the importance of the last condition, let us consider one more elementary 
but very important example of Gauss law’s application. Let a thin plane sheet (Fig. 4) be charged 
uniformly, with a finite areal density  = const. In this case, it is fruitful to use the Gauss volume in the 
form of a planar “pillbox” of thickness 2z (where z is the Cartesian coordinate perpendicular to the 
plane) and certain area A – see the dashed lines in Fig. 4. Due to the symmetry of the problem, it is 
evident that the electric field should be: (i) directed along the z-axis, (ii) constant on each of the upper 
and bottom sides of the pillbox, (iii) equal and opposite on these sides, and (iv) parallel to the side 
surfaces of the box. As a result, the full electric field flux through the pillbox’s surface is just 2AE(z), so 
the Gauss law (16) yields 2AE(z) = QA/0  A/0, and we get a very simple but important formula 
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 Notice that, somewhat counter-intuitively, the field magnitude does not depend on the distance 
from the charged plane. From the point of view of the Coulomb law (5), this result may be explained as 
follows: the farther the observation point from the plane, the weaker the effect of each elementary 
charge, dQ = d2r, but the more such elementary charges give contributions to the z-component of 
vector E, because they are “seen” from the observation point at relatively small angles to the z-axis.  

Note also that though the magnitude E   E of this electric field is constant, its component En 
normal to the plane (for our coordinate choice, Ez) changes its sign at the plane, experiencing a 
discontinuity (jump) equal to  
             

0

00



 zEzEE zzz .    (1.24) 

This jump disappears if the surface is not charged. Returning for a split second to our charged sphere 
problem (Fig. 2), solving it we have considered the volumic charge density  to be finite everywhere, 
including the sphere’s surface, so on it  = 0, and the electric field should be continuous – as it is.  

 Admittedly, the integral form (16) of the Gauss law is immediately useful only for highly 
symmetrical geometries, such as in the two problems discussed above. However, it may be recast into an 
alternative, differential form whose field of useful applications is much wider. This form may be 
obtained from Eq. (16) using the divergence theorem of the vector algebra, which is valid for any space-
differentiable vector, in particular E, and for the volume V limited by any closed surface S:9 

            
S V

n rdrdE 32 )( E ,     (1.25) 

where  is the del (or “nabla”) operator of spatial differentiation.10 Combining Eq. (25) with the Gauss 
law (16), we get 

            
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For a given spatial distribution of electric charge (and hence of its electric field), this equation should be 
valid for any choice of the volume V. This can hold only if the function under the integral vanishes at 
each point, i.e. if11 

9 See, e.g., MA Eq. (12.2). Note also that the scalar product under the volumic integral in Eq. (25) is nothing else 
than the divergence of the vector E – see, e.g., MA Eq. (8.4), hence the theorem’s name. 
10 See, e.g., MA Secs. 8-10. 
11 In the Gaussian units, just as in the initial Eq. (6), 0 has to be replaced with 1/4, so the Maxwell 
equation (27) looks like E = 4, while Eq. (28) stays the same. 

Fig. 1.4. The electric field of 
a charged plane.

E

E


z

zA



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 1                Page 9 of 20 

         
0


E .      (1.27) 

Note that in sharp contrast with the integral form (16),  Eq. (27) is local: it relates the electric field’s 
divergence to the charge density at the same point. This equation, being the differential form of the 
Gauss law, is frequently called one of the famed Maxwell equations12 – to be discussed again and again 
later in this course.  

 In the mathematical terminology, Eq. (27) is inhomogeneous, because it has a right-hand side 
independent (at least explicitly) of the field E that it describes. Another, homogeneous Maxwell 
equation’s “embryo”  (this one valid for the stationary case only!) may be obtained by noticing that the 
curl of the point charge’s field, and hence that of any system of charges, equals zero:13 

          0E .      (1.28) 

(We will arrive at two other Maxwell equations, for the magnetic field, in Chapter 5, and then generalize 
all the equations to their full, time-dependent form at the end of Chapter 6. However, Eq. (27) will stay 
the same.) 

 Just to get a better gut feeling of Eq. (27), let us apply it to the same example of a uniformly 
charged sphere (Fig. 2). Vector algebra tells us that the divergence of a spherically symmetric vector 
function E(r) = E(r)nr may be simply expressed in spherical coordinates:14 E = [d(r2E)/dr]/r2. As a 
result, Eq. (27) yields a linear ordinary differential equation for the scalar function E(r): 
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which may be readily integrated on each of these segments: 
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To determine the integration constant c1, we can use the following boundary condition: E(0) = 0. (It 
follows from the problem’s spherical symmetry: in the center of the sphere, the electric field has to 
vanish, because otherwise, where would it be directed?) This requirement gives c1 = 0. The second 
constant, c2, may be found from the continuity condition E(R – 0) = E(R + 0), which has already been 
discussed above, giving c2 = R3/3  Q/4. As a result, we arrive at our previous results (19) and (22).   

 We can see that in this particular, highly symmetric case, using the differential form of the Gauss 
law is a bit more complex than its integral form. (For our second example, shown in Fig. 4, it would be 
even less natural.) However, Eq. (27) and its generalizations are more convenient for asymmetric charge 

12 Named after the genius of classical electrodynamics and statistical physics, James Clerk Maxwell (1831-1879). 
13 This follows, for example, from the direct application of MA Eq. (10.11) to any spherically-symmetric vector 
function of type f(r) = f(r)nr (in particular, to the electric field of a point charge placed at the origin), giving f = f 
= 0 and fr/ = fr/ = 0 so all components of the vector  f vanish. Since nothing prevents us from placing 
the reference frame’s origin at the point charge’s location, this result remains valid for any position of the charge. 
14 See, e.g., MA Eq. (10.10) for the particular case / = / = 0. 
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distributions, and are invaluable in cases where the distribution (r) is not known a priori and has to be 
found in a self-consistent way. (We will start discussing such cases in the next chapter.) 

 

1.3. Scalar potential and electric field energy 

 One more help for solving problems of electrostatics (and electrodynamics as a whole) may be 
obtained from the notion of the electrostatic potential, which is just the electrostatic potential energy U 
of a probe point charge q placed into the field in question, normalized by its charge: 

            
q

U
 .      (1.31) 

As we know from classical mechanics,15 the notion of U (and hence ) makes the most sense for the 
case of potential forces – for example, those depending just on the particle’s position. Eqs. (6) and (9) 
show that stationary electric fields fall into this category. For such a field, the potential energy may be 
defined as a scalar function U(r) that allows the force to be calculated as its gradient (with the opposite 
sign): 
          UF .      (1.32) 

Dividing both sides of this equation by the probe charge, and using Eqs. (6) and (31), we get16 

          E .      (1.33) 

To calculate the scalar potential, let us start from the simplest case of a single point charge q 
placed at the origin. For it, Eq. (7) takes the simple form 
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 .    (1.34) 

It is straightforward to verify that the last fraction in the last form of Eq. (34) is equal to –(1/r).17 
Hence, according to the definition (33), for this particular case 

         
r

q

04

1


  .      (1.35) 

(In the Gaussian units, this result is spectacularly simple:  = q/r.) Note that we could add an arbitrary 
constant to this potential (and indeed to any other distribution of  discussed below) without changing 
the field, but it is convenient to define the potential energy so it would approach zero at infinity. 

 In order to justify the introduction and the forthcoming exploration of U and , let me 
demonstrate (I hope, unnecessarily :-) how useful the notions are, on a very simple example. Let two 
similar charges q  be launched from afar, with the same initial speed v0 << c each, straight toward each 
other (i.e. with the zero impact parameter) – see Fig. 5. Since, according to the Coulomb law, the 

15 See, e.g., CM Sec. 1.4. 
16 Eq. (28) could be also derived from this relation because according to vector algebra, any gradient field has no 
curl –  see, e.g., MA Eq. (11.1). 
17 This may be done either by Cartesian components or using the well-known expression f = (df/dr)nr valid for 
any spherically-symmetric scalar function f(r) – see, e.g., MA Eq. (10.8) for the particular case / = / = 0. 
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charges repel each other with increasing force, they will stop at some minimum distance rmin from each 
other, and then fly back. We could of course find rmin directly from the Coulomb law. However, for that, 
we would need to write the 2nd Newton law for each particle (actually, due to the problem symmetry, 
they would be similar), then integrate them over time to find the particle velocity v as a function of 
distance, and only then recover rmin from the requirement v = 0. 

 

 

 

 

 The notion of potential allows this problem to be solved in one line. Indeed, in the field of 
potential forces, the system’s total energy E = T + U  T + q is conserved. In our non-relativistic case v 
<< c, the kinetic energy T is just mv2/2. Hence, equating the total energy of two particles at the points r 
=  and r = rmin, and using Eq. (35) for , we get 
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 ,     (1.36) 

immediately giving us the final answer: rmin = q2/40mv0
2. So, the notion of scalar potential is indeed 

very useful. 

 With this motivation, let us calculate  for an arbitrary configuration of charges. For a single 
charge in an arbitrary position (say, at point rk’), r   r  in Eq. (35) should be evidently replaced with 
r – rk’. Now, the linear superposition principle (3) allows for an easy generalization of this formula to 
the case of an arbitrary set of discrete charges, 
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Finally, using the same arguments as in Sec. 1, we can use this result to argue that in the case of an 
arbitrary continuous charge distribution 
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Again, Dirac’s delta function allows using the last equation to recover Eq. (37) for discrete charges as 
well, so Eq. (38) may be considered as the general expression for the electrostatic potential. 

For most practical calculations, using this expression and then applying Eq. (33) to the result, is 
preferable to using Eq. (9), because   is a scalar, while E is a 3D vector, mathematically equivalent to 
three scalars. Still, this approach may lead to technical problems similar to those discussed in Sec. 2. For 
example, applying it to the spherically symmetric distribution of charge (Fig. 2), we get the integral 
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which is not much simpler than Eq. (11). 
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Fig. 1.5. A simple problem of charged particle motion. 
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The situation may be much improved by recasting Eq. (38) into a differential form. For that, it is 
sufficient to plug the definition of , Eq. (33), into Eq. (27):   

            .)(
0
         (1.40) 

The left-hand side of this equation is nothing else than the Laplace operator of  (with the minus sign), 
so we get the famous Poisson equation18 for the electrostatic potential:  

  .
0

2


        (1.41) 

(In the Gaussian units, the Poisson equation is 2 = –4.) This differential equation is so convenient 
for applications that even its particular case for  = 0, 

           02   ,      (1.42) 

has earned a special name – the Laplace equation.19 

 In order to get a gut feeling of the Poisson equation’s value as a problem-solving tool, let us 
return to the spherically-symmetric charge distribution (Fig. 2) with a constant charge density . 
Exploiting this symmetry, we can represent the potential as (r), and hence use the following simple 
expression for its Laplace operator:20 
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so for the points inside the charged sphere (r  R) the Poisson equation yields 
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Integrating the last form of the equation over r once, with the natural boundary condition d/drr = 0 = 0 
(because of the condition E(0) =0, which has been discussed above), we get 
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Since this derivative is nothing more than –E(r), in this formula we can readily recognize our previous 
result (22). Now we may like to carry out the second integration to calculate the potential itself: 
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18 Named after Siméon Denis Poisson (1781-1840), also famous for the Poisson distribution – one of the central 
results of the probability theory – see, e.g., SM Sec. 5.2.  
19 Named after the famous mathematician (and astronomer) Pierre-Simon Laplace (1749-1827) who, together with 
Alexis Clairault, is credited for the development of the very concept of potential. 
20 See, e.g., MA Eq. (10.8) for / = / = 0. 
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 Before making any judgment on the integration constant c1, let us solve the Poisson equation (in 
this case, just the Laplace equation) for the range outside the sphere (r > R): 
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Its first integral, 
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also gives the electric field (with the minus sign). Now using Eq. (45) and requiring the field to be 
continuous at r = R, we get  
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in an evident agreement with Eq. (19). Integrating this result again, 
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we can select c3 = 0, so () = 0, in accordance with the usual (though not compulsory) convention. 
Now we can finally determine the constant c1 in Eq. (46) by requiring that this equation and Eq. (50) 
give the same value of  at the boundary r = R. (According to Eq. (33), if the potential had a jump, the 
electric field at that point would be infinite.) The final answer may be represented as  
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 This calculation shows that using the Poisson equation to find the electrostatic potential 
distribution for highly symmetric problems may be a bit more cumbersome than directly finding the 
electric field – say, from the Gauss law. However, we will repeatedly see below that if the electric 
charge distribution is not fixed in advance, using Eq. (41) may be the only practicable way to proceed. 

Returning now to the general theory of electrostatic phenomena, let us calculate the potential 
energy U of an arbitrary system of point electric charges qk. Despite the apparently simple relation (31) 
between U and  , the result is not that straightforward. Indeed, let us assume that the charge distribution 
has a finite spatial extent, so at large distances from it (formally, at r = ) the electric field tends to zero, 
so the electrostatic potential tends to a constant. Selecting this constant, for convenience, to equal zero, 
we may calculate U as a sum of the energy increments Uk created by bringing the charges, one by one, 
from infinity to their final positions rk – see Fig. 6.21 According to the integral form of Eq. (32), such a 
contribution is  
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21 Indeed, by the very definition of the potential energy of a system, it should not depend on the way we are 
arriving at its final configuration. 
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where E(r) is the total electric field, and (r) is the total electrostatic potential during this process, 
besides the field created by the very charge qk that is being moved.  

 

 

 

 

 

 

 
  
 This expression shows that the increment Uk, and hence the total potential energy U, depends 
on the source of the electric field E. If the field is dominated by an external field Eext, induced by some 
external charges, not being a part of the charge configuration under our analysis (whose energy we are 
calculating, see Fig. 6), then the spatial distribution (r) is determined by this field, i.e. does not depend 
on how many charges we have already brought in, so Eq. (52) is reduced to 
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Summing up these contributions, we get what is called the charge system’s energy in the external 
field:22 
       

k
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k
k qUU rextext  .    (1.54) 

Now repeating the argumentation that has led us to Eq. (9), we see that for a continuously distributed 
charge, this sum turns into an integral: 
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extext )()( rr  .     (1.55) 

(As was discussed above, using the delta-functional representation of point charges, we may always 
return from here to Eq. (54), so Eq. (55) may be considered as a final, universal result.)  

The result is different in the opposite limit when the electric field E(r) is created only by the very 
charges whose energy we are calculating. In this case, (rk) in Eq. (52) is the potential created only by 
the charges with numbers k’ = 1, 2, …, (k – 1)  that are already in place when the kth charge is moved in 
(in Fig. 6, the charges inside the dashed boundary), and we may use the linear superposition principle to 
write 
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This result is so important that it is worthy of rewriting in several other forms. First, we may use Eq. 
(35) to represent Eq. (56) in a more symmetric form: 

22 An alternative, perhaps more accurate term for Uext is the energy of the system’s interaction with the external 
field.  
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The expression under this sum is evidently symmetric with respect to the index swap, so it may be 
extended into a different form, 
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where the interaction between each couple of charges is described by two equal terms under the sum, 
and the front coefficient ½ is used to compensate for this double-counting. The convenience of the last 
form is that it may be readily generalized to the continuous case: 
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(As before, in this case, the restriction expressed in the discrete charge case as k  k’ is not important, 
because if the charge density is a continuous function, the integral (59) does not diverge at point r = r’.) 

 To represent this result in one more form, let us notice that according to Eq. (38), the inner 
integral over r’ in Eq. (59), divided by 4 0, is just the full electrostatic potential at point r, and hence 
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For the discrete charge case, this result is  
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but here it is important to remember that the “full” potential’s value (rk) should exclude the (infinite) 
contribution from the point charge k itself. Comparing the last two formulas with Eqs. (54) and (55), we 
see that the electrostatic energy of charge interaction within the system, as expressed via the charge-by-
potential product, is twice less than that of the energy of charge interaction with a fixed (“external”) 
field. This is the result of the fact that in the case of mutual interaction of the charges, the electric field E 
in the basic Eq. (52) is proportional to the charge’s magnitude, rather than constant.23 

 Now we are ready to address an important conceptual question: can we locate this interaction 
energy in space? This task may seem trivial: Eqs. (58)-(61) seem to imply that non-zero contributions to 
U come only from the regions where the electric charges are located. However, one of the most beautiful 
features of physics is that sometimes completely different interpretations of the same mathematical 
result are possible. To get an alternative view of our current result, let us write Eq. (60) for a volume V 
so large that the electric field on the limiting surface S is negligible, and plug into it the charge density 
expressed from the Poisson equation (41): 

             
V

rdU 320

2



.     (1.62) 

23 The nature of this additional factor ½ is absolutely the same as in the well-known formula U = (½)x2 for the 
potential energy of an elastic spring providing the returning force F = –x, proportional to its displacement x from 
the equilibrium position.
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This expression may be integrated by parts as24 

            







 

VS

n rdrdU 3220

2



 .    (1.63) 

According to our condition of negligible field E = –  at the surface, the first integral vanishes, and we 
get a very important formula 

                            rdErdU 320320

22





 .    (1.64) 

This result, if represented in the following equivalent form:25 

             ),(
2

)(with  ,)( 203 rrr EurduU


      (1.65)  

certainly invites an interpretation very much different than Eq. (60): it is natural to consider u(r) as the 
spatial density of the electric field energy, which is continuously distributed over all the space where the 
field exists – rather than just its part where the charges are located.  

Let us have a look at how these two alternative pictures work for our testbed problem, a 
uniformly charged sphere. If we start with Eq. (60), we may limit the integration by the sphere volume 
(0  r  R) where   0. Using Eq. (51), and the spherical symmetry of the problem (giving d3r = 
4r2dr), we get  
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Q
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On the other hand, if we use Eq. (65), we need to integrate the energy density everywhere, i.e. both 
inside and outside of the sphere: 
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Using Eqs. (19) and (22) for, respectively, the external and internal regions, we get 
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  (1.68) 

This is (fortunately :-) the same answer as given by Eq. (66), but to some extent, Eq. (68) is more 
informative because it shows how exactly the electric field’s energy is distributed between the interior 
and exterior of the charged sphere.26 

24 This transformation follows from the divergence theorem MA (12.2) applied to the vector function f = , 
taking into account the differentiation rule MA Eq. (11.4a): () = ()() + () = ()2 + 2. 
25 In the Gaussian units, the standard replacement 0  1/4  turns the last of Eqs. (65) into u(r) = E2/8. 
26 Note that U   at R  0. Such divergence appears at the application of Eq. (65) to any point charge. Since it 
does not affect the force acting on the charge, the divergence does not create any technical difficulty for analysis 
of charge statics or non-relativistic dynamics, but it points to a possible conceptual problem of classical 
electrodynamics as a whole at describing point charges. This issue will be discussed at the very end of the course 
(Sec. 10.6). 
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We see that, as we could expect, within the realm of electrostatics, Eqs. (60) and (65) are 
equivalent. However, when we examine electrodynamics (in Chapter 6 and beyond), we will see that the 
latter equation is more general and that it is more adequate to associate the electric energy with the field 
itself rather than its sources – in our current case, the electric charges. 

Finally, let us calculate the potential energy of a system of charges in the general case when both 
the internal interaction of the charges and their interaction with an external field are important. One 
might fancy that such a calculation should be very hard since, in both ultimate limits, when one of these 
interactions dominates, we have gotten different results. However, once again we get help from the 
almighty linear superposition principle: in the general case, for the total electric field we may write  

                       ,, extintextint rrrrErErE      (1.69) 

where the index “int” now marks the field induced by the charge system under analysis, i.e. the variables 
participating (without indices) in Eqs. (56)-(65). Now let us imagine that our system is being built up in 
the following way: first, the charges are brought together at Eext = 0, giving the potential energy Uint 
expressed by Eq. (60), and then Eext is slowly increased. Evidently, the energy contribution from the 
latter process cannot depend on the internal interaction of the charges, and hence may be expressed in 
the form (55). As a result, the total potential energy27 is the sum of these two components:  

                           rdrdUUU 3
ext

3
intextint )()()()(

2

1
rrrr  .  (1.70) 

Now making the transition from the potentials to the fields, absolutely similar to that performed in Eqs. 
(62)-(65), we may rewrite this expression as 

                rErErrr extint
2
int

03 2)(
2

)(with  ,)(   EurduU


.  (1.71) 

 One might think that this result, more general than Eq. (65) and perhaps less familiar to the 
reader, is something entirely new; however, it is not. Indeed, let us add to, and subtract Eext

2(r) from the 
sum in the brackets, and use Eq. (69) for the total electric field E(r); then Eq. (71) takes the form 

                rdErdEU 32
ext

0320

22
rr


.    (1.72) 

Hence, in the most important case when we are using the potential energy to analyze the statics and 
dynamics of a system of charges in a fixed external field, i.e. when the second term on the right-hand 
side of Eq. (72) may be considered as a constant, we may still use for U an expression similar to the 
familiar Eq. (65), but with the field E(r) being the sum (69) of the internal and external fields. 

 Let us see how this works in a very simple situation. A uniform external electric field Eext is 
applied normally to a very broad, plane layer that contains a very large and equal number of free electric 
charges of both signs – see Fig. 7. What is the equilibrium distribution of the charges over the layer? 

27 This total U (or rather its part dependent on our system of charges) is sometimes called the Gibbs potential 
energy of the system. (I will discuss this notion in detail in Sec. 3.5.) 
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 Since any area-uniform distribution of the charge inside the layer does not affect the field (and 
hence its energy) outside it, and the equilibrium distribution has to minimize the total potential energy of 
the system, Eq. (72) immediately gives the answer: the distribution should provide E  Eint + Eext = 0 
inside the whole layer – the effect called the electric field screening. The only way to ensure this 
equality is to have enough free charges of opposite signs residing on the layer’s surfaces to induce a 
uniform field Eint = –Eext, exactly compensating the external field at each point inside the layer – see 
Fig. 7. According to Eq. (24), the areal density of these surface charges should equal , with  = 
Eext/0. This is a rudimentary but reasonable model of conductors’ polarization – to be discussed in 
detail in the next chapter. 

 

1.4. Exercise problems 

 1.1. Calculate the electric field of a thin, long, straight filament, electrically charged with a 
constant linear density , by using two approaches: 

  (i) directly from the Coulomb law, and 
  (ii) from the Gauss law.  

 
1.2. Two thin, straight, parallel filaments separated by distance d carry 

equal and opposite uniformly distributed charges with linear density  – see the 
figure on the right. Calculate the force (per unit length) of the Coulomb interaction 
of the filaments. Compare its functional dependence on d with the Coulomb law 
for two point charges, and interpret their difference. 
 
 1.3. Calculate the electric field of the following spherically symmetric charge distribution: (r) = 
0exp{–r}. 
 
 1.4. A sphere of radius R, whose volume had been charged with a constant density , is split with 
a very narrow planar gap passing through its center. Calculate the force of the mutual electrostatic 
repulsion of the resulting two hemispheres. 
 
 1.5. A thin spherical shell of radius R, which had been charged with a constant areal density , is 
split into two equal halves with a very thin planar cut passing through the sphere’s center. Calculate the 
force of electrostatic repulsion between the resulting hemispheric shells, and compare the result with 
that of the previous problem. 
 
 1.6. Calculate the spatial distribution of the electrostatic potential created by a straight thin 
filament of a finite length 2l, charged with a constant linear density , and explore the result in the limits 
of very small and very large distances from the filament. 



d

Fig. 1.7. A simple model of the electric 
field screening in a conductor. Here 
(and in all figures below) the red and 
blue colors are used to denote the 
opposite charge signs. 
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 1.7. A thin planar sheet, perhaps of an irregular shape, carries an electric charge with a constant 
areal density .  

 (i) Express the electric field’s component normal to the plane, at a certain distance from it, via 
the solid angle  at which the sheet is visible from the observation point.  
 (ii) Use the result to calculate the field in the center of a cube with one face charged with a 
constant density . 
 

1.8. Can one create, in an extended region of space, electrostatic fields with the Cartesian 
components proportional to the following products of the Cartesian coordinates {x, y, z}:  

 
 

   ?,,ii

,,,)i(

yzxyxy

xyxzyz
 

 
 1.9. Distant sources have been used to create different uniform electrostatic fields in two half-
spaces:  

 











 ,0at ,

,0at ,

zE

zE
zRr nrE  

except for a transitional region of scale R near the origin, where the field is 
perturbed but still axially symmetric. (As will be discussed in the next 
chapter, this may be done, for example, using a thin conducting membrane 
with a round hole of radius R in it – see the figure on the right.) Prove that 
such field may serve as an electrostatic lens for charged particles flying along the z-axis, at distances  
<< R from it, and calculate the focal distance f of this lens. Spell out the conditions of validity of your 
result.  

 
 1.10. Eight equal point charges q are located in the corners of a cube of 
side a. Calculate all Cartesian components Ej of the electric field, and their spatial 
derivatives Ej/rj’, in the cube’s center, where rj are the Cartesian coordinates 
oriented along the cube’s sides – see the figure on the right. Are all of your results 
valid for the center of a planar square, with four equal charges at its corners?  

 
 1.11. By a direct calculation, find the average electric potential of a spherical surface of radius R, 
created by a point charge q located at a distance r > R from the sphere’s center. Use the result to prove 
the following general mean value theorem: the electric potential at any point is always equal to its 
average value on any spherical surface with the center at that point while containing no electric charges 
inside it. 

 
 1.12. Two similar thin, circular, coaxial disks of radius R, separated 
by distance 2d, are uniformly charged with equal and opposite areal 
densities  – see the figure on the right. Calculate and sketch the 
distribution of the electrostatic potential and the electric field of the disks 
along their common axis. 
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 1.13. The electrostatic potential, created by some electric charge distribution, is 

 
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where C and r0 are constants, and r   r is the distance from the origin. Calculate the charge 
distribution in space. 
 
 1.14. A thin, flat, rectangular sheet of size ab is electrically charged with a constant areal 
density . Without an explicit calculation of the spatial distribution (r) of the electrostatic potential 
induced by this charge, find the ratio of its values in the center and in the corners of the rectangle. 

 Hint: Consider partitioning the rectangle into several similar parts and using the linear 
superposition principle. 

 
1.15. Calculate the electrostatic energy per unit area of the system of two thin, parallel planes 

with equal and opposite charges of a constant areal density , separated by distance d. 
 
 1.16. The system analyzed in the previous problem (two thin, 
parallel, oppositely charged planes) is now placed into an external, 
uniform, normal electric field Eext = /0 – see the figure on the right. Find 
the force (per unit area) acting on each plane, by two methods: 

 (i) directly from the electric field distribution, and 
 (ii) from the potential energy of the system. 
  
 1.17. Explore the relationship between the Laplace equation (42) and the minimum of the 
electrostatic field energy (65). 
  
 1.18. Prove the following reciprocity theorem of electrostatics:28 if two spatially-confined charge 
distributions 1(r) and 2(r) create, respectively, electrostatic potentials 1(r) and 2(r), then 

        rdrd 3
12

3
21 rrrr    . 

 Hint: Consider the integral   rd 3
21 EE . 

 1.19. Calculate the energy of the electrostatic interaction of two spheres, of radii R1 and R2,  each 
with a spherically symmetric charge distribution, separated by distance d > R1 + R2. 
  
 1.20. Calculate the electrostatic energy U of a (generally, thick) spherical shell, 
with charge Q uniformly distributed through its volume – see the figure on the right. 
Interpret the dependence of U on the inner cavity’s radius R1, at fixed Q and R2. 

28 This is only the simplest one of several reciprocity theorems in electromagnetism – see, e.g., Sec. 6.8 below. 
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Chapter 2. Charges and Conductors 

This chapter starts our discussion of the very common situations when the electric charge distribution in 
space is not known a priori, but rather should be calculated in a self-consistent way together with the 
electric field it creates. The simplest situations of this kind involve conductors and lead to the so-called 
boundary problems in that the partial differential equations describing the field distribution have to be 
solved with appropriate boundary conditions. Such problems are also typical for other parts of 
electrodynamics (and indeed for other fields of physics as well), so following tradition, I will use this 
chapter’s material as a playground for a discussion of various methods of boundary problem solution, 
and the special functions most frequently encountered on that way. 

 

2.1. Polarization and screening 

 The basic principles of electrostatics outlined in Chapter 1 present the conceptually full solution 
of the problem of finding the electrostatic field (and hence Coulomb forces) induced by electric charges 
distributed over space with some density (r). However, in most practical situations, this function is not 
known but should be found self-consistently with the field. For example, if a sample of relatively dense 
material is placed into an external electric field, it is typically polarized, i.e. acquires some local charges 
of its own, which contribute to the total electric field E(r) inside, and even outside it – see Fig. 1a.  

 

 

 

 

 

 

 

 The full solution of such problems should satisfy not only the fundamental Eq. (1.7) but also the 
so-called constitutive relations between the macroscopic variables describing the sample’s material.  
Due to the atomic character of real materials, such relations may be very involved. In this part of my 
series, I will have time to address these relations, for various materials, only rather superficially,1 
focusing on their simple approximations. Fortunately, in most practical cases such approximations work 
very well. 

1 A more detailed discussion of the electrostatic field screening may be found, e.g., in SM Sec. 6.4. (Alternatively, 
see either Sec. 13.5 of J. Hook and H. Hall, Solid State Physics, 2nd ed., Wiley, 1991; or Chapter 17 of N. 
Ashcroft and N. Mermin, Solid State Physics, Brooks Cole, 1976.) 

In particular, for the polarization of good conductors, a very reasonable approximation is given 
by the so-called macroscopic model, in which the free charges in the conductor are treated as a charged 
continuum that is free to move under the effect of the force F = qE exerted by the macroscopic electric 
field E, i.e. the field averaged over space on the atomic scale – see also the discussion at the end of Sec. 

Fig. 2.1. Two typical electrostatic 
situations involving conductors: 
(a) polarization by an external 
field, and (b) re-distribution of the 
conductor’s own charge over its 
surface – schematically. Here and 
below, the red and blue points 
denote charges of opposite signs. 

(a)     (b) 
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1.1.  In electrostatics (which excludes the case dc currents, to be discussed in Chapter 4 below), there 
should be no such motion, so everywhere inside the conductor the macroscopic electric field should 
vanish: 
             0E .      (2.1a) 

This is the electric field screening2 effect, meaning, in particular, that conductors’ polarization in an 
external electric field has the extreme form shown (rather schematically) in Fig. 1a, with the field of the 
induced surface charges completely compensating the external field in the conductor’s bulk. Note that 
Eq. (1a) may be rewritten in another, frequently more convenient form:  

         const ,      (2.1b) 

where  is the macroscopic electrostatic potential related to the macroscopic field by Eq. (1.33).3  (If a 
problem includes several unconnected conductors, the constant in Eq. (1b) may be specific for each of 
them.)  

 Now let us examine what we can say about the electric field in free space just outside a 
conductor, within the same macroscopic model. At close proximity, any smooth surface (in our current 
case, that of a conductor) looks planar. Let us integrate Eq. (1.28) over a narrow (d << l) rectangular 
loop C encircling a part of such plane conductor’s surface (see the dashed line in Fig. 2a), and apply it to 
the electric field vector E the well-known vector algebra equality – the Stokes theorem4 

            
CS

n drd rEE 2 ,     (2.2) 

where S is any surface limited by the contour C.  

  

 

 

 

 

 

 
 

 In our current case, the contour is dominated by two straight lines of length l, so if l is much 
smaller than the characteristic spatial scale of the field’s changes but much larger than the interatomic 
distances, the right-hand side of Eq. (2) may be well approximated as [(E)in – (E)out]l, where E is the 
tangential component of the corresponding macroscopic field, parallel to the surface. On the other hand, 
according to Eq. (1.28), the left-hand side of Eq. (2) equals zero. Hence, the macroscopic field’s 

2 This term, used for the electric field, should not be confused with shielding – the term used for the description of 
magnetic field’s reduction by magnetic materials – see Chapter 5 below.   
3 Since averaging of a function over space is a linear operation, any linear relation between genuine (microscopic) 
variables, including Eq. (1.33), is also valid for the corresponding macroscopic variables. 
4 See, e.g., MA Eq. (12.1). 

Conductor: 
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(a)                    (b) 

free space 
 
 
 
conductor 

Fig. 2.2. (a) The surface charge layer at a conductor’s surface, and 
(b) the electric field lines and equipotential surfaces near it. 
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component E should be continuous at the surface, and to satisfy Eq. (1a) inside the conductor, the 
component has to vanish immediately outside it: (E)out = 0. This means that the electrostatic potential 
immediately outside of a conducting surface cannot change along it. In other words, the equipotential 
surfaces outside a conductor should “lean” to the conductor’s surface, with their potential values 
approaching the constant potential of the conductor – see Fig. 2b. 

 So, the electrostatic field just outside any conductor has to be normal to its surface. To find this 
normal field, we may apply the universal relation (1.24) to our macroscopic field E. Since in our current 
case En = 0 inside the conductor, we get   

             
n

E nn 



 00out0  ,    (2.3) 

where  is the macroscopic areal density of the conductor’s surface charge. Note that deriving this 
universal relation between the normal component of the field and the surface charge density, we have 
not used any cause-vs-effect arguments, so Eq. (3) is valid regardless of whether the surface charge is 
induced by an externally applied field (as in the case of conductor’s polarization, shown in Fig. 1a), or 
the electric field is induced by the electric charge placed on the conductor and then self-redistributed 
over its surface (Fig. 1b), or it is some combination of both effects. 

Before starting to use the macroscopic model for the solution of particular problems of 
electrostatics, let me use the balance of this section to briefly discuss its limitations. (The reader in a 
rush may skip this discussion and proceed to Sec. 2; however, I believe that every educated physicist has 
to understand when this model works, and when it does not.) 

 Since the argumentation which has led us to Eq. (1.24) and hence to Eq. (3) is valid for any 
thickness d of the Gauss pillbox, within the macroscopic model, the whole surface charge is located 
within an infinitely thin surface layer. This is of course impossible physically: for one, this would 
require an infinite volumic density  of the charge. In reality, the charged layer (and hence the region of 
the electric field’s crossover from the finite value (3) to zero) has a nonzero thickness . At least three 
effects contribute to . 

 (i) Atomic structure of matter. Within each atom, and frequently between the adjacent atoms as 
well, the genuine (“microscopic”) electric field is highly non-uniform. Thus, as was already stated 
above, Eq. (1) is valid only for the macroscopic field, i.e. the field averaged over distances of the order 
of the atomic size scale a0 ~ 10-10 m,5 and cannot be applied to the field changes on that scale. As a 
result, the surface layer of charges cannot be much thinner than a0. 

 (ii) Thermal excitation. According to Eq. (1.9), in the whole field-free bulk of a conductor, the 
net charge density,  = e(n – ne), 6 has to vanish, so the numbers of protons in atomic nuclei (n) and 
electrons (ne) per unit volume have to be balanced. However, if an external electric field penetrates a 
conductor, free electrons can shift in or out of its affected part, depending on the field’s contribution to 
their potential energy, U = qe = –e. (Here the arbitrary constant in   is chosen to give  = 0 well 
inside the conductor.) In classical statistics, this change is described by the Boltzmann distribution:7 

5 This scale originates from the quantum-mechanical effects of electron motion, characterized by the Bohr radius 
rB  2/me(e

2/40)  0.5310-10 m – see, e.g., QM Eq. (1.10). It also defines the scale EB = e/40rB
2 ~ 1012 SI 

units (V/m) of the microscopic electric fields inside atoms. (Please note how large these fields are.) 
6 In this series, e denotes the fundamental charge, e  1.610-19 C > 0, so that the electron’s charge equals (–e). 
7 See, e.g., SM Sec. 3.1. 
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where T is the absolute temperature in kelvins (K), and kB  1.3810-23 J/K is the Boltzmann constant. 
As a result, the net charge density is 
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The penetrating electric field polarizes the atoms as well. As will be discussed in the next chapter, such 
polarization results in the reduction of the electric field by a material-specific dimensionless factor  
(larger, but typically not too much larger than 1), called the dielectric constant. As a result, the Poisson 
equation (1.41) takes the so-called Poisson-Boltzmann form,8  
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where we have taken advantage of the 1D geometry of the system to simplify the Laplace operator, with 
the z-axis normal to the surface.  

 Even with this simplification, Eq. (6) is a nonlinear differential equation allowing an analytical 
but rather bulky solution. Since our current goal is just to estimate the field penetration depth , let us 
simplify the equation further by considering the low-field limit: e  ~ e E  << kBT. In this limit, we 
may extend the exponent into the Taylor series, and keep only two leading terms (of which the first one 
cancels with the following unity). As a result, Eq. (6) becomes linear, 
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where the constant , in this case, is called the Debye (or “Debye-Hückel”) screening length D: 
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 As the reader certainly knows, Eq. (7) describes an exponential decrease of the electric potential, 
with the characteristic length D:   exp{-z/D}, where the z-axis is directed into the conductor. 
Plugging in the involved fundamental constants into Eq. (8), we get the following estimate: D[m]  
70( T[K]/n[m-3])1/2. According to this formula, in semiconductors at room temperature, the Debye 
length may be rather substantial. For example, in silicon (  12) doped to the free charge carrier 
concentration n = 31018 cm-3 (the value typical for modern integrated circuits),9 D  2 nm, still well 

8 This equation and/or its straightforward generalization to the case of charged particles (ions) of several kinds is 
also (especially in the theories of electrolytes and plasmas) called the Debye-Hückel equation.  
9 There is a good reason for making an estimate of D for this case: the electric field created by the gate electrode 
of a field-effect transistor, penetrating into doped silicon by a depth ~D, controls the electric current in this most 
important electronic device – on whose back all our information technology rides. Because of that, D establishes 
the possible scale of semiconductor circuit shrinking, which is the basis of the well-known Moore’s law. 
(Practically, the scale is determined by integrated circuit patterning techniques, and Eq. (8) may be used to find 
the proper charge carrier density n and hence the necessary level of silicon doping – see, e.g., SM Sec. 6.4.) 
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above the atomic size scale a0, thus justifying the estimate  However, for typical good metals (n ~ 1029 
m-3,  ~ 10) the same formula gives D ~ 10-11 m, less than a0. In this case, Eq. (8) should not be taken 
literally, because it is based on the assumption of a continuous charge distribution. 

 (iii) Quantum statistics. Actually, the last estimate is not valid for good metals (and highly doped 
semiconductors) for one more reason: their free electrons obey the quantum (Fermi-Dirac) statistics 
rather than the Boltzmann distribution (4).10 As a result, at all realistic temperatures, the electrons form a 
degenerate quantum gas, occupying all available energy states below some energy level EF >> kBT, 
called the Fermi energy. In these conditions, the screening of a relatively low electric field may be 
described by replacing Eq. (5) with 

                      ,)())(( F
2

Fe  EE geUegnne     (2.9) 

where g(E) is the density of quantum states (per unit volume per unit energy) at the electron’s energy E. 
At the Fermi surface, the density is of the order of n/EF.11 As a result, we again get the second of Eqs. 
(7), but with a different characteristic scale , defined by the following relation: 
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and called the Thomas-Fermi screening length. Since for most good metals, n is of the order of 1029 m-3, 
and EF is of the order of 10 eV, Eq. (10) typically gives TF close to a few a0, and makes the Thomas-
Fermi screening theory valid at least semi-quantitatively. 

 To summarize, the electric field penetration into good conductors is limited to a depth  ranging 
from a fraction of a nanometer to a few nanometers, so for problems with a characteristic linear size 
much larger than that scale, the macroscopic model (1) gives very good accuracy, and we will use them 
in the rest of this chapter. However, the reader should remember that in many situations involving 
semiconductors, as well as at some nanoscale experiments with metals, the electric field penetration 
should be taken into account.  

 Another important condition of the macroscopic model’s validity is imposed on the electric 
field’s magnitude, which is especially significant for semiconductors. Indeed, as Eq. (6) shows, Eq. (7) 
is only valid if e   << kBT, so E  ~   /D should be much lower than kBT/eD. In the example given 
above (D  2 nm, T = 300 K), this means E  << Et ~107V/m  105V/cm – the value readily reachable 
in the lab. In larger fields, the field penetration becomes nonlinear, leading in particular to the very 
important effect of carrier depletion; it will be discussed in SM Sec. 6.4. For typical metals, such 
linearity limit,  Et ~ EF/eTF is much higher, ~1011 V/m, but the model may be violated at lower fields by 
other effects, such as the impact-ionization leading to electric breakdown, which may start at ~106 V/m. 

 

2.2. Capacitance 

 Let us start using the macroscopic model from systems consisting of charged conductors only, 
with no so-called stand-alone charges in the free space outside them.12 Our goal here is to calculate the 

10 See, e.g., SM Sec. 2.8. For a more detailed derivation of Eq. (10), see SM Chapter 3. 
11 See, e.g., SM Sec. 3.3.  
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distributions of the electric field E and potential   in space, and the distribution of the surface charge 
density  over the conductor surfaces. However, before doing that for particular situations, let us see if 
there are any integral measures of these distributions, which should be our primary focus. 

 The simplest case is of course a single conductor in the otherwise free space. According to Eq. 
(1b), all its volume should have the same electrostatic potential , evidently providing one convenient 
global measure of the situation. Another integral measure is provided by the total charge 

           
V S

rdrdQ 23  ,     (2.11) 

where the last integral is extended over the whole surface S of the conductor. In the general case, what 
can we tell about the relation between Q and ? At Q = 0, there is no electric field in the system, and it is 
natural (though not absolutely necessary) to select the arbitrary constant in the electrostatic potential to 
have  = 0 everywhere. Then, if the conductor is charged with a non-zero Q, according to the linear Eq. 
(1.7), the electric field at any point of space has to be proportional to that charge. Hence the electrostatic 
potential at all points, including its value  inside the conductor, is also proportional to Q: 

           Qp .      (2.12) 

The proportionality coefficient p, which depends on the conductor’s size and shape, but on neither  nor 
Q, is called its reciprocal capacitance (or, not too often, “electric elastance”). Usually, Eq. (12) is 
rewritten in a different form,  

         ,
1

with  ,
p

 CCQ       (2.13) 

where C is called self-capacitance. (Frequently, C is called just capacitance, but as we will see very 
soon, for more complex situations the latter term may be ambiguous.) 

 Before calculating C for particular geometries, let us have a look at the electrostatic energy U of 
a single conductor. To calculate it, of the several relations discussed in Chapter 1, Eq. (1.61) is most 
convenient, because all elementary charges qk are now parts of the conductor charge, and hence reside at 
the same potential  – see Eq. (1b) again. As a result, the equality becomes very simple: 
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Moreover, using the linear relation (13), the same result may be re-written in two more forms: 
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 We will discuss several ways to calculate C in the next sections, and right now will have a quick 
look at just the simplest example for that we have calculated everything necessary in the previous 
chapter: a conducting sphere of radius R. Indeed, we already know the electric field distribution: 
according to Eq. (1), E = 0 inside the sphere, while Eq. (1.19), with Q(r) = Q, describes the field 
distribution outside it, because of the evident spherical symmetry of the surface charge distribution. 

12 In some texts, these charges are called “free”. This term is somewhat misleading, because they may well be 
bound, i.e. unable to move freely. 
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Moreover, since the latter formula is exactly the same as for the point charge placed in the sphere’s 
center, the potential’s distribution in space may be obtained from Eq. (1.35) by replacing q with the 
sphere’s full charge Q. Hence, on the surface of the sphere (and, according to Eq. (1b), through its 
interior),  

        
R

Q

04

1


  .      (2.16) 

Comparing this result with the definition (13), for the sphere’s self-capacitance we obtain a very simple 
formula13 
                RC 04 .      (2.17) 

This formula, which should be well familiar to the reader, is convenient to get some feeling of 
how large the SI unit of capacitance (1 farad, abbreviated as F) is: the self-capacitance of Earth (RE  
6.34106 m) is below 1 mF! Another important note is that while Eq. (17) is not exactly valid for a 
conductor of arbitrary shape, it implies an important general estimate 

          aC 02~        (2.18) 

where a is the scale of the linear size of any conductor.14 

 Now proceeding to a system of two arbitrary conductors, we immediately see why we should be 
careful with the capacitance definition: one constant C is insufficient to describe all electrostatic 
properties of such a system. Indeed, here we have two, generally different conductor potentials, 1 and 
2, that may depend on both conductor charges, Q1 and Q2. Using the same arguments as for the single-
conductor case, we may conclude that the dependence is always linear: 
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but now has to be described by more than one coefficient. Actually, it turns out that there are three 
rather than four different coefficients in these relations, because  

          .2112 pp        (2.20) 

This equality may be proved in several ways, for example, using the general reciprocity theorem of 
electrostatics (whose proof was the subject of Problem 1.17): 

                     rdrd 31
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32
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13 In the Gaussian units, using the standard replacement 40  1, this relation takes an even simpler form: C = 
R, very easy to remember. Generally, in the Gaussian units (but not in the SI system!) the capacitance has the 
dimensionality of length, i.e. is measured in centimeters. Note also that a fractional SI unit, 1 picofarad (10-12 F), 
is very close to the Gaussian unit: 1 pF = [(110-12)/(4010-2)] cm  0.8998 cm. So, 1 pF is close to the 
capacitance of a metallic ball with a 1-cm radius, making this unit very convenient for human-scale systems. 
14 These arguments are somewhat insufficient to say which size should be used for a in the case of narrow, 
extended conductors, e.g., a thin, long wire. Very soon we will see that in such cases the electrostatic energy, and 
hence C, depends mostly on the larger size of the conductor. 
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where (1)(r) and (2)(r) are the potential distributions induced, respectively, by two electric charge 
distributions, 1(r) and 2(r). In our current case, each of these integrals is limited to the volume (or, 
more exactly, the surface) of the corresponding conductor, where each potential is constant and may be 
taken out of the integral. As a result, Eq. (21) is reduced to 

                   2
1

21
2

1 rr  QQ  .     (2.22) 

In terms of Eq. (19), (2)(r1) is just p12Q2, while (1)(r2) equals p21Q1. Plugging these expressions into Eq. 
(22), and canceling the product Q1Q2, we arrive at Eq. (20).  

 Hence the 22 matrix of coefficients pjj’ (called the reciprocal capacitance matrix) is always 

symmetric, and using the natural notation p11  p1, p22  p2, p12 = p21  p, we may rewrite it in a simpler 
form: 
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Plugging the relation (19), in this new notation, into Eq. (1.61), we see that the full electrostatic energy 
of the system may be expressed as a quadratic form of its charges: 
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It is evident that the middle term on the right-hand side of this equality describes the electrostatic 
coupling of the conductors. (Without it, the energy would be just a sum of two independent electrostatic 
energies of conductors 1 and 2.)15 Still, even with this simplification, Eqs. (19) and (20) show that in the 
general case of arbitrary charges Q1 and Q2, the system of two conductors should be characterized by 
three, rather than just one coefficient (“the capacitance”). This is why we may attribute a single 
capacitance to the system only in some particular cases.  

 For practice, the most important of them is when the system as the whole is electrically neutral: 
Q1 = –Q2  Q. In this case, the most important function of Q is the difference between the conductors’ 
potentials, called the voltage:16 

        ,21  V       (2.25) 

For that function, the subtraction of two Eqs. (19) gives  

            
ppp 2
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where the coefficient C is called the mutual capacitance between the conductors – or, again, just 
“capacitance” if the term’s meaning is absolutely clear from the context. The same coefficient describes 

15 This is why systems with p << p1, p2  are called weakly coupled, and may be analyzed using approximate 
methods – see, e.g., Fig. 4 and its discussion below. 
16 A word of caution: in condensed matter physics and electrical engineering, voltage is most commonly defined 
as the difference between electrochemical rather than electrostatic potentials. These two notions coincide if the 
conductors have equal workfunctions – for example, if they are made of the same material. In this course, this 
condition will be implied, and the difference between the two voltages ignored – to be discussed in detail in SM 
Sec. 6.3. 
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the electrostatic energy of the system. Indeed, plugging Eqs. (19) and (20) into Eq. (24), we see that 
both forms of Eq. (15) are reproduced if  is replaced with V, Q1 with Q, and with C meaning the mutual 
capacitance: 
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U       (2.27) 

 The best-known system for which the mutual capacitance C may be readily calculated is the 
plane (or “parallel-plate”) capacitor: a system of two conductors separated with a narrow plane gap of a 
constant thickness d and an area A ~ a2 >> d2 – see Fig. 3.  

 

 

 

 

 

 Since the surface charges that contribute to the opposite charges Q of the conductors of this 
system, attract each other, in the limit d << a they sit entirely on the opposite surfaces limiting the gap, 
so there is virtually no electric field outside of the gap, while (according to the discussion in Sec. 1) 
inside the gap it is normal to the surfaces. According to Eq. (3), the magnitude of this field is E = /0. 
Integrating this field across thickness d of the narrow gap, we get V  1 – 2 = Ed = d/0, so  = 0V/d. 
However, due to the constancy of the potential of each electrode, V should not depend on the position in 
the gap area. As a result,   should be also constant over all the gap area A, regardless of the external 
geometry of the conductors (see Fig. 3 again), and hence Q = A = 0V/d. Thus we may write V = Q/C, 
with 

          
d

A
C 0 .      (2.28) 

 Let me offer a few comments on this well-known formula. First, it is valid even if the gap is not 
quite planar – for example, if it gently curves on a scale much larger than d, but retains its thickness. 
Second, Eq. (28), which is valid only if A ~ a2 is much larger than d2, ignores the nonuniform electric 
fields spreading to distances ~d beyond the gap edges. Such fringe fields result in an additional stray 
capacitance C’ ~ 0a << C ~ 0a(a/d).17 Finally, the same condition (A >> d2) assures that C is much 
larger than the self-capacitance Cj of each conductor – see Eq. (18).  

 The opportunities opened by the last fact for electronic engineering and experimental physics 
practice are rather astonishing. For example, a very realistic 3-nm layer of high-quality aluminum oxide, 
which may provide nearly perfect electric insulation between two thin conducting films, with an area of 
0.1 m2 (a typical area of silicon wafers used in the semiconductor industry) provides C ~ 1 mF,18 larger 
than the self-capacitance of the whole planet Earth!  

17 The exact value of C’ depends on the shape of the conductors. In a rare case when it has been calculated 
analytically, two thin round concentric disks of radius R, C’ = 0R [ln(16R/d) – 1]. 
18 Just as in Sec. 1, for the estimate to be realistic, I took into account the additional factor  (for aluminum oxide, 
close to 10) which should be included in the numerator of Eq. (28) to make it applicable to dielectrics – see 
Chapter 3 below. 
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 In a plane capacitor with d << a, the electrostatic coupling of the two conductors is evidently 
very strong. As an opposite example of a weakly coupled system, let us consider two conducting spheres 
of the same radius R, separated by a much larger distance d (Fig. 4). 

 

 

 

In this case, the diagonal components of the matrix (23) may be approximately found from Eq. 
(16), i.e. by neglecting the coupling altogether: 

               .
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 pp      (2.29) 

Now, if we had just one sphere (say, number 1), the electric potential at distance d from its center would 
be given by Eq. (16):  = Q1/40d. If we move to this point a small (R << d) sphere without its own 
charge, we may expect that its potential should not be too far from this result, so 2  Q1/40d. 
Comparing this expression with the second of Eqs. (19) (taken for Q2 = 0), we get 

              .
4

1
2,1

0

pp 
d

     (2.30) 

From here and Eq. (26), the mutual capacitance 

           RC 0
21
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.     (2.31) 

We see that (somewhat counter-intuitively), in this limit C does not depend substantially on the distance 
between the spheres, i.e. does not describe their electrostatic coupling. The off-diagonal coefficients of 
the reciprocal capacitance matrix (20) play this role much better – see Eq. (30). 

 Now let us consider the case when only one conductor of the two is charged, for example, Q1  
Q, while Q2 = 0. Then Eqs. (19)-(20) yield 

          .111 Qp       (2.32) 

Now, we may follow Eq. (13) and define C1  1/p1 (and C2  1/p2), just to see that such partial 
capacitances of the conductors of the system differ from its mutual capacitance C – cf. Eq. (26). For 
example, in the case shown in Fig. 4, C1 = C2  40R  2C. 

 Finally, let us consider one more frequent case when one of the conductors carries a certain 
charge (say, Q1 = Q), but the potential of its counterpart is sustained constant, say 2 = 0.19 (This 
condition is especially easy to implement if the second conductor is much larger than the first one. 
Indeed, as the estimate (18) shows, in this case, it would take a much larger charge Q2 to make the 
potential 2 comparable with 1.) In this case the second of Eqs. (19), with the account of Eq. (20), 
yields Q2 = – (p/p2)Q1. Plugging this relation into the first of those equations, we get 

19 In electrical engineering, such a constant-potential conductor is called the ground. This term stems from the fact 
that in many cases the electrostatic potential of the (weakly) conducting ground at the Earth’s surface is virtually 
unaffected by laboratory-scale electric charges. 

R R
Rd  Fig. 2.4. A system of two far-separated, 

similar conducting spheres. 
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Thus, this effective capacitance of the first conductor is generally different from both its partial 
capacitance C1 and the mutual capacitance C of the system, emphasizing again how accurate one should 
be using the term “capacitance” without a qualifier. 

 Note also that none of these capacitances is equal to any element of the matrix reciprocal to the 
matrix (23): 
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Because of this reason, this physical capacitance matrix, which expresses the vector of conductor 
charges via the vector of their potentials, is less convenient for most applications than the reciprocal 
capacitance matrix (23). The same conclusion is valid for multi-conductor systems, which are most 
conveniently characterized by an evident generalization of Eq. (19). Indeed, in this case, even the 
mutual capacitance between two selected conductors may depend on the electrostatic conditions of other 
components of the system. 

 Logically, at this point I would need to discuss the particular, but practically very important case 
when the regions where the electric field between each pair of conductors is most significant do not 
overlap – such as in the example shown in Fig. 5a. In this case, the system’s properties may be discussed 
using the equivalent-circuit language, representing each such region as a lumped (localized) capacitor, 
with a certain mutual capacitance C, and the whole system as some connection of these capacitors by 
conducting “wires”, whose length and geometry are not important – see Fig. 5b. 

 

 

 

 

 

 

 
  

 Since the analysis of such equivalent circuits is covered in typical introductory physics courses, I 
will save time by skipping their discussion. However, since such circuits are very frequently met in 
physical experiment and electrical engineering practice, I would urge the reader to self-test their 
understanding of this topic by solving a couple of problems offered at the end of this chapter,20 and if 
their solution presents any difficulty, review the corresponding section in an undergraduate textbook.  

 

20 These problems have been selected to emphasize the fact that not every circuit may be reduced to the simplest 
connections of the component capacitors and/or their groups in parallel and/or in series. 

Fig. 2.5. (a) A simple system of 
conductors, with three well-
localized regions of high electric 
field (and hence surface charge) 
concentration, and (b) its 
representation with an equivalent 
circuit of three lumped capacitors.  
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2.3. The simplest boundary problems 

 In the general case when the electric field distribution in the free space between the conductors 
cannot be easily found from the Gauss law or a particular symmetry, the best approach is to try to solve 
the differential Laplace equation (1.42), with the boundary conditions (1b):  

                k
kS   ,02 ,                (2.35) 

where Sk is the surface of the kth conductor of the system. After this boundary problem has been solved, 
i.e. the spatial distribution (r) has been found at all points outside the conductors, it is straightforward 
to use Eq. (3) to find the surface charge density, and finally the total charge  

      
k

k

S
rdQ 2       (2.36) 

of each conductor, and hence any component of the reciprocal capacitance matrix. As an illustration, let 
us implement this program for three very simple problems. 

(i) Plane capacitor (Fig. 3). In this case, the easiest way to solve the Laplace equation is to use 
the linear (Cartesian) coordinates with one axis (say, z) normal to the conductor surfaces  – see Fig. 6.  

 

 

 

 
 

In these coordinates, the Laplace operator is just the sum of three second derivatives.21 It is 
evident that due to the problem’s translational symmetry within the [x, y] plane, deep inside the gap (i.e. 
at any lateral distance from the edges much larger than d) the electrostatic potential may only depend on 
the coordinate normal to the gap surfaces: (r) = (z). For such a function, the derivatives over x and y 
vanish, and the boundary problem (35) is reduced to a very simple ordinary differential equation 

        ,0)(
2

2

z
dz

d 
      (2.37) 

with boundary conditions 
            .)(,0)0( Vd        (2.38) 

(For the sake of notation simplicity, I have used the discretion of adding a constant to the potential, to 
make one of the potentials vanish, and also the definition (25) of the voltage V.) The general solution of 
Eq. (37) is a linear function:  (z) = c1z + c2, whose constant coefficients c1,2 may be readily found from 
the boundary conditions (38). The final solution is 

          .
d

z
V       (2.39) 

21 See, e.g. MA Eq. (9.1). 

Typical 
boundary 
problem 

Fig. 2.6. The plane capacitor as the system for the 
simplest illustration of the boundary problem 
(35) and its solution. 
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From here the only nonzero component of the electric field is  

              
d

V

dz

d
Ez 


,     (2.40) 

and the surface charge of the capacitor plates is 

     
d

V
EE zn 000    ,     (2.41) 

where the upper and lower signs correspond to the upper and lower plates, respectively. Since  does 
not depend on x and y, we can get the full charges Q1 = –Q2  Q of the surfaces by its multiplication by 
the gap area A, giving us again the already obtained result (28) for the mutual capacitance C  Q/V. I 
believe that this calculation, though very easy, may serve as a good illustration of the boundary problem 
solution approach, which will be used below for more complex cases. 

(ii) Coaxial-cable capacitor. Coaxial cable is a system of two round cylindrical, coaxial 
conductors, with the cross-section shown in Fig. 7.  

 

 

 

 

 

 
 
Evidently, in this case, the cylindrical coordinates {, , z}, with the z-axis coinciding with the 

common axis of the cylinders, are most convenient.22 Due to the axial symmetry of the problem, in these 
coordinates E(r) = nE(), (r) = (), so in the general expression for the Laplace operator23 we  may 
take /  = /z = 0. As a result, only the radial term of the operator survives, and the boundary 
problem (35) takes the form 

   0)(,)(,0
1





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


bVa

d

d

d

d 




.   (2.42) 

The sequential double integration of this ordinary linear differential equation is elementary (and similar 
to that of the Poisson equation in spherical coordinates, carried out in Sec. 1.3), giving 

           21211 ln, c
a

cc
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"d
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d

d
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 










.   (2.43) 

The constants c1,2 may be found using boundary conditions (42): 

22 I am sorry for using, for the 2D radius, the same letter  as for the volumic density of charge. (Both notations 
are too common to refuse.) I do not believe this may lead to confusion, because the letter will not be used in two 
different meanings during any particular discussion.  
23 See, e.g., MA Eq. (10.3). 

ab 

a0

Fig. 2.7. The cross-section of a coaxial cable. 
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 0ln, 212  c
a

b
cVc ,      (2.44) 

giving c1 = –V/ln(b/a), so Eq. (43) takes the following form: 
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
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)/(ln

)/(ln
1

ab

a
V

 .     (2.45) 

 Next, for our axial symmetry, the general expression for the gradient of a scalar function is 
reduced to its radial derivative, so 

   
 ab

V

d

d
E

/ln
  .     (2.46) 

This expression, plugged into Eq. (2), allows us to find the density of the conductors’ surface charge. 
For example, for the inner electrode 

        aba

V
aEa /ln

0
0


  ,     (2.47) 

so its full charge (per unit length of the system) is 

      
)/(ln

2
2 0

ab

V
a

l

Q
a


  .     (2.48) 

(It is straightforward to check that the charge of the outer electrode is equal and opposite.) Hence, by  
the definition of the mutual capacitance, its value per unit length is 

        
)/(ln

2 0

ablV

Q

l

C 
 .     (2.49) 

This expression shows that the total capacitance C is proportional to the systems length l (if l >> 
a, b), while being only logarithmically dependent on is the dimensions of its cross-section. Since the 
logarithm of a large argument is an extremely slow function (sometimes called a quasi-constant), if the 
external conductor is made very large (b >> a), the capacitance diverges, but very weakly. Such 
logarithmic divergence may be cut by any minuscule additional effect, for example by the finite length l 
of the system. This fact yields the following very useful estimate of the self-capacitance of a single 
round wire of radius a: 

al
al

l
C  for ,

)/(ln

2 0
.     (2.50) 

 On the other hand, if the gap d between the conductors is very narrow: d  b – a << a, then 
ln(b/a)  ln(1 + d/a) may be approximated as d/a, and Eq. (49) is reduced to C  20al/d, i.e. to Eq. 
(28) for the plane capacitor, of the appropriate area A = 2al. 

 (iii) Spherical capacitor. This is a system of two conductors, with a central cross-section similar 
to that of the coaxial cable (Fig. 7), but now with spherical rather than axial symmetry. This symmetry 
implies that we may be better off using spherical coordinates, so the potential  depends only on one of 
them: the distance r from the common center of the conductors: (r) = (r). As we already know from 
Sec. 1.3, in this case the general expression for the Laplace operator is reduced to its first (radial) term, 

C: Coaxial 
cable 
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so the Laplace equation takes the simple form (1.47). Moreover, we have already found the general 
solution of this equation – see Eq. (1.50): 

            ,)( 2
1 c
r

c
r       (2.51) 

Now acting exactly as above, i.e. determining the (only essential) constant c1 from the boundary 
condition (a) – (b) =V, we get 
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 .   (2.52) 

 Next, we can use the spherical symmetry to find the electric field, E(r) = nrE(r), with 
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,    (2.53) 

and hence its values on conductors’ surfaces, and then the surface charge density  from Eq. (3). For 
example, for the inner conductor’s surface, 
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aEa  ,    (2.54) 

so, finally, for the full charge of that conductor, we get the following result: 
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aQ
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




   .    (2.55) 

(Again, the charge of the outer conductor is equal and opposite.) Now we can use the definition (26) of 
the mutual capacitance to get the final result: 

     
ab

ab

baV

Q
C









 



0

1

0 4
11

4  .    (2.56) 

 For b >> a, it coincides with Eq. (17) for the self-capacitance of the inner conductor. On the 
other hand, if the gap d between two conductors is narrow, d  b – a << a, then 

               ,4
)(

4
2

00 d

a

d

daa
C  


     (2.57) 

i.e. the capacitance approaches that of the planar capacitor of the area A = 4a2 – as it should. 

 All this seems (and indeed is) very straightforward, but let us contemplate what was the reason 
for such easy successes. In each of the cases (i)-(iii) we have managed to find such coordinates that both 
the Laplace equation and the boundary conditions involved only one of them. The necessary condition 
for the former fact is for the coordinates to be orthogonal. This means that the three vector components 
of the local differential dr, due to small variations of the new coordinates (say, dr, d, and d for the 
spherical coordinates), are mutually perpendicular.  

 

2.4. Using other orthogonal coordinates 

 The cylindrical and spherical coordinates used above are only the simplest examples of the 
curvilinear orthogonal (or just “orthogonal”) coordinates, and that approach may be extended to other 

C: Spherical 
capacitor 
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coordinate systems of this type. As an example, let us calculate the self-capacitance of a thin, round 
conducting disk. The cylindrical or spherical coordinates would not give much help here, because while 
they have the appropriate axial symmetry, they would make the boundary condition on the disk too 
complicated: involving two coordinates, either  and z, or r and . Help comes from noting that the flat 
disk, i.e. the area with z = 0, r < R,  may be viewed as the limiting case of an axially-symmetric ellipsoid 
(or “degenerate ellipsoid”, or “ellipsoid of rotation”, or “spheroid”) – the surface formed by rotation of 
the usual ellipse about one of its major axes – which would be also the symmetry axis of the disk – in 
Fig. 8, the z-axis.  

 

 

 

– 

 

 

 Analytically, this ellipsoid may be described by the following equation: 

                 1
2

2

2

22




b

z

a

yx
,     (2.58) 

where a and b are the so-called major semi-axes, whose ratio determines the ellipse’s eccentricity – the 
degree of its “squeezing”. For our problem, we will only need oblate ellipsoids with a  b; according to 
Eq. (58), they may be represented as surfaces of constant  in the oblate spheroidal (also called 
“degenerate ellipsoidal”) coordinates {, , } that are related to the Cartesian coordinates as follows:24 
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Such spheroidal coordinates are an evident generalization of the spherical coordinates, which 
correspond to the limit   >> 1 (i.e. r >> R). In the opposite limit, the surface of constant  = 0 describes 
our thin disk of radius R, with the coordinate  describing the distance   (x2 + y2)1/2 = Rsin of its 
point from the z-axis. It is almost evident (and easy to prove) that the curvilinear coordinates (59) are 
also orthogonal; the Laplace operator in them is: 
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. (2.60) 

 Though this expression may look a bit intimidating, let us notice that since in our current 
problem, the boundary conditions depend only on :25 

24 For solution of some problems, it is convenient to use Eqs. (59) with – <  < + and 0    /2. 
25 I have called the disk’s potential V, to distinguish it from the potential  at an arbitrary point of space. 

Fig. 2.8. Solving the disk’s capacitance problem. (The 
cross-section of the system by the vertical plane y = 0.) 
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         0,0     V ,     (2.61) 

there is every reason to assume that the electrostatic potential in all space is a function of  alone; in 
other words, that all ellipsoids  = const are the equipotential surfaces. Indeed, acting on such a function 
() by the Laplace operator (60), we see that the two last terms in the square brackets vanish, and the 
Laplace equation (35) is reduced to a simple ordinary differential equation 

               .0cosh 
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     (2.62) 

Integrating it twice, just as we did in the three previous problems, we get 
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This integral may be readily worked out using the substitution   sinh  (which gives d  cosh d, 
i.e. d = d/cos, and cosh2 = 1 + sinh2   1 +  2): 
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The integration constants c1,2 may be simply found from the boundary conditions (61), and we arrive at 
the following final expression for the electrostatic potential: 
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This solution satisfies both the Laplace equation and the boundary conditions. Mathematicians tell us 
that the solution of any boundary problem of the type (35) is unique, so we do not need to look any 
further.  

Now we may use Eq. (3) to find the surface density of electric charge, but in the case of a thin 
disk, it is more natural to add up such densities on its top and bottom surfaces at the same distance  = 
(x2 + y2)1/2 from the disk’s center. The densities are evidently equal, due to the problem symmetry about 
the plane z = 0, so the total density is  = 20Enz=+0. According to Eq. (65), and the last of Eqs. (59), the 
electric field on the upper surface is 
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and we see that the charge is distributed over the disk very nonuniformly: 
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with a singularity at the disk edge. Below we will see that such singularities are very typical for sharp 
edges of conductors. Fortunately, in our current case the divergence is integrable, giving a finite disk 
charge: 
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Thus, for the disk’s self-capacitance we get a very simple result, 

           ,4
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       (2.69) 

a factor of /2  1.57 lower than that for the conducting sphere of the same radius, but still complying 
with the general estimate (18). 

 Can we always find such a “good” system of orthogonal coordinates? Unfortunately, the answer 
is no, even for highly symmetric geometries. This is why the practical value of this approach is limited, 
and other, more general methods of boundary problem solution are clearly needed. Before proceeding to 
their discussion, however, let me note that in the case of 2D problems (i.e. cylindrical geometries26), the 
orthogonal coordinate method gets much help from the following conformal mapping approach. 

 Let us consider a pair of Cartesian coordinates {x, y} of the cylinder’s cross-section plane as a 
complex variable z  x + iy,27 where i is the imaginary unit (i2 = –1), and let w(z) = u + iv be an analytic 
complex function of z.28 For our current purposes, the most important property of an analytic function is 
that its real and imaginary parts obey the following Cauchy-Riemann relations:29 
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For example, for the function 

              ixyyxiyx 22222  zw ,    (2.71) 

whose real and imaginary parts are 

       xyvyxu 2Im,Re 22  ww ,    (2.72) 

we immediately see that u/x = 2x = v/y, and  v/x = 2y = –u/y, in accordance with Eq. (70). 

 Let us differentiate the first of Eqs. (70) over x again, then change the order of differentiation, 
and after that use the latter of those equations:  

           2

2

2

2

y

u

y

u

yx

v

yy

v

xx

u

xx

u




































,   (2.73) 

26 Let me remind the reader that the term cylindrical describes any surface formed by a translation,  along a 
straight line, of an arbitrary curve, and hence more general than the usual circular cylinder. (In this terminology, 
for example, a prism is also a cylinder of a particular type, formed by a translation of  a polygon.)   
27 The complex variable z should not be confused with the (real) 3rd spatial coordinate z! We are considering 2D 
problems now, with the potential independent of z. 
28 An analytic (or “holomorphic”) function may be defined as one that may be expanded into the Taylor series in 
its complex argument, i.e. is infinitely differentiable in the given point. (Almost all “regular” functions, such as 
zn, z1/n, exp z, ln z, etc., and their linear combinations are analytic at all z, maybe besides certain special points.) 
If the reader needs to brush up on their background on this subject, I can recommend a popular textbook by M. 
Spiegel et al., Complex Variables, 2nd ed., McGraw-Hill, 2009. 
29 These relations may be used, in particular, to prove the Cauchy integral formula – see, e.g., MA Eq. (15.1). 
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and similarly for v. This means that the sum of second-order partial derivatives of each of the real 
functions u(x, y) and v(x, y) is zero, i.e. that both functions obey the 2D Laplace equation. This 
mathematical fact opens a nice way of solving problems of electrostatics for (relatively simple) 2D 
geometries. Imagine that for a particular boundary problem we have found a function w(z) for that either 
u(x, y) or v(x, y) is constant on all electrode surfaces. Then all lines of constant u (or v) represent 
equipotential surfaces, i.e. the problem of the potential distribution has been essentially solved.  

 As a simple example, let us consider a problem important for practice: the quadrupole 
electrostatic lens – a system of four cylindrical electrodes with hyperbolic cross-sections, whose 
boundaries are described by the following relations: 
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voltage-biased as shown in Fig. 9a.  

 

 

 

 

 

 

 

 

 

 Comparing these relations with Eqs. (72), we see that each electrode surface corresponds to a 
constant value of the real part u(x, y) of the function given by Eq. (71): u = a2. Moreover, the potentials 
of both surfaces with u = +a2 are equal to +V/2, while those with u = –a2 are equal to –V/2. Hence we 
may conjecture that the electrostatic potential at each point is a function of u alone; moreover, a simple 
linear function,  
     2

22
121 )( cyxccuc  ,    (2.75) 

is a valid (and hence the unique) solution of our boundary problem. Indeed, it does satisfy the Laplace 
equation, while the constants c1,2 may be readily selected in a way to satisfy all the boundary conditions 
shown in Fig. 9a: 
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so the boundary problem has been solved. 

According to Eq. (76), all equipotential surfaces are hyperbolic cylinders, similar to those of the 
electrode surfaces. What remains is to find the electric field at an arbitrary point inside the system: 
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(a)        (b) 

Fig. 2.9. (a) The quadrupole electrostatic lens’ cross-section and (b) its conformal mapping. 

plane z     plane w 

u

v

0
0 a 2a

a 2a
0

2/V
xa

a

2/V

2/V

y

2/V

a

a

x

y



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 2                Page 20 of 68 

These formulas show, in particular, that if charged particles (e.g., electrons in an electron-optics system) 
are launched to fly ballistically through such a lens, along the z-axis, they experience a force pushing 
them toward the symmetry axis and proportional to the particle’s deviation from the axis (and thus 
equivalent in action to an optical lens with a positive refraction power) in one direction, and a force 
pushing them out (negative refractive power) in the perpendicular direction. One can show that letting 
the particles fly through several such lenses, with alternating voltage polarities, in series, enables beam 
focusing.30 

 Hence, we have reduced the 2D Laplace boundary problem to that of finding the proper analytic 
function w(z). This task may be also understood as that of finding a conformal map, i.e. a 
correspondence between components of any point pair, {x, y} and {u, v}, residing, respectively, on the 
initial Cartesian plane z and the plane w of the new variables. For example, Eq. (71) maps the real 
electrode configuration onto a plane capacitor of an infinite area (Fig. 9b), and the simplicity of Eq. (75) 
is due to the fact that for the latter system the equipotential surfaces are just parallel planes u = const. 

 For more complex geometries, the suitable analytic function w(z) may be hard to find. However, 
for conductors with piece-linear cross-section boundaries, substantial help may be obtained from the 
following Schwarz-Christoffel integral 
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kk xxx

d
)

zzz
z

zw .   (2.78) 

that provides a conformal mapping of the interior of an arbitrary N-sided polygon onto the plane w = u 
+ iv, onto the upper half (y > 0) of the plane z = x + iy. In Eq. (78), xj  (j = 1, 2, N – 1) are the points of 
the y = 0 axis (i.e., of the boundary of the mapped region on plane z) to which the corresponding 
polygon vertices are mapped, while kj are the exterior angles at the polygon vertices, measured in the 
units of , with –1  kj  +1 – see Fig. 10.31 Of the points xj, two may be selected arbitrarily (because 
their effects may be compensated by the multiplicative constant in Eq. (78), and the additive constant of 
integration), while all the others have to be adjusted to provide the correct mapping. 

  

  

 

 

 

 

 

  

 

30 See, e.g., textbook by P. Grivet, Electron Optics, 2nd ed., Pergamon, 1972. 
31 The integral (78) includes only (N – 1) rather than N poles because a polygon’s shape is fully determined by (N 
– 1) positions wj of its vertices and (N – 1) angles kj. In particular, since the algebraic sum of all external angles 
of a polygon equals 2, the last angle parameter kj = kN is uniquely determined by the set of the previous ones. 
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Fig. 2.10. The Schwartz-Christoffel mapping of 
a polygon’s interior onto the upper half-plane.  
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 In the general case, the complex integral (78) may be hard to tackle. However, in some important 
cases, in particular those with right angles (kj = ½) and/or with some points wj at infinity, the integrals 
may be readily worked out, giving explicit analytical expressions for the mapping functions w(z). For 
example, let us consider a semi-infinite strip defined by restrictions –1  u  +1 and 0  v, on the w-
plane – see the left panel of Fig. 11.  

 

 

 

 

 

 

 

 

  
 The strip may be considered as a triangle, with one vertex at the infinitely distant vertical point 
w3 = 0 +  i . Let us map the polygon onto the upper half of plane z, shown on the right panel of Fig. 11, 
with the vertex w1 = –1 + i 0 mapped onto the point z1 = –1 + i 0, and the vertex w2 = +1 + i 0 mapped 
onto the point z2 = +1 + i 0. Since the external angles at these vertices  are equal to +/2, and hence k1 = 
k2 = +½, Eq.  (78) is reduced to 
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This complex integral may be worked out, just as for real z, with the substitution z = sin, giving  
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    (2.80) 

Determining the constants c1,2 from the required mapping, i.e. from the conditions w(-1 + i 0) = –1 + i 0 
and  w(+1+ i 0)= +1+ i 0 (see the arrows in Fig. 11), we finally get32 

          
2

sin   i.e.     ,sin
2

)( 1 w
zzzw

π
 


.    (2.81a) 

Using the well-known expression for the sine of a complex argument,33 we may rewrite this elegant 
result in either of the following two forms for the real and imaginary components of z and w: 
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32 Note that this function differs only by a linear transformation of variables from the function z = c cosh w, which 
is the canonical form of the definition of the so-called elliptic (not ellipsoidal!) orthogonal coordinates.  
33 See, e.g., MA Eq. (3.5). 
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Fig. 2.11. A semi-
infinite strip mapped 
onto the upper half-
plane. 
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     (2.81b) 

It is amazing how perfectly the last formula manages to keep y  0 at the different borders of our w-
region (Fig. 11): at its side borders (u = 1, 0  v < ), this is performed by the first multiplier, while at 
the bottom border (–1  u  +1, v = 0), the equality is enforced by the second multiplier. 

This mapping may be used to solve several electrostatics problems with the geometry shown in 
Fig. 11a; probably the most surprising of them is the following one. A straight gap of width 2t is cut in a 
very thin conducting plane, and voltage V is applied between the resulting half-planes – see the bold 
straight lines in Fig. 12.  

 

 

 

 

 

 

 

 

 

Selecting a Cartesian coordinate system with the z-axis directed along the cut, the y-axis normal 
to the plane, and the origin in the middle of the cut (Fig. 12), we can write the boundary conditions of 
this Laplace problem as 



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     (2.82) 

(Due to the problem’s symmetry, we may expect that in the middle of the gap, i.e. at –t < x < +t and y = 
0, the electric field is parallel to the plane and hence /y = 0.)  The comparison of Figs. 11 and 12 
shows that if we normalize our coordinates {x, y} to t, Eqs. (81) provide the conformal mapping of our 
system onto the plane z to a plane capacitor on the plane w, with the voltage V between two conducting 
planes located at u = 1. Since we already know that in that case  = (V/2)u, we may immediately use 
the first of Eqs. (81b) to write the final solution of the problem:34 
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 The thin lines in Fig. 12 show the corresponding equipotential surfaces;35 it is evident that the 
electric field concentrates at the gap edges, just as it did at the edge of the thin disk (Fig. 8). Let me 

34 This result may be also obtained by the Green’s function method, to be discussed in Sec. 10 below.  
35 Another graphical representation of the electric field distribution, by field lines, is less convenient. (It is  more 
useful for the magnetic field, which may be represented by a scalar potential only in particular cases, so there is 
no surprise that the field lines were introduced only by Michael Faraday in the 1830s.) As a reminder, the field 

x

y

tt Fig. 2.12. The equipotential surfaces of 
the electric field between two thin 
conducting semi-planes (or rather their 
cross-sections by the plane z = const). 
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leave the remaining calculation of the surface charge distribution and the mutual capacitance between 
the half-planes (per unit length of the system in the z-direction) for the reader’s exercise. 

 

2.5. Variable separation – Cartesian coordinates 

 The general approach of the methods discussed in the last two sections was to satisfy the Laplace 
equation by a function of a single variable that also satisfies the boundary conditions. Unfortunately, in 
many cases this cannot be done – at least, using reasonably simple functions. In this case, a very 
powerful method called the variable separation,36 may work, typically producing “semi-analytical” 
results in the form of series (infinite sums) of either elementary or well-studied special functions. Its 
main idea is to look for the solution of the boundary problem (35) as the sum of partial solutions, 

      
k

kkc  ,      (2.84) 

where each function k satisfies the Laplace equation, and then select the set of coefficients ck to satisfy 
the boundary conditions. More specifically, in the variable separation method, the partial solutions k 
are looked for in the form of a product of functions, each depending on just one spatial coordinate. 

 Let us discuss this approach on the classical example of a rectangular box with conducting walls 
(Fig. 13), with the same potential (that I will take for zero) at all its sidewalls and the lower lid, but a 
different potential V at the top lid (z = c). Moreover, to demonstrate the power of the variable separation 
method, let us carry out all the calculations for a more general case when the top lid’s potential is an 
arbitrary 2D function V(x, y).37  

 

 

 

 

 

 

 
 

For this geometry, it is natural to use the Cartesian coordinates {x, y, z}, representing each of the 
partial solutions in Eq. (84) as the following product 

line is the curve to which the field vectors are tangential at each point. Hence the electric field lines are always 
normal to the equipotential surfaces, so it is always straightforward to sketch them, if desirable, from the 
equipotential surface pattern – like the one shown in Fig. 12.  
36 This method was already discussed in CM Sec. 6.5 and then used also in Secs. 6.6 and 8.4 of that course. 
However, it is so important that I need to repeat its discussion in this part of my series, for the benefit of the 
readers who have skipped the Classical Mechanics course for whatever reason. 
37 Such voltage distributions may be implemented in practice, for example, using the so-called mosaic electrodes 
consisting of many electrically-insulated and individually-biased panels. 
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Fig. 2.13. The standard playground for the 
variable separation discussion: a rectangular box 
with five conducting, grounded walls and a fixed 
potential distribution V(x, y) on the top lid.  
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            )()()( zZyYxXk  .     (2.85) 

Plugging it into the Laplace equation expressed in the Cartesian coordinates, 
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and dividing the result by XYZ, we get 
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 Here comes the punch line of the variable separation method: since the first term of this sum may 
depend only on x, the second one only of y, etc., Eq. (87) may be satisfied everywhere in the volume 
only if each of these terms equals a constant. In a minute we will see that for our current problem (Fig. 
13), these constant x- and y-terms have to be negative; hence let us denote these variable separation 
constants as (-2) and (-2), respectively. Now Eq. (87) shows that the constant z-term has to be 
positive; denoting it as 2 we get the following relation: 

      222   .      (2.88) 

Now the variables are separated in the sense that for the functions X(x), Y(y), and Z(z) we got separate 
ordinary differential equations, 
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which are related only by Eq. (88) for their constant parameters.  

 Let us start with the equation for X(x). Its general solution is the sum of functions sinx and 
cosx, multiplied by arbitrary coefficients. Let us select these coefficients to satisfy our boundary 
conditions. First, since   X should vanish at the back vertical wall of the box (i.e., with the coordinate 
origin choice shown in Fig. 13, at x = 0 for any y and z), the coefficient at cosx should be zero. The 
remaining coefficient (at sinx) may be included in the general factor ck in Eq. (84), so we may take X 
in the form 
         xX sin .      (2.90)  

This solution satisfies the boundary condition at the opposite wall (x = a) only if the product a is a 
multiple of , i.e. if  is equal to any of the following numbers (commonly called eigenvalues):38 

                ,...2,1with  ,  nn
an

     (2.91) 

(Terms with negative values of n would not be linearly-independent from those with positive n and may 
be dropped from the sum (84). The value n = 0 is formally possible but would give X = 0, i.e. k = 0, at 

38 Note that according to Eqs. (91)-(92), as the spatial dimensions a and b of the system are increased, the 
distances between the adjacent eigenvalues tend to zero. This fact implies that for spatially infinite systems, the 
eigenvalue spectra are continuous, so the sums of the type (84) become integrals; however, the general approach 
remains the same. A few problems of this type are provided in Sec. 9 for the reader’s exercise. 
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any x, i.e. no contribution to sum (84),  so it may be dropped as well.) Now we see that we indeed had to 
take   real, i.e. 2 positive – otherwise, instead of the oscillating function (90), we would have a sum of 
two exponential functions, which cannot equal zero at two independent points of the x-axis. 

 Since the equation (89) for function Y(y) is similar to that for X(x), and the boundary conditions 
on the walls perpendicular to axis y (y = 0 and y = b) are similar to those for x-walls, the absolutely 
similar reasoning gives 

            ,...2,1with  ,,sin  mm
b

yY m

 ,   (2.92) 

where the integer m may be selected independently of n. Now we see that according to Eq. (88), the 
separation constant   depends on two integers n and m, so the relationship may be rewritten as 
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The corresponding solution of the differential equation for Z  may be represented as a linear 
combination of two exponents exp{nmz}, or alternatively of two hyperbolic functions, sinhnmz and 
coshnmz, with arbitrary coefficients. At our choice of coordinate origin, the latter option is preferable 
because coshnmz cannot satisfy the zero boundary condition at the bottom lid of the box (z = 0). Hence 
we may take Z in the form 

      zZ nmsinh ,      (2.94) 

which automatically satisfies that condition. 

 Now it is the right time to merge Eqs. (84)-(85) and (90)-(94),  replacing the temporary index k 
with the full set of possible eigenvalues, in our current case of two integer indices n and m: 
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where nm is given by Eq. (93). This solution satisfies not only the Laplace equation but also the 
boundary conditions on all walls of the box, besides the top lid, for arbitrary coefficients cnm. The only 
job left is to choose these coefficients from the top-lid requirement: 
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It may look bad to have just one equation for the infinite set of coefficients cnm. However, the decisive 
help comes from the fact that the functions of x and y that participate in Eq. (96), form full, orthogonal 
sets of 1D functions. The last term means that the integrals of the products of the functions with 
different integer indices over the region of interest equal zero. Indeed, direct integration gives 
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where nn’ is the Kronecker symbol, and similarly for y (with the evident replacements a  b, and n  
m). Hence, a fruitful way to proceed is to multiply both sides of Eq. (96) by the product of the basis 
functions, with arbitrary indices n’ and m’, and integrate the result over x and y: 

Variable 
separation 

in Cartesian 
coordinates 

(example) 
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Due to Eq. (97), all terms on the left-hand side of the last equation, besides those with n = n’ and m = 
m’, vanish, and (replacing n’ with n, and m’ with m, for notation brevity) we finally get 
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The relations (93), (95), and (99) give the complete solution of the posed boundary problem; we 
can see both good and bad news here. The first bit of bad news is that in the general case, we still need 
to work out the integrals (99) – formally, the infinite number of them. In some cases, it is possible to do 
this analytically, in one shot. For example, if the top lid in our problem is a single conductor, i.e. has a 
constant potential V0, we may take V(x,y) = V0 = const, and both 1D integrations are elementary; for 
example 
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and similarly for the integral over y, so 
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The second bad news is that even on such a happy occasion, we still have to sum up the series (95), so 
our result may only be called analytical with some reservations because in most cases we need to 
perform numerical summation to get the final numbers or plots.  

 Now the first good news. Computers are very efficient for both operations (95) and (99), i.e. for 
the summation and integration. (As was discussed in Sec. 1.2, random errors are averaged out at these 
operations.) As an example, Fig. 14 shows the plots of the electrostatic potential in a cubic box (a = b = 
c), with an equipotential top lid (V = V0 = const), obtained by a numerical summation of the series (95), 
using the analytical expression (101). The remarkable feature of this calculation is a very fast 
convergence of the series; for the middle cross-section of the cubic box (z/c = 0.5), already the first term 
(with n = m = 1) gives an accuracy of about 6%, while the sum of four leading terms (with n, m = 1, 3) 
reduces the error to just 0.2%. (For a longer box, c > a, b, the convergence is even faster – see the 
discussion below.) Only very close to the corners between the top lid and the sidewalls, where the 
potential changes rapidly, several more terms are necessary to get a reasonable accuracy. 

 The related piece of good news is that our “semi-analytical” result allows its ultimate limits to be 
explored analytically. For example, Eq. (93) shows that for a very flat box (with c << a, b), n,mz    n,mc  
<< 1 at least for the lowest terms of series (95), with n, m << c/a, c/b. In this case, the sinh functions in 
Eqs. (96) and (99) may be well approximated with their arguments, and their ratio by z/c. So if we limit 
the summation to these terms, Eq. (95) gives a very simple result 
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which means that each elementary segment of the flat box behaves just as a plane capacitor. Only near 
the sidewalls, the higher terms in the series (95) are important, producing some deviations from Eq. 
(102). (For the general problem with an arbitrary function V(x,y), this is also true in all regions where 
this function changes sharply.) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the opposite limit (a, b << c), Eq. (93) shows that on the contrary, n,mc  >> 1 for all n and m. 
Moreover, the ratio sinhn,mz/sinhn,mc drops sharply if either n or m is increased, provided that z is not 
too close to c. Hence in this case a very good approximation may be obtained by keeping just the 
leading term, with n = m = 1, in Eq. (95), so the challenge of summation disappears. (As was discussed 
above, this approximation works reasonably well even for a cubic box.) In particular, for the constant 
potential of the upper lid, we can use Eq. (101) and the exponential asymptotic for both sinh functions, 
to get a very simple formula: 
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 These results may be readily generalized to some other problems. For example, if all walls of the 
box shown in Fig. 13 have an arbitrary potential distribution, we may use the linear superposition 
principle to represent the electrostatic potential distribution as the sum of six partial solutions of the type 
of Eq. (95), each with one wall biased by the corresponding voltage, and all other grounded ( = 0). 

 To summarize, the results given by the variable separation method in the Cartesian coordinates 
are closer to what we could call a genuinely analytical solution than to a purely numerical solution. 
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Fig. 2.14. The electrostatic potential’s distribution inside a cubic box (a = b = c) with a constant voltage V0 
on the top lid (Fig. 13), calculated numerically from Eqs. (93), (95), and (101). The dashed line on the left 
panel shows the contribution of the main term of the series (with n = m = 1) to the full result, for z/c = 0.5. 
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Now, let us explore the issues that arise when this method is applied in other orthogonal coordinate 
systems. 

 

2.6. Variable separation – polar coordinates 

 If a system of conductors is cylindrical, the potential distribution is independent of the z-
coordinate along the cylinder axis: /z =0, and the Laplace equation becomes two-dimensional. If the 
conductor’s cross-section is rectangular, the variable separation method works best in Cartesian 
coordinates {x, y}, and is just a particular case of the 3D solution discussed above. However, if the 
cross-section is circular, much more compact results may be obtained by using the polar coordinates {, 
}. As we already know from Sec. 3(ii), these 2D coordinates are orthogonal, so the two-dimensional 
Laplace operator is a sum of two separable terms.39 Requiring, just as we have done above, each 
component of the sum  (84) to satisfy the Laplace equation, we get  
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In a full analogy with Eq. (85), let us represent each particular solution k as a product R()F(). 

Plugging this expression into Eq. (104) and then dividing all its parts by RF /2, we get 
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Following the same reasoning as for the Cartesian coordinates, we get two separated ordinary 
differential equations 
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where 2 is the variable separation constant. 

 Let us start their analysis from Eq. (106), plugging into it a probe solution R  = c where c and 

 are some constants. The elementary differentiation shows that if   0, the equation is indeed satisfied 
for any c, with just one requirement imposed on the constant , namely 2 = 2. This means that the 
following linear superposition 
            ,0for ,    




 baR     (2.108) 

with any constant coefficients a and b, is also a solution of Eq. (106). Moreover, the general theory of 
linear ordinary differential equations tells us that the solution of a second-order equation like Eq. (106) 
may only depend on just two constant factors that scale two linearly independent functions. Hence, for 
all values 2  0, Eq. (108) presents the general solution of that equation. The case when  = 0, in which 
the functions  + and  – are just constants and hence are not linearly independent, is special, but in 
this case, the integration of Eq. (106) is straightforward,40 giving 

39 See, e.g., MA Eq. (10.3) with /z = 0. 
40 Actually, we have already performed it in Sec. 3 – see Eq. (43). 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 2                Page 29 of 68 

                 0.for ,ln00  baR     (2.109) 

 In order to specify the separation constant, let us explore Eq. (107), whose general solution is 

         








.0for                   ,

0,for ,sincos

00 
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sc

sc
F     (2.110) 

There are two possible cases here. In many boundary problems solvable in cylindrical coordinates, the 
free-space region, in which the Laplace equation is valid, extends continuously around the origin point   
= 0. In this region, the potential has to be continuous and uniquely defined, so F  has to be a 2-periodic 

function of . For that, one needs the product ( +2) to equal  + 2n, with n being an integer, 
immediately giving us a discrete spectrum of possible values of the variable separation constant: 

               ,...2,1,0  n      (2.111) 

In this case, both functions R and F  may be labeled with the integer index n. Taking into account that 
the terms with negative values of n may be summed up with those with positive n, and that s0 has to 
equal zero (otherwise the 2-periodicity of function F would be violated), we see that the general 
solution of the 2D Laplace equation for such geometries may be represented as 

             
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.  (2.112) 

 Let us see how all this machinery works on the famous problem of a round cylindrical conductor 
placed into an electric field that is uniform and perpendicular to the cylinder’s axis at large distances 
(see Fig. 15a), as if it is created by a large plane capacitor. First of all, let us explore the effect of the 
system’s symmetries on the coefficients in Eq. (112). Selecting the coordinate system as shown in Fig. 
15a, and taking the cylinder’s potential for zero, we immediately get a0 = 0.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.15. A conducting cylinder inserted into an initially uniform electric field perpendicular to its 
axis: (a) the problem’s geometry, and (b) the equipotential surfaces given by Eq. (117). 
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 Moreover, due to the mirror symmetry about the plane [x, z],  the solution has to be an even 
function of the angle , and hence all coefficients sn should also equal zero. Also, at large distances ( 
>> R) from the cylinder, its effect on the electric field should vanish, and the potential should approach 
that of the uniform external field E = E0nx: 

          for ,cos00 ExE .    (2.113) 

This is only possible if in Eq. (112), b0 = 0, and also all coefficients an with n  1 vanish, while the 
product a1c1 should be equal to (–E0). Thus the solution is reduced to the following form 

        


 n
B

E
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n
n coscos),(

1
0 





 ,    (2.114) 

in which the coefficients Bn  bncn should be found from the boundary condition at  = R:   

         0),(  R .      (2.115) 

This requirement yields the following equation, 
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which should be satisfied for all . This equality, read backward, may be considered as an expansion of 
a function identically equal to zero into a series over mutually orthogonal functions cosn. It is 
evidently valid if all coefficients of the expansion, including (–E0R + B1/R), and all Bn for n  2 are 
equal to zero. Moreover, mathematics tells us that such expansions are unique, so this is the only 
possible solution of Eq. (116). So, B1 = E0R

2, and our final answer (valid only outside of the cylinder, 
i.e. for   R), is 
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This result, which may be graphically represented with the equipotential surfaces shown in Fig. 
15b, shows a smooth transition between the uniform field (113) far from the cylinder, to the 
equipotential surface of the cylinder (with  = 0). Such smoothening is very typical for Laplace 
equation solutions. Indeed, as we know from Chapter 1, these solutions correspond to the lowest integral 
of the potential gradient’s square, i.e. to the lowest potential energy (1.65) possible at the given 
boundary conditions. 

 To complete the problem, let us use Eq. (3) to calculate the distribution of the surface charge 
density over the cylinder’s cross-section: 
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  (2.118) 

This very simple formula shows that with the field direction shown in Fig. 15a (E0 > 0), the surface 
charge is positive on the right-hand side of the cylinder and negative on its left-hand side, thus creating a 
field directed from the right to the left, which exactly compensates the external field inside the 
conductor, where the net field is zero. (Please take one more look at the schematic Fig. 1a.) Note also 
that the net electric charge of the cylinder is zero, in correspondence with the problem symmetry. 
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Another useful by-product of the calculation (118) is that the surface electric field equals 2E0cos, and 
hence its largest magnitude is twice the field far from the cylinder. Such electric field concentration is 
very typical for all convex conducting surfaces. 

 The last observation gets additional confirmation from the second possible topology when Eq. 
(110) is used to describe problems with no angular periodicity. A typical example of this situation is a 
cylindrical conductor with a cross-section that features a corner limited by two straight-line segments 
(Fig. 16). Indeed, we may argue that at  < R (where R is the radial extension of the planar sides of the 
corner, see Fig. 16), the Laplace equation may be satisfied by a sum of partial solutions R()F(), if the 
angular components of the products satisfy the boundary conditions on the corner sides. Taking (just for 
the simplicity of notation) the conductor’s potential to be zero, and one of the corner’s sides as the x-
axis (  = 0), these boundary conditions are 

               0)()0(  FF ,      (2.119) 

where the angle  may be anywhere between 0 and 2 – see Fig. 16.  

 

 

 

 

 

 

 

 Comparing this condition with Eq. (110), we see that it requires s0 and all c  to vanish, and   to 
take one of the values of the following discrete spectrum:  

,...2,1with  ,  mmm  . (2.120) 

Hence the full solution of the Laplace equation for this geometry takes the form 
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where the constants s have been incorporated into am. The set of coefficients am cannot be universally 
determined, because it depends on the exact shape of the conductor outside the corner, and the 
externally applied electric field. However, whatever the set is, in the limit   0, the solution (121) is 
almost41 always dominated by the term with the lowest m = 1: 

           

  sin/

1a ,     (2.122) 

because the higher terms tend to zero faster. This potential distribution corresponds to the surface charge 
density 

41 Exceptions are possible only for highly symmetric configurations when the external field is specially crafted to 
make a1 = 0. In this case, the solution at   0 is dominated by the first nonzero term of the series (121). 

Fig. 2.16. The cross-sections 
of cylindrical conductors with 
(a) a corner and (b) a wedge. 
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(It is similar, with the opposite sign, on the opposite face of the angle.) 

 The result (123) shows that if we are dealing with a concave corner ( < , see Fig. 16a), the 
charge density (and the surface electric field) tends to zero. On the other hand, at a “convex corner” with 
  >  (actually, a wedge – see Fig. 16b), both the charge and the field’s strength concentrate, formally 
diverging at   0. (So, do not sit on a roof’s ridge during a thunderstorm; rather hide in a ditch!) We 
have already seen qualitatively similar effects for the thin round disk and the split plane. 

  

2. 7. Variable separation – cylindrical coordinates 

 Now, let us discuss how to generalize the approach discussed in the previous section to problems 
whose geometry is still axially symmetric, but where the electrostatic potential depends not only on the 
radial and angular coordinates but also on the axial coordinate: /z  0. The classical example of such 
a problem is shown in Fig. 17. Here the sidewall and the bottom lid of a hollow round cylinder are kept 
at a fixed potential (say,  = 0), but the potential V fixed at the top lid is different. Evidently, this 
problem is qualitatively similar to the rectangular box problem solved above (Fig. 13), and we will also 
try to solve it first for the case of arbitrary voltage distribution over the top lid: V = V(, ). 

 

 

 

 
  
  
 
 
 Following the main idea of the variable separation method, let us require that each partial 
function k in Eq. (84) satisfies the Laplace equation, now in the full cylindrical coordinates {, , z}:42 
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Plugging k in the form of the product R()F()Z(z) into Eq. (124) and then dividing all resulting terms 
by this product, we get 

      0
111

2

2

2

2

2









dz

d

d

d

d

d

d

d Z
Z




F
F

R
R

.    (2.125) 

Since the first two terms of Eq. (125) can only depend on the polar variables  and , while the third 
term, only on z,  at least that term should equal a constant. Denoting it (just like we did in the 
rectangular box problem) by 2, we get the following set of two equations: 

42 See, e.g., MA Eq. (10.3). 

Fig. 2.17. A cylindrical volume 
with conducting walls. 
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Now, multiplying all the terms of Eq. (127) by 2, we see that the last term of the result, (d2F/d2)/F, 

may depend only on , and thus should equal a constant. Calling that constant 2 (just as in Sec. 6 
above), we separate Eq. (127) into an angular equation, 
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and a radial equation: 
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We see that the ordinary differential equations for the functions Z(z) and F() (and hence their 
solutions) are identical to those discussed earlier in this chapter. However, Eq. (129) for the radial 
function R() (called the Bessel equation) is more complex than in the 2D case and depends on two 

independent constant parameters,  and .  The latter challenge may be readily overcome if we notice 
that any change of  may be reduced to the corresponding re-scaling of the radial coordinate . Indeed, 
introducing a dimensionless variable   ,43 Eq. (129) may be reduced to an equation with just one 
parameter, : 
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Moreover, we already know that for angle-periodic problems, the spectrum of eigenvalues of Eq. (128) 
is discrete:  = n, with integer n. 

 Unfortunately, even in this case, Eq. (130), which is the canonical form of the Bessel equation, 
cannot be satisfied by a single “elementary” function. The solutions that we need for our current 
problem are called the Bessel function of the first kind of order , commonly denoted as J(). Let me 
review in brief those properties of these functions that are most relevant to our problem – and many 
other problems discussed in this series.44 

 First of all, the Bessel function of a negative integer order is very simply related to that of the 
positive order: 
           )()1()(  n

n
n JJ  ,     (2.131) 

enabling us to limit our discussion to the functions with n  0. Figure 18 shows four of these functions 
with the lowest positive n.  

43 Note that this normalization is specific for each value of the variable separation parameter . Also, please notice 
that the normalization is meaningless for   = 0, i.e. for the case Z(z) = const. However, if we need partial 
solutions for this particular value of , we can always use Eqs. (108)-(109). 
44 For a more complete discussion of these functions, see the literature listed in MA Sec. 16, for example, Chapter 
6 (written by F. Olver) in the famous collection compiled and edited by Abramowitz and Stegun, available online.  

Bessel 
equation 
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 As its argument is increased, each function is initially close to a power law: J0()  1, J1()  
/2, J2()  2/8, etc. This behavior follows from the Taylor series  
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which is formally valid for any , and may even serve as an alternative definition of the functions Jn(). 
However, the series is converging fast only at small arguments,  << n, where its leading term is 
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At   n + 1.86n1/3, the Bessel function reaches its maximum45 
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J n  ,     (2.134) 

and then starts to oscillate with a period gradually approaching 2, a phase shift that increases by /2 
with each unit increment of n, and an amplitude that decreases as –1/2. All these features are described 
by the following asymptotic formula: 
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which starts to give a reasonable approximation soon after the function peaks – see Fig. 18.46 

45 These two approximations for the Bessel function peak are strictly valid for n >> 1, but may be used for 
reasonable estimates starting already from n = 1. For example, max [J1()] is close to 0.58 and is reached at    
2.4, just about 30% away from the values given by the asymptotic formulas. 
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 Now we are ready for our case study (Fig. 17). Since the functions the Z(z) have to satisfy not 
only Eq. (126) but also the bottom-lid boundary condition Z(0) = 0, they are proportional to sinhz – cf. 
Eq. (94). Then Eq. (84) becomes 

               
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

  .   (2.136) 

Next, we need to satisfy the zero boundary condition at the cylinder’s side wall ( = R). This may be 
ensured by taking 
      0)( RJ n  .      (2.137) 

Since each function Jn(x) has an infinite number of positive zeros (see Fig. 18 again), which may be 
numbered by an integer index m = 1, 2, …, Eq. (137) may be satisfied with an infinite number of 
discrete values of the parameter :  
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nm
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  ,      (2.138) 

where nm is the m-th zero of the function Jn(x) – see the top numbers in the cells of Table 1. (Very soon 
we  will see what we need the bottom numbers for.)  

  

 

 

 

 

 

 

 

 

 

 

 

 Hence, Eq. (136) may be represented in a more explicit form: 
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46 Eq. (135) and Fig. 18 clearly show the close analogy between the Bessel functions and the usual trigonometric 
functions, sine and cosine. To emphasize this similarity, and help the reader to develop more gut feeling of the 
Bessel functions, let me mention one result of the elasticity theory: while the sinusoidal functions describe, in 
particular, transverse standing waves on a guitar string, the functions Jn() describe, in particular, transverse 
standing waves on an elastic round membrane (say, a round drum), with J0() describing their lowest 
(fundamental) mode – the only mode with a nonzero amplitude of the membrane center’s oscillations. 

Table 2.1. Approximate values of a few first zeros, nm, of a few lowest-order Bessel functions Jn() 
(the top number in each cell), and the values of dJn()/d  at these points (the bottom number). 

  m = 1 2 3 4 5 6 

n = 0 2.40482 
-0.51914 

5.52008 
+0.34026 

8.65372 
-0.27145 

11.79215 
+0.23245 

14.93091 
-0.20654 

18.07106 
+0.18773 

1 3.83171 
-0.40276 

7.01559 
+0.30012 

10.17347 
-0.24970 

13.32369 
+0.21836 

16.47063 
-0.19647 

19.61586 
+0.18006 

2 5.13562 
-0.33967 

8.41724 
+0.27138 

11.61984 
-0.23244 

14.79595 
+0.20654 

17.95982 
-0.18773 

21.11700 
+0.17326 

3 6.38016 
-0.29827 

9.76102 
+0.24942 

13.01520 
-0.21828 

16.22347 
+0.19644 

19.40942 
-0.18005 

22.58273 
+0.16718 

4 7.58834 
-0.26836 

11.06471 
+0.23188 

14.37254 
-0.20636 

17.61597 
+0.18766 

20.82693 
-0.17323 

24.01902 
+0.16168 

5 8.77148 
-0.24543 

12.33860 
+0.21743 

15.70017 
-0.19615 

18.98013 
+0.17993 

22.21780 
-0.16712 

25.43034 
+0.15669 
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(example) 
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Here the coefficients cnm and snm have to be selected to satisfy the only remaining boundary condition – 
that on the top lid: 
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To use it, let us multiply both sides of Eq. (140) by the product Jn(nm’/R) cos n’, integrate the result 
over the lid area, and use the following property of the Bessel functions: 
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 As a small but important detour, the last relation expresses a very specific (“2D”) orthogonality 
of the Bessel functions with different indices m – do not confuse them with the function order indices n, 
please!47 Since it relates two Bessel functions of the same order n, it is natural to ask why its right-hand 
side contains the function with a different order (n + 1). Some gut feeling of that may come from one 
more very important property of the Bessel functions, the so-called recurrence relations:48 
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which in particular yield the following formula (convenient for working out some Bessel function 

integrals): 
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Let us apply the recurrence relations at the special points nm. At these points, Jn vanishes, and the 
system of two equations (142) may be readily solved to get, in particular, 
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so the square bracket on the right-hand side of Eq. (141) is just (dJn/d)2 at  = nm. Thus the values of 
the Bessel function derivatives at the zero points of the function, given by the lower numbers in the cells 
of Table 1, are as important for boundary problem solutions as the zeros themselves. 

  Now returning to our problem: since the angular functions cos n  are also orthogonal – both to 
each other, 

47 The Bessel functions of the same argument but different orders are also orthogonal, but differently: 
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48 These relations provide, in particular, a convenient way for numerical computation of all Jn() – after J0() has 
been computed. (The latter task is usually performed using Eq. (132) for smaller   and an extension of Eq. (135) 
for larger .) Note that most mathematical software packages, including all those listed in MA Sec. 16(iv), include 
ready subroutines for calculation of the functions Jn() and other special functions used in this lecture series. In 
this sense, the conditional line separating these “special functions” from “elementary functions” is rather fine. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 2                Page 37 of 68 

                '

2

0

)cos()cos( nndn'n 


  ,    (2.145) 

and to all functions sinn, the integration over the lid area kills all terms of both series in Eq. (140), 
besides just one term proportional to cn’m’, and hence gives an explicit expression for that coefficient. 
The counterpart coefficients sn’m’ may be found by repeating the same procedure with the replacement of 
cos n’ by sin n’. This evaluation (left for the reader’s exercise) completes the solution of our problem 
for an arbitrary lid potential V(,). 

 Still, before leaving the Bessel functions behind (for a while only :-), let me address two 
important issues. First, we have seen that in our cylinder problem (Fig. 17), the set of functions 
Jn(nm/R) with different indices m (which characterize the degree of Bessel function’s stretch along 
axis ) play a role similar to that of functions sin(nx/a) in the rectangular box problem shown in Fig. 
13. In this context, what is the analog of functions cos(nx/a) – which may be important for some 
boundary problems? In a more formal language, are there any functions of the same argument   
nm/R, that would be linearly independent of the Bessel functions of the first kind, while satisfying the 
same Bessel equation (130)? 

 The answer is yes. For the definition of such functions, we first need to generalize our prior 
formulas for Jn(), and in particular Eq. (132), to the case of arbitrary, not necessarily real order . 
Mathematics says that the generalization may be performed in the following way: 
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where (s) is the so-called gamma function that may be defined as49 
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The simplest, and the most important property of the gamma function is that for integer values of its 
argument, it gives the factorial of the number smaller by one: 

          nnn  ...21!)1( ,     (2.148) 

so it is essentially a generalization of the notion of the factorial to all real numbers. 

 The Bessel functions defined by Eq. (146) satisfy, after the replacements n   and n!  (n + 
1), virtually all the relations discussed above, including the Bessel equation (130), the asymptotic 
formula (135), the orthogonality condition (141), and the recurrence relations (142). Moreover, it may 
be shown that   n, functions J() and J-() are linearly independent of each other, and hence their 
linear combination may be used to represent the general solution of the Bessel equation. Unfortunately, 
as Eq. (131) shows, for  = n this is not true, and a solution linearly independent of Jn() has to be 
formed differently. The most common way to do that is first to define, for all   n, the following 
functions:  
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49 See, e.g., MA Eq. (6.7a). Note that (s)   at s  0, –1, –2,… 
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called the Bessel functions of the second kind, or more often the Weber functions,50 and then to follow 
the limit   n. At this, both the numerator and denominator of the right-hand side of Eq. (149) tend to 
zero, but their ratio tends to a finite value called Yn(x). It may be shown that the resulting functions are 
still the solutions of the Bessel equation and are linearly independent of Jn(x), though are related just as 
those functions if the sign of n changes: 

             )()1()(  n
n

n YY  .     (2.150) 

Figure 19 shows a few Weber functions of the lowest integer orders.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The plots show that their asymptotic behavior is very similar to that of the functions Jn( ): 
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but with the phase shift necessary to make these Bessel functions orthogonal to those of the first order – 
cf. Eq. (135). However, for small values of argument , the Bessel functions of the second kind behave 
completely differently from those of the first kind: 
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where  is the so-called Euler constant, defined as follows: 

50 Sometimes, they are called the Neumann functions and denoted as N(). 

Fig. 2.19. A few Bessel 
functions of the second kind 
(a.k.a. the Weber functions, 
a.k.a. the Neumann functions). 
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As Eqs. (152) and Fig. 19 show, the functions Yn( ) diverge at    0 and hence cannot describe the 
behavior of any physical variable, in particular the electrostatic potential.  

 One may wonder: if this is true, when do we need these functions in physics? Figure 20 shows an 
example of a simple boundary problem of electrostatics, whose solution by the variable separation 
method involves both functions Jn( ) and Yn( ). 
 
   
 

 

 

 

 
  
 Here two round, conducting coaxial cylindrical tubes are kept at the same (say, zero) potential, 
but at least one of two lids has a different potential. The problem is almost completely similar to that 
discussed above (Fig. 17), but now we need to find the potential distribution in the free space between 
the tubes, i.e. for R1 <  < R2. If we use the same variable separation as in the simpler counterpart 
problem, we need the radial functions R() to satisfy two zero boundary conditions: at  = R1 and  = 

R2. With the Bessel functions of just the first kind, Jn(), it is impossible to do, because the two 
boundaries would impose two independent (and generally incompatible) conditions, Jn(R1) = 0, and 
Jn(R2) = 0, on one “stretching parameter” . The existence of the Bessel functions of the second kind 
immediately saves the day, because if the radial function solution is represented as a linear combination, 

       ),()(  nYnJ YcJc R      (2.154) 

two zero boundary conditions give two equations for  and the ratio c  cY/cJ.51 (Due to the oscillating 
character of both Bessel functions, these conditions would be typically satisfied by an infinite set of 
discrete pairs {, c}.) Note, however, that generally none of these pairs would correspond to zeros of 
either Jn or Yn, so having an analog of Table 1 for the latter function would not help much. Hence, even 
the simplest problems of this kind (like the one shown in Fig. 20) typically require the numerical 
solution of transcendental algebraic equations.  

51 A pair of independent linear functions, used for the representation of the general solution of the Bessel 
equation, may be also chosen differently, using the so-called Hankel functions 

        )()()()2,1(  nnn iYJH  .     

For representing the general solution of Eq. (130), this alternative is completely similar, for example, to using the 
pair of complex functions exp{ix}  cos x  isin x instead of the pair of real functions {cos x, sin x} for 
the representation of the general solution of Eq. (89) for X(x). 

Fig. 2.20. A simple boundary 
problem that cannot be solved 
using just one kind of Bessel 
functions. 
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 In order to complete the discussion of variable separation in the cylindrical coordinates, one 
more issue to address is the so-called modified Bessel functions: of the first kind, I(), and of the second 
kind, K(). They are two linearly independent solutions of the modified Bessel equation,  
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which differs from Eq. (130) “only” by the sign of one of its terms. Figure 21 shows a simple problem 
that leads (among many others) to this equation: a round thin conducting cylindrical pipe is sliced, 
perpendicular to its axis, to rings of equal height h, which are kept at equal but sign-alternating 
potentials.  

 

 

 

 

 

 

 

 If the system is very long (formally, infinite) in the z-direction, we may use the variable 
separation method for the solution of this problem, but now evidently need periodic (rather than 
exponential) solutions along the z-axis, i.e. linear combinations of sin kz and cos kz with various real 
values of the constant k. Separating the variables, we arrive at a differential equation similar to Eq. 
(129), but with the negative sign before the separation constant: 
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The same radial coordinate’s normalization,   k, immediately leads us to Eq. (155), and hence (for  
= n) to the modified Bessel functions In() and Kn().  

 Figure 22 shows the behavior of such functions, of a few lowest orders. One can see that at   
0 the behavior is virtually similar to that of the “usual” Bessel functions – cf. Eqs. (132) and (152), with 
Kn() multiplied (by purely historical reasons) by an additional coefficient, /2: 
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However, the asymptotic behavior of the modified functions is very much different, with In(x) 
exponentially growing, and Kn() exponentially dropping at   : 

Fig. 2.21. A typical boundary problem whose 
solution may be conveniently described in 
terms of the modified Bessel functions. 
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 This behavior is completely natural in the context of the problem shown in Fig. 21, in which the 
electrostatic potential may be represented as a sum of terms proportional to In() inside the thin pipe, 
and of terms proportional to Kn() outside it.  

 To complete our brief survey of the Bessel functions, let me note that all of them discussed so far 
may be considered as particular cases of Bessel functions of the complex argument, say Jn(z) and Yn(z), 
or, alternatively, Hn

(1,2)(z)  Jn(z)  iYn(z).52 At that, the “usual” Bessel functions Jn() and Yn() may be 
considered as the sets of values of these generalized functions on the real axis (z = ), while the 
modified functions as their particular case on the imaginary axis, i.e. at z = i, also with real : 
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Moreover, this generalization of the Bessel functions to the whole complex plane z enables the use of 
their values along other directions on that plane, for example under angles /4  /2. As a result, one 
arrives at the so-called Kelvin functions: 
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which are also useful for some important problems in physics and engineering. Unfortunately, I do not 
have time/space to discuss these problems in this course.53 

52 These complex functions still obey the general relations (143) and (146), with   replaced with z. 
53 In the QM part of this series we will run into the so-called spherical Bessel functions jn() and yn(), which may 
be expressed via the Bessel functions of semi-integer orders. Surprisingly enough, these functions turn out to be 
simpler than Jn() and Yn(). 

Fig. 2.22. The modified Bessel 
functions of the first kind (left 
panel) and the second kind 
(right panel). 
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2. 8. Variable separation – spherical coordinates 

 The spherical coordinates are very important in physics, because of the (at least approximate) 
spherical symmetry of many physical objects – from nuclei and atoms, to water drops in clouds, to 
planets and stars. Let us again require each component k of Eq. (84) to satisfy the Laplace equation. 
Using the full expression for the Laplace operator in spherical coordinates,54 we get 
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Let us look for a solution of this equation in the following variable-separated form: 
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Separating the variables one by one, starting from , just like this has been done in cylindrical 
coordinates, we get the following equations for the partial functions participating in this solution: 
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where   cos  is a new variable used in lieu of  (so –1    +1), while 2 and l(l+1) are the 
separation constants. (The reason for the selection of the latter one in this form will be clear in a 
minute.)  

 One can see that Eq. (165) is very simple, and is absolutely similar to the Eq. (107) we have got 
for the polar and cylindrical coordinates. Moreover, the equation for the radial functions is simpler than 
in the cylindrical coordinates. Indeed, let us look for its partial solution in the form cr – just as we have 
done with Eq. (106). Plugging this solution into Eq. (163), we immediately get the following condition 
on the parameter : 
                  )1(1  ll .     (2.166) 

This quadratic equation has two roots,  = l + 1 and  = – l, so the general solution of Eq. (163) is 
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 However, the general solution of Eq. (164) (called either the general or associated Legendre 
equation) cannot be expressed via what is usually called elementary functions.55 Let us start its 
discussion from the axially-symmetric case when / =0. This means F() = const, and thus   = 0, so 
Eq. (164) is reduced to the so-called Legendre differential equation: 

54 See, e.g., MA Eq. (10.9). 
55 Again, there is no generally accepted line between the “elementary” and “special” functions. 
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One can readily verify that the solutions of this equation for integer values of l are specific (Legendre) 
polynomials56 that may be described by the following Rodrigues’ formula: 
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According to this formula, the first few Legendre polynomials are pretty simple: 
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though such explicit expressions become more and more bulky as l is increased. As Fig. 23 shows, all 
these polynomials, which are defined on the [-1, +1] segment, end at the same point: Pl(+1) = + 1, while 
starting either at the same point or at the opposite point: Pl(-1) = (-1)l. Between these two endpoints, the 
lth Legendre polynomial has l zeros. It is straightforward to use Eq. (169) to prove that these 
polynomials form a full, orthogonal set of functions, with the following normalization rule: 
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so any function f() defined on the segment [-1, +1] may be represented as a unique series over the 
polynomials.57 

 Thus, taking into account the additional division by r in Eq. (162), the general solution of any 
axially symmetric Laplace problem may be represented as 
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Note a strong similarity between this solution and Eq. (112) for the 2D Laplace problem in the polar 
coordinates. However, besides the difference in the angular functions, there is also a difference (by one) 
in the power of the second radial function, and this difference immediately shows up in problem 
solutions.  

56 Just for reference: if l is not an integer, the general solution of Eq. (2.168) may be represented as a linear 
combination of the so-called Legendre functions (not polynomials!) of the first and second kind, Pl() and Ql().  
57 This is why, at least for the purposes of this course, there is no good reason for pursuing (more complicated) 
solutions to Eq. (168) for non-integer values of l, mentioned in the previous footnote. 
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 Indeed, let us solve a problem similar to that shown in Fig. 15: find the electric field around a 
conducting sphere of radius R, placed into an initially uniform external field E0 (whose direction I will 
now take for the z-axis) – see Fig. 24a.  

 

 

 

 

 

 

 

 

 

 

 

 

 If we select the arbitrary constant in the electrostatic potential so that z=0 = 0, then in Eq. (172) 
we should take a0 = b0 = 0. Now, just as has been argued for the cylindrical case, at r >> R the potential 
should approach that of the uniform field: 
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so in Eq. (172), only one of the coefficients al survives: al = –E0l,1. As a result, from the boundary 
condition on the surface, (R,) = 0, we get the following equation for the coefficients bl: 

     0)(coscos
2

12
1

0 





  




l
ll

l

R

b

R

b
RE  P .    (2.174) 

1 0 1
1

0

1

Fig. 2.23. A few lowest Legendre 
polynomials Pl(). 
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Fig. 2.24. Conducting sphere in a uniform electric field: (a) the problem’s geometry, and (b) the 
equipotential surface pattern given by Eq. (176). The pattern is qualitatively similar but 
quantitatively different from that for the conducting cylinder in a perpendicular field – cf. Fig. 15. 
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Now repeating the argumentation that led to Eq. (117), we may conclude that Eq. (174) is satisfied if  

      1,
3

0 ll REb  ,      (2.175) 

so, finally, Eq. (172) is reduced to 
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This distribution, shown in Fig. 24b, is very similar to Eq. (117) for the cylindrical case (cf. Fig. 15b, 
with the account for a different plot orientation), but with a different power of the radius in the second 
term. This difference leads to a quantitatively different distribution of the surface electric field: 
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  ,     (2.177) 

so its maximal value is a factor of 3 (rather than 2) larger than the external field.  

 Now let me briefly (mostly just for the reader’s reference) mention the Laplace equation 
solutions in the general case – with no axial symmetry. If the conductor-free space surrounds the origin 
from all sides, the solutions to Eq. (165) have to be 2-periodic, and hence  = n = 0, 1, 2,… 
Mathematics says that Eq. (164) with integer   = n and a fixed integer l  has a solution only for a 
limited range of n:58 
        lnl  .      (2.178) 

These solutions are called associated Legendre functions (generally, they are not polynomials). For n  
0, these functions may be defined via the Legendre polynomials, using the following formula:59 
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On the segment   [-1, +1], each set of the associated Legendre functions with a fixed index n and non-
negative values of l form a full, orthogonal set, with the normalization relation, 
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that is evidently a generalization of Eq. (171).  

 Since these relations may seem a bit intimidating, let me write down explicit expressions for a 
few Pl

n (cos) with the three lowest values of l and n  0, which are most important for applications.  

      1cos   :0 0
0  Pl ;      (2.181) 

58 In quantum mechanics, the letter n is typically reserved for the “principal quantum number”, while the 
azimuthal functions are numbered by index m. However, here I will keep using n as their index because, for this 
course’s purposes, this seems more logical, in view of the similarity of the spherical and cylindrical functions. 
59 Note that some texts use different choices for the front factor (called the Condon-Shortley phase) in the 
functions Pl

m, which do not affect the final results for the spherical harmonics Yl
m.   
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The reader should agree there is not much to fear in these functions – they are just certain sums of 
products of cos    and sin  (1 – 2)1/2. Fig. 25 shows the plots of a few lowest functions Pl

n (). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Using the associated Legendre functions, the general solution (162) to the Laplace equation in 
the spherical coordinates may be expressed as 
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Since the difference between the angles  and   is somewhat artificial, physicists prefer to think not in 
terms of the functions P and F  in separation, but directly about their products that participate in this 
solution.60  

60 In quantum mechanics, it is more convenient to use a slightly different alternative set of basic functions of the 
same problem, namely the following complex functions called the spherical harmonics: 
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which are defined for both positive and negative n (within the limits –l  n  +l) – see, e.g., QM Secs. 3.6 and 5.6. 
(Note again that in that field, our index n is traditionally denoted as m, and called the magnetic quantum number.) 
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coordinates 
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Fig. 2.25. A few lowest 
associated Legendre functions. 
(Adapted from an original by 
Geek3, available at 
https://en.wikipedia.org/wiki/Ass
ociated_Legendre_polynomials, 
under the GNU Free 
Documentation License.) 
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 As a rare exception for my courses, to save time I will skip giving an example of using the 
associated Legendre functions in electrostatics, because quite a few examples of these functions’ 
applications will be given in the quantum mechanics part of this series. 

  

2.9. Charge images 

 So far, we have discussed various methods of solution of the Laplace boundary problem (35). 
Let us now move on to the discussion of its generalization, the Poisson equation (1.41). We need it 
when besides conductors, we also have stand-alone charges with a known spatial distribution (r). (Its 
discussion will also allow us, better equipped, to revisit the Laplace problem in the next section.)  

 Let us start with a somewhat limited, but very useful charge image (or “image charge”) method. 
Consider a very simple problem: a single point charge near a conducting half-space – see Fig. 26.  

 

 

  

 

 

 

 

 

Let us prove that its solution, above the conductor’s surface (z   0), may be represented as: 
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or in a more explicit form, using the cylindrical coordinates shown in Fig. 26: 
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where  is the distance of the field observation point r from the “vertical” line on which the charge is 
located. Indeed, this solution satisfies both the boundary condition  = 0 at the surface of the conductor 
(z = 0), and the Poisson equation (1.41), with the single -functional source at point r’ = {0, 0, +d} on 
its right-hand side, because the second singularity of the solution, at point r” = {0, 0, –d}, is outside the 
region of the solution’s validity (z  0). Physically, this solution may be interpreted as the sum of the 
fields of the actual charge (+q) at point r’, and an equal but opposite charge (–q) at the “mirror image” 
point r” (Fig. 26). This is the basic idea of the charge image method.  

 Before moving on to more complex problems, let us discuss the situation shown in Fig. 26 in a 
little bit more detail, due to its fundamental importance. First, we can use Eqs. (3) and (186) to calculate 
the surface charge density: 

Fig. 2.26. The simplest problem readily solvable by the 
charge image method. The points’ colors are used, as 
before, to denote the charges of the original (red) and 
opposite (blue) sign. 
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From this, the total surface charge is 
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This integral may be easily worked out using the substitution   2/d2 (giving d = 2d/d2): 
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This result is very natural: the conductor brings as much surface charge from its interior to the surface as 
necessary to fully compensate for the initial charge (+q) and hence kill the electric field at large 
distances as efficiently as possible, hence reducing the total electrostatic energy (1.65) to the lowest 
possible value. 

 For a better feeling of this polarization charge of the surface, let us take our calculations to the 
extreme – to the q equal to one elementary change e, and place a particle with this charge (for example, 
a proton) at a macroscopic distance – say 1 m – from the conductor’s surface. Then, according to Eq. 
(189), the total polarization charge of the surface equals that of an electron, and according to Eq. (187), 
its spatial extent is of the order of d2 = 1 m2. This means that if we consider a much smaller part of the 
surface, A << d2, its polarization charge magnitude Q = A is much less than one electron! For 
example, Eq. (187) shows that the polarization charge of quite a macroscopic area A = 1 cm2 right 
under the initial charge ( = 0) is eA/2d2  1.610-5 e. Can this be true, or our theory is somehow 
limited to the charges q much larger than e? (After all, the theory is substantially based on the 
approximate macroscopic model (1); maybe it is the culprit?) 

 Surprisingly enough, the answer to this question has become clear (at least to some physicists :-) 
only as late as in the mid-1980s when several experiments demonstrated, and theorists accepted (some 
of them rather grudgingly) that the usual polarization charge formulas are valid for elementary charges 
as well, i.e., such the polarization charge Q of a macroscopic surface area may differ from a multiple 
of e. The underlying reason for this paradox is the physical nature of the polarization charge of a 
conductor’s surface: as was discussed in Sec. 1, it is due not to new charged particles brought into the 
conductor (such charge would be in fact a multiple of e), but to a small shift of the free charges of a 
conductor by a very small distance from their equilibrium positions that they had in the absence of the 
external field induced by charge q. This shift is not quantized, at least on the scale relevant to our 
problem, and hence neither is Q.  

 This understanding has paved the way for the invention and experimental demonstration of 
several new devices including so-called single-electron transistors,61 which may be used,  in particular, 
for ultrasensitive measurement of polarization charges as small as ~10-6 e. Another important class of 
single-electron devices is the dc and ac current standards based on the fundamental relation I = –ef, 

61 Actually, this term (for which the author of these notes may be blamed :-) is misleading: the operation of the 
“single-electron transistor” is based on the interplay of discrete charges (multiples of e) transferred between 
conductors, and sub-single-electron polarization charges – see, e.g., K. Likharev, Proc. IEEE  87, 606 (1999). 
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where I is the dc current carried by electrons transferred with the frequency f.  The experimentally 
achieved62 relative accuracy of such standards is of the order of 10-7, and is not too far from that 
provided by the competing approach based on a combination of the Josephson effect and the quantum 
Hall effect.63 

 Second, let us find the potential energy U of the charge-to-surface interaction. For that, we may 
use the value of the electrostatic potential (185) at the point of the charge itself (r = r’), of course 
ignoring the infinite potential created by the real charge, so the remaining potential is that of the image 
charge 
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Looking at the electrostatic potential’s definition given by Eq. (1.31), it may be tempting to immediately 
write U = qimage = – (1/40)(q

2/2d) [WRONG!], but this would be incorrect. The reason is that the 
potential image is not independent of q, but is actually induced by this charge. This is why the correct 
approach is to calculate U from Eq. (1.61), with just one term: 
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giving twice lower energy than the wrong result cited above. To double-check Eq. (191), and also get a 
better feeling of the factor ½ that distinguishes it from the wrong guess, we can calculate U as the 
integral of the force exerted on the charge by the conductor’s surface charge (i.e., in our formalism, by 
the image charge): 
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This calculation clearly accounts for the gradual build-up of the force F, as the real charge is being 
brought from afar (where we have opted for U =0) toward the surface. 

 This result has several important applications. For example, let us plot the electrostatic energy U 
of an electron, i.e. a particle with charge q = –e, near a metallic surface, as a function of d. For that, we 
may use Eq. (191) until our macroscopic model (1) becomes invalid, and U transitions to some negative 
constant value (-)  inside the conductor – see Fig. 27a. Since our calculation was for an electron with 
zero potential energy at infinity, at relatively low temperatures, kBT << , electrons in metals may 
occupy only the states with energies below – (the so-called Fermi level64). The positive constant  is 
called the workfunction because it describes the smallest work needed to remove the electron from a 
metal. As was discussed in Sec. 1, in good metals the electric field screening takes place at interatomic 
distances  a0 ~ 10-10 m. Plugging d =110-10 m and q = –e  –1.610-19 C into Eq. (191), we get   
610–19 J  3.5 eV. This crude estimate is in surprisingly good agreement with the experimental values 
of the workfunction, ranging between 4 and 5 eV for most metals.65 

 

62 See, e.g., M. Keller et al., Appl. Phys. Lett. 69, 1804 (1996) ; F. Stein et al., Metrologia 54, 1 (2017). 
63 J. Brun-Pickard et al., Phys. Rev. X 6, 041051 (2016). 
64 More discussion of these states may be found in SM Secs. 3.3 and 6.3. 
65 More discussion of the workfunction, and its effect on the electrons’ kinetics, is given in SM Sec. 6.3. 
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 Next, let us consider the effect of an additional uniform external electric field E0 applied 
normally to a metallic surface, on this potential profile. For that, we may the potential energy that the 
field gives to the electron at distance d from the surface, Uext = –eE0d, to that created by the image 
charge. (As we know from Eq. (1.53), since the field E0 is independent of the electron’s position, its 
recalculation into the potential energy does not require the coefficient ½.) As a result, the potential 
energy of an electron near the surface becomes  
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e
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44

1
)(

2

0
0 

 ,  for d >> a0,   (2.193) 

with a similar crossover to U = –  inside the conductor – see Fig. 27b. One can see that at the 
appropriate sign, and a sufficient magnitude of the applied field, it lowers the potential barrier that 
prevents electrons from leaving the conductor. At E0 ~ /a0 (for metals, ~1010 V/m), this suppression 
becomes so strong that electrons with energies at, and just below the Fermi level start quantum-
mechanical tunneling through the remaining thin barrier. This is the field electron emission (or just 
“field emission”) effect, which is used in vacuum electronics to provide efficient cathodes that do not 
require heating to high temperatures.66   

 Returning to the basic electrostatics, let us find some other conductor geometries where the 
method of charge images may be effectively applied. First, let us consider a right-angle corner (Fig. 
28a). Reflecting the initial charge in the vertical plane, we get the image shown in the top left corner of 
that panel. This image makes the boundary condition  = const satisfied on the vertical surface of the 
corner. However, for the same to be true on the horizontal surface, we have to reflect both the initial 
charge and the image charge in the horizontal plane, flipping their signs. The final configuration of four 
charges, shown in Fig. 28a, satisfies all boundary conditions. The resulting potential distribution may be 
readily written as an evident generalization of  Eq. (185). From it, the electric field and electric charge 
distributions, and the potential energy and forces acting on the charge may be calculated exactly as 
above – an easy exercise left for the reader. 

 Next, consider a corner with the angle /4 (Fig. 28b). Here we need to repeat the reflection 
operation not two but four times before we arrive at the final pattern of eight positive and negative 
charges. (Any attempt to continue this process would lead to overlap with the already existing charges.) 

66 The practical use of such “cold” cathodes is affected by the fact that, as it follows from our discussion in Sec. 4, 
any nanoscale irregularity of a conducting surface (a protrusion, an atomic cluster, or even a single “adatom” 
stuck to it) may cause a strong increase of the local field well above the applied uniform field E0, making the 
electron emission reproducibility and stability in time significant challenges. In addition, the impact-ionization 
effects may lead to avalanche-type electric breakdown at dc fields as low as ~3106 V/m. 

Fig. 2.27. (a) The origin 
of the workfunction, and 
(b) the field emission of 
electrons (schematically). 
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This reasoning may be readily extended to corners of angles  = /n, with any integer n, which require 
2n charges (including the initial one) to satisfy all the boundary conditions. 

 

  

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 Some configurations require an infinite number of images but are still tractable. The most 
important of them is a system of two parallel conducting surfaces, i.e. an unbiased plane capacitor of 
infinite area (Fig. 28c). Here the repeated reflection leads to an infinite system of charges q at points 

dajx j  2 ,     (2.194) 

where d (with 0 < d < a) is the position of the initial charge, and j is an arbitrary integer. The resulting 
infinite sum for the potential of the real charge q, created by the field of its images, 
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is converging (in its last form) very fast. For example, the exact value, (a/2) = –2ln2(q/40a), differs 
by less than 5% from the approximation using just the first term of the sum. 

Fig. 2.28. The charge images for (a, b) the corners with angles /2  and /4, (c) a plane capacitor, 
and (d) a rectangular box; (e) typical equipotential surfaces for the last system.  
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 The same method may be applied to 2D (cylindrical) and 3D rectangular conducting boxes that 
require, respectively, 2D or 3D infinite rectangular lattices of images; for example in a 3D box with 
sides a, b, and c, charges q are located at points (Fig. 28d) 

       'lckbjajkl rr  222 ,     (2.196) 

where r’ is the location of the initial (real) charge, and j, k, and l are arbitrary integers. Figure 28e shows 
a typical result of the summation of the potentials of this charge set, including the real one, in a 2D box 
(within the plane of the real charge). One can see that the equipotential surfaces, concentric near the 
charge, are naturally leaning along the conducting walls of the box, which have to be equipotential.  

 Even more surprisingly, the image charge method works very efficiently not only for rectilinear 
geometries but also for spherical ones. Indeed, let us consider a point charge q at distance d from the 
center of a conducting, grounded sphere of radius R (Fig. 29a), and try to satisfy the boundary condition 
 = 0 for the electrostatic potential on the sphere’s surface using an imaginary charge q’ located at some 
point beyond the surface, i.e. inside the sphere. 

 

 

 

 

 

 

 

 
 
 

 From the problem’s symmetry, it is clear that the point should be at the line passing through the 
real charge and the sphere’s center, at some distance d’ from the center. Then the total potential created 
by the two charges at an arbitrary point of free space, i.e. at r  R (Fig. 29a) is 
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This expression shows that we can make the two involved fractions equal and opposite at all points on 
the sphere’s surface (i.e. for any   at r = R) if we take67 
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Since the solution of any Poisson boundary problem is unique, Eqs. (197) and (198) give us the final 
solution for this problem. Fig. 29b shows a typical equipotential pattern following from this solution. It 
may be surprising how formulas that simple may describe such an elaborate field distribution. 

67 In geometry, such points with dd’ = R2, are referred to as the result of mutual inversion in a sphere of radius R. 
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Fig. 2.29. Method of charge images for 
a conducting sphere: (a) the idea, and 
(b) the resulting potential distribution 
in the central plane containing the 
charge, for the particular case d = 2 R. 
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 Now we can calculate the total charge Q on the grounded sphere’s surface, induced by the 
external charge q. We could do this, as we have done for the conducting plane, by the brute-force 
integration of the surface charge density  = –0/rr = R. It is more elegant, however, to use the 
following Gauss law argument. Equality (197) is valid (at r  R) regardless of whether we are dealing 
with our real problem (charge q and the conducting sphere) or with the equivalent charge configuration 
– with the point charges q and q’, but no sphere at all. Hence, according to Eq. (1.16), the Gaussian 
integral over a surface with radius r = R + 0, and the total charge inside the sphere should be also the 
same. Hence we immediately get 

      q
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R
q'Q  .     (2.199) 

A similar argumentation may be used to calculate the charge-to-sphere interaction force: 
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(Note that this expression is legitimate only at d > R.) At large distances, d >> R, this attractive force 
decreases as 1/d3. This unusual dependence arises because, as Eq. (199) specifies, the induced charge of 
the sphere, responsible for the force, is not constant but decreases as 1/d. In the next chapter, we will see 
that such force is also typical for the interaction between a point charge and a dipole. 

 All previous formulas were for a sphere that is grounded to keep its potential equal to zero. But 
what if we keep the sphere galvanically insulated, so its net charge is fixed, for example, equals zero? 
Instead of solving this problem from scratch, let us use (again!) the almighty linear superposition 
principle. For that, we may add to the previous problem an additional charge, equal to –Q = –q’, to the 
sphere, and argue that this addition gives, at all points, an additional, spherically symmetric potential 
that does not depend on the potential induced by the external charge q, and was calculated in Sec. 1.2 – 
see Eq. (1.19). For the interaction force, such addition yields 
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At large distances, the two terms proportional to 1/d3  cancel each other, giving F  1/d5, so the 
potential energy of such interaction behaves as U  1/d4. Such a rapid force decay is due to the fact that 
the field of the uncharged sphere is equivalent to that of two (equal and opposite) induced charges +q’ 
and –q’, and the distance between them (d – d’ = d – R2/d) tends to zero at d  .  

 

2.10. Green’s functions 

 I have spent so much time/space discussing potential distributions created by a single point 
charge in various conductor geometries because for any of the geometries, the generalization of these 
results to the arbitrary distribution (r) of free charges is straightforward. Namely, if a single charge q, 
located at some point r’, creates at point r the electrostatic potential 
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then, due to the linear superposition principle, an arbitrary charge distribution creates the potential 
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The function G(r, r’) is called the (spatial) Green’s function – the notion very fruitful and hence popular 
in all fields of physics.68 Evidently, as Eq. (1.35) shows, in the unlimited free space 
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i.e. the Green’s function depends only on one scalar argument – the distance between the field-
observation point r and the field-source (charge) point r’. However, as soon as there are conductors 
around, the situation changes. In this course, I will only discuss Green’s functions defined to vanish as 
soon as the radius-vector r points to the surface (S) of any conductor:69  

      .0),( S'G rrr      (2.205) 

 With this definition, it is straightforward to deduce the Green’s functions for the solutions of the 
last section’s problems in which conductors were grounded, i.e. had potential  = 0. For example, for a 
semi-space z  0 limited by a grounded conducting plane z = 0 (Fig. 26),  Eq. (185) yields 
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where  is the 2D radius vector. We see that in the presence of conductors (and, as we will see later, any 
other polarizable media), Green’s function may depend not only on the difference r – r’, but on each of 
these two arguments in a specific way.  

  So far, this is just re-naming our old results. The really non-trivial result of the Green’s function 
formalism in electrostatics is that, somewhat counter-intuitively, the knowledge of this function for a 
system with grounded conductors (Fig. 30a) enables the calculation of the field created by voltage-
biased conductors (Fig. 30b), with the same geometry. To show this, let us use the so-called Green’s 
theorem of the vector calculus.70 The theorem states that for any two scalar, differentiable functions f(r) 
and g(r), and any volume V, 

        
S

n
V

rdfggfrdfggf 2322  ,   (2.207) 

where S is the surface limiting the volume. Applying the theorem to the electrostatic potential (r) and 
the Green’s function G (also considered as a function of r), let us use the Poisson equation (1.41) to 
replace 2  with (-/0), and notice that G, considered as a function of r, obeys the Poisson equation 
with the -functional source:  

        )(4),(2 ''G rrrr   .     (2.208) 

68 See, e.g., CM Sec. 5.1, QM Secs. 2.2 and 7.4, and SM Sec. 5.5. Note that the numerical coefficient in Eq. (202) 
(and hence all resulting formulas) is the matter of convention; this choice does not affect the final results. 
69 G so defined is sometimes called the Dirichlet function. 
70 See, e.g., MA Eq. (12.3). Actually, this theorem is a ready corollary of the better-known divergence (“Gauss”) 
theorem, MA Eq. (12.2). 
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(Indeed, according to its definition (202), this function may be formally considered as the field of a 
point charge q = 40.) Now swapping the notation of the radius-vectors, r  r’, and using the Green’s 
function symmetry, G(r, r’) = G(r’, r),71 we get 
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Let us apply this relation to the volume V of free space between the conductors, and the 
boundary S drawn immediately outside of their surfaces. In this case, by its definition, Green’s function 
G(r, r’) vanishes at the conductor surface, i.e. at r  S – see Eq. (205). Now changing the sign of ∂n’ (so 
it would be the outer normal for conductors, rather than free space volume V), dividing all terms by 4, 
and partitioning the total surface S into the parts (numbered by index j) corresponding to different 
conductors (possibly, kept at different potentials k), we finally arrive at the famous result:72 

    'rd
n'

'G
r'd'G'

k
k

k

SV
 


 23

0

),(

4

1
),()(

4

1
)(

rr
rrrr 





 .  (2.210) 

While the first term on the right-hand side of this relation is a direct and evident expression of 
the superposition principle, given by Eq. (203), the second term is highly non-trivial: it describes the 
effect of conductors with arbitrary potentials k (Fig. 30b), using the Green’s function calculated for the 
similar system with grounded conductors, i.e. with all k = 0 (Fig. 30a). Let me emphasize that since our 
volume V excludes conductors, the first term on the right-hand side of Eq. (210) includes only the stand-
alone charges in the system (in Fig. 30, marked q1, q2, etc.), but not the surface charges of the conductors 
– which are taken into account, indirectly, by the second term.  

 In order to illustrate what a powerful tool Eq. (210) is, let us use to calculate the electrostatic 
field in two systems. In the first of them, a plane, circular, conducting disk of radius R, separated with a 
very thin cut from the remaining conducting plane, is biased with potential  = V, while the rest of the 
plane is grounded – see Fig. 31.  

 

71 This symmetry, evident for the particular cases (204) and (206), may be readily proved for the general case by 
applying Eq. (207) to the functions f (r)  G(r, r’) and g(r)  G(r, r”). With this substitution, the left-hand side of 
that equality becomes equal to –4[G(r”, r’) – G(r’, r”)], while the right-hand side is zero, due to Eq. (205). 
72 In some textbooks, the sign before the surface integral is negative, because their authors use the outer normal to 
the free-space region V rather than those occupied by conductors – as I do. 
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Fig. 2.30. Green’s function method allows the solution of a simpler boundary problem (a) to be 
used for the solution of a more complex problem (b), for the same conductor geometry. 
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 If the width of the gap between the disk and the rest of the plane is negligible, we may apply Eq. 
(210) without stand-alone charges, (r’) = 0, and the Green’s function for the uncut plane – see Eq. 
(206).73 In the cylindrical coordinates, with the origin at the disk’s center (Fig. 31), the function is 
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(The sum of the first three terms under each square root in Eq. (211) is just the squared distance between 
the horizontal projections  and ’ of the vectors r and r’ (or r”) correspondingly, while the last terms 
are the squares of their vertical displacements.)  

 Now we can readily calculate the derivative participating in Eq. (210), for z  0: 
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Due to the axial symmetry of the system, we may take   for zero. With this, Eqs. (210) and (212) yield 
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This integral is not overly pleasing, but may be readily worked out at least for points on the symmetry 
axis ( = 0, z  0):74 
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This result shows that if z  0, the potential tends to V (as it should), while at z >> R,  
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73 Indeed, if all parts of the cut plane are grounded, a narrow cut does not change the field distribution, and hence 
the Green’s function, significantly. 
74 There is no need to repeat the calculation for z  0: from the symmetry of the problem, (–z) = (z). 

Fig. 2.31. A voltage-biased conducting disk separated from the rest of a conducting plane. 
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 Now let us use the same Eq. (210) to solve the (in :-)famous problem of the cut sphere (Fig. 32). 
Again, if the gap between the two conducting semi-spheres is very thin (t << R), we may use Green’s 
function for the grounded (and uncut) sphere. For a particular case r’ = dnz, this function follows from 
Eqs. (197)-(198); generalizing the former relation for an arbitrary direction of vector r’, we get 
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where   is the angle between the vectors r and r’, and hence r” – see Fig. 32. 

 

 

 

 

 

 

 

 

 

 Now, calculating the Green’s function’s derivative,  
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and plugging it into Eq. (210), we see that the integration is again easy only for the field on the 
symmetry axis (where r = znz, and   = ’), giving: 
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For z  R, this relation yields   V/2  (as it should), while for z/R  ,  
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As will be discussed in the next chapter, such a field is typical for an electric dipole. 

   

2.11. Numerical methods 

 Despite the richness of analytical methods, for many boundary problems (especially in 
geometries without a high degree of symmetry), the numerical approach is the only way to the solution. 
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Fig. 2.32. A system of two separated, oppositely 
biased semi-spheres. 
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Though software packages offering their automatic numerical solution are abundant nowadays,75 it is 
important for every educated physicist to understand “what is under the hood”, at least because most 
universal programs exhibit mediocre performance in comparison with custom codes written for 
particular problems, and sometimes do not converge at all, especially for fast-changing (say, 
exponential) functions. The very brief discussion presented here76 is a (hopefully, useful) fast glance 
under the hood, though it is certainly insufficient for professional numerical research work. 

 The simplest of the numerical approaches to the solution of partial differential equations, such as 
the Poisson or the Laplace equations  (1.41)-(1.42), is the finite-difference method,77 in which the sought 
continuous scalar function f(r), such as the potential (r), is represented by its values in discrete points 
of a rectangular grid (frequently called mesh) of the corresponding dimensionality – see Fig. 33.  

 Each partial second derivative of the function is approximated by the formula that readily 
follows from linear approximations of the function f and then its partial derivatives – see Fig. 33a: 
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where f  f(rj + h) and f  f(rj – h). (The relative error of this approximation is of the order of 
h4∂4f/∂rj

4.) As a result, the action of a 2D Laplace operator on the function f may be approximated as 
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and of the 3D operator, as 
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(The notation used in Eqs. (221)-(222) should be clear from Figs. 33b and 33c, respectively.) 

75 See, for example, MA Secs. 16 (iii) and (iv). 
76 It is almost similar to that given in CM Sec. 8.5 and is reproduced here for the reader’s convenience, illustrated 
with examples from this (EM) course. 
77 For more details see, e.g., R. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 

Fig. 2.33. The general idea of the finite-difference method in (a) one, (b) two, and (c) three dimensions. 
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  As a simple example, let us use this scheme to find the electrostatic potential distribution inside 
a cylindrical box with conducting walls and square cross-section aa, using an extremely coarse mesh 
with step 2/ah   (Fig. 34). In this case, our function, the electrostatic potential (x, y), equals zero at 
the side and bottom walls, and V0 at the top lid, so, according to Eq. (221), the 2D Laplace equation may 
be approximated as 

            .0
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The resulting value for the potential in the center of the box is  = V0/4.  

  

 

 

 

 

 

 

 Surprisingly, this is the exact value! This may be proved either by solving this problem by the 
variable separation method, just as this has been done for a similar 3D problem in Sec. 5, or just from 
the following Green’s-function argument. If all four walls of our 2D volume were biased to the voltage 
V0, there would be no electric field in it at all, so the middle-point potential would be equal to V0 as well. 
However, from the point of view of Eq. (210) with no bulk charge, (r) = 0, this result may be 
legitimately viewed as the linear superposition of the four contributions of the potentials k = V0 of each 
wall. Since for this symmetric geometry, the corresponding geometrical factors are equal, the 
contribution of one wall, with k = 0 on all other walls (as in our current problem), has to equal V0/4. 

 For a similar 3D problem (a cubic box), with a similar 3D mesh, Eq. (222) yields 
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so  = V0/6. Using the same Green’s-function argument, now for six walls of the cube, we see that this 
result is also exact! (This fact also follows from our variable-separation result expressed by Eqs. (95) 
and (99) with a = b = c.)  

 Though such exact results should be considered as a happy coincidence rather than the general 
law, they still show that numerical methods, even with relatively crude meshes, may be more 
computationally efficient than some “analytical” approaches, like the variable separation method with 
its infinite-sum results that, in most cases, require computers anyway – at least for the result’s 
comprehension and analysis.  

 A more powerful (but also much more complex) approach is the finite-element method in which 
the discrete point mesh, typically with triangular cells, is (automatically) generated in accordance with 
the system geometry.78 Such mesh generators provide higher point concentration near sharp convex 

78 See, e.g., CM Fig. 8.14. 

Fig. 2.34. Numerically solving an internal 2D boundary 
problem for a conducting, cylindrical box with a square 
cross-section, using a very coarse mesh (with h = a/2). 
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parts of conductor surfaces, where the field concentrates and hence the potential changes faster, thus 
ensuring a better accuracy-to-speed tradeoff than the finite-difference methods on a uniform grid. The 
price to pay for this improvement is the algorithm’s complexity which makes its adjustments much 
harder. Unfortunately, in this series, I do not have time for going into the details of that method and have 
to refer the reader to the special literature on this subject.79 

 

2.12. Exercise problems 

 2.1. Calculate the force (per unit area) exerted on a conducting surface by an external electric 
field normal to it. Compare the result with the electric field’s definition given by Eq. (1.6), and 
comment. 
 
  

 2.2. Electric charges QA and QB have been placed on two conducting 
concentric spherical shells – see the figure on the right. What is the full 
charge of each of the surfaces S1-S4? 

  
  
 

 2.3. Calculate the mutual capacitance between the terminals of the 
lumped-capacitor circuit shown in the figure on the right. Analyze and 
interpret the result for major particular cases. 
 
  
  
 
 2.4. Calculate the mutual capacitance between the terminals 
of the semi-infinite lumped-capacitor circuit shown in the figure on 
the right, and find the law of the applied voltage’s decay along the 
system. Analyze and interpret the result. 
 
 
 2.5. A system of two thin conducting plates is located over a 
ground plane as shown in the figure on the right, where A1 and A2 are 
the areas of the indicated plate parts, while d’ and d” are the distances 
between them. Neglecting the fringe effects, calculate: 

 (i) the effective capacitance of each plate, and 
 (ii) their mutual capacitance. 
 

79 See, e.g., either C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element 
Method, Dover, 2009, or T. Hughes, The Finite Element Method, Dover, 2000. 
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 2.6. A wide and thin film carrying a uniformly distributed  
electric charge of areal density  is placed inside a plane capacitor 
whose plates are connected with a wire – see the figure on the right. 
Neglecting the fringe effects, calculate the surface charges of the plates 
and the net force exerted on the film (per unit area). 
  
 2.7. A relatively small conductor (possibly, of an 
irregular shape) with self-capacitance C is located at distance 
r from the center of a conducting sphere of radius R – see the 
figure on the right. In the first approximation in C,  find the 
reciprocal capacitance matrix of the system. Use the matrix to 
calculate its potential energy and the force of the conductor 
interaction for two cases: 

 (i) the conductor charges Q are equal, and 
 (ii) the conductor potentials  are kept equal.  
 
 2.8. Use the Gauss law to calculate the mutual capacitance of the 
following two-electrode systems, both with the cross-section shown in Fig. 7 
(reproduced on the right): 

 (i) a conducting sphere in the center of a spherical cavity inside 
another conductor, and 

(ii) a long conducting round cylinder on the axis of a cylindrical cavity 
inside another conductor, i.e. a coaxial cable. (In this case, we speak about the 
capacitance per unit length).  

Compare the results with those obtained in Sec. 2.2 using the Laplace 
equation. 

  

 2.9. Calculate the electrostatic potential distribution around two barely 
separated conductors in the form of coaxial round cones (see the figure on the 
right), with voltage V between them. Compare the result with that of a similar 2D 
problem, with the cones replaced with plane-face wedges. Can you calculate the 
mutual capacitances between the conductors in these systems? If not, can you 
estimate them? 
 
 
 2.10. Calculate the mutual capacitance between two 
rectangular planar electrodes of area A = al, with a very small 
angle  0 between them – see the figure on the right.  
 
  
 2.11. Using the results for a single thin round disk, obtained in Sec. 4, 
consider a system of two such disks at a small distance d << R from each other 
– see the figure on the right. In particular, calculate: 

 (i) the reciprocal capacitance matrix of the system, 
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2

V
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 (ii) the mutual capacitance between the disks, 
 (iii) the partial capacitance of one disk, and 
 (iv) the effective capacitance of one disk, 

– all in the first nonvanishing approximation in d/R << 1. Compare the results (ii)-(iv) and interpret their 
similarities and differences. 
 
 2.12.* Calculate the mutual capacitance (per unit length) between 
two cylindrical conductors forming a system with the cross-section shown 
in the figure on the right, in the limit t << w << R. 

Hint: You may like to use the elliptic coordinates mentioned in Sec. 
4. They are  defined by the following equality: 

           ),cosh(  iciyx      (*) 

where c is a constant.  
 

2.13. Calculate the mutual capacitance (per unit length) between two similar, long, parallel 
wires, each with a round cross-section of radius R, whose axes are separated by distance d > 2R. Explore 
and interpret the result in the limits R  0 and R  2d.  

 Hint: You may like to use the 2D orthogonal bipolar coordinates {, } defined by the following 
relations with the Cartesian coordinates {x, y}: 

.,with  ,
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In these coordinates, the Laplace operator is 
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2.14. Formulate 2D electrostatic problems that may be simply solved using each of the following 

analytic functions of the complex variable z  x + iy: 

 (i) w = ln z, 
 (ii) w = z1/2, 
 (iii) w = z + 1/z, 

and solve these problems. 
 
 2.15. On each side of a cylindrical volume with a rectangular cross-section ab, with no electric 
charges inside it, the electric field’s component normal to the side’s plane is constant, and also equal and 
opposite to that on the opposite side. Calculate the distribution of the electric potential inside the 
volume, provided that the magnitude of the normal components on the sides of length b equals E. 
Suggest a practicable method to implement such potential distribution. 
  
 2.16. Complete the solution of the problem shown in Fig. 12, by calculating the distribution of 
the surface charge on the semi-planes. Can you calculate the mutual capacitance between the semi-
planes (per unit length of the system)? If not, can you estimate it? 

R

w

t
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2.17. A straight, long, thin, round-cylindrical conducting pipe has been 
cut, along its axis, into two equal parts – see the figure on the right. 

 (i) Use the conformal mapping method to calculate the distributions of 
the electrostatic potential created by voltage V applied between the two parts, 
both outside and inside the pipe, and of the surface charge.  
 (ii)* Calculate the mutual capacitance between the pipe’s halves (per 
unit length), taking into account a small width 2t << R of the cut. 

 Hints: In Task (i), you may like to use the complex function 

z
z

w




R

R
ln , 

while in Task (ii), you may use the solution of the previous problem. 
 
 
 2.18. A gap of constant width w between two grounded conducting semi-spaces 
is closed, from one side, with a conducting plunger biased with voltage V, so that the 
cross-section of the system looks like the figure on the right shows. Use the variable 
separation method to calculate the distribution of the electrostatic potential within the 
gap.  
 
 
 
 
 2.19. Use the variable separation method to calculate the electrostatic 
potential’s distribution inside a very long thin-wall metallic box with a quadratic 
cross-section, cut and voltage-biased as shown in the figure on the right. (Assume 
that the cut’s width is negligibly small.) 
 
 
 2.20. Solve Problem 17(i) by using the variable separation method, and compare the results. 
 
 2.21. Use the variable separation method to calculate the potential distribution above the plane 
surface of a conductor, with a strip of width w separated by very thin cuts, and biased with voltage V – 
see the figure below. 
 
 
 
 

 2.22. The previous problem is now modified: the cut-out and voltage-biased part of the 
conducting plane is now not a strip, but a square with side w. Calculate the potential distribution above 
the conductor’s surface.  

2/V
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0
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 2.23. Each electrode of a large plane capacitor is cut into 
parallel long strips of equal width w, with very narrow gaps 
between them. These strips are kept at alternating potentials, as 
shown in the figure on the right. Use the variable separation 
method to calculate the electrostatic potential distribution in space, 
and explore the limit w << d. 
 
 2.24. Complete the cylinder problem started in Sec. 7 (see Fig. 17), for the cases when the top 
lid’s voltage is fixed as follows:  

 (i) V = V0 J1(11/R) sin, where 11  3.832 is the first root of the Bessel function J1(); 
  (ii) V = V0 = const. 

 For both cases, calculate the electric field at the centers of the lower and upper lids. (For Task 
(ii), an answer including series and/or integrals is acceptable.) 

 
2.25. For the infinitely long periodic system sketched in Fig. 21, assuming that t << h, R: 

 (i) calculate and sketch the electrostatic potential’s distribution inside the system for various 
values of the ratio R/h, and 

(ii) simplify the results for the limit R/h  0. 
  
 2.26. A long round cylindrical conducting pipe is split, with a 
very narrow cut normal to its axis, into two parts that are voltage-
biased as the figure on the right shows. Use two different approaches 
to calculate the force exerted by the resulting field upon a charged 
particle flying along the pipe close to its axis. Can the system work as 
an electrostatic lens? 
 
 2.27. Use the variable separation method to find the potential distribution inside and outside of a 
thin spherical shell of radius R, with a fixed potential distribution on it: (R,,) = V0 sin cos. 
 
 2.28. A thin spherical shell carries an electric charge with areal density  = 0cos. Calculate the 
spatial distribution of the electrostatic potential and the electric field, both inside and outside the shell. 
 
 2.29. Use the variable separation method to solve the problem already considered in Sec. 10: 
calculate the potential distribution both inside and outside of a thin spherical shell of radius R, separated 
with a very thin cut along the central plane z = 0 into two halves, with voltage V applied between them – 
see Fig. 32. Analyze the solution; in particular, compare the field at the z-axis, for z > R, with Eq. (218). 

 Hint: You may like to use the following integral of a Legendre polynomial with an odd index l = 
1, 3, 5…= 2n – 1:80 

80 As a reminder, the double factorial (also called “semifactorial”) operator (!!) is similar to the usual factorial 
operator (!), but with the product limited to numbers of the same parity as its argument – in our particular case, of 
the odd numbers in the numerator and even numbers in the denominator. 
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 2.30. Calculate, up to terms O(1/r2), the long-range electric field induced by 
a split and voltage-biased conducting sphere – similar to that discussed in Sec. 10 
(see Fig. 32) and in the previous problem, but with the cut’s plane at an arbitrary 
distance d < R from the center – see the figure on the right. 
  
 
 
 2.31. Calculate the field distribution in the simple electrostatic lens that was the subject of 
Problem 1.9, provided that the separation of the two field regions is provided by a thin conducting 
membrane, with a round hole of radius R. 

 Hint: You may like to use the fact that the general axially symmetric solution of the Laplace 
equation in the oblate ellipsoidal coordinates (59) may be represented in the following variable-
separation form: 

       cossinhsinh
0

n
n

nnnn iqip PQP




 , 

where pn and qn are constants, Pn are the Legendre polynomials (2.169), which are sometimes called the 
Legendre functions of the first kind, while Qn are the Legendre functions of the second kind (briefly 
mentioned, in a different context,  in Sec. 2.8) that may be defined by the following recurrence relations: 
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 2.32. A small conductor (in this context, usually called a single-
electron island) is placed between two conducting electrodes, with 
voltage V applied between them. The gap between the island and one of 
the electrodes is so narrow that electrons may tunnel quantum-
mechanically through this “junction” – see the figure on the right. 
Neglecting thermal excitation effects, calculate the equilibrium charge of 
the island as a function of V. 

Hint: To solve this problem, you do not need to know much about 
the quantum-mechanical tunneling between conductors, besides that such tunneling of an electron, 
together with energy relaxation of the resulting excitations, may be considered a single inelastic 
(energy-dissipating) event.81 At negligible thermal excitations, such an event takes place only if it 
decreases the total potential energy of the system. 

81 Strictly speaking, this statement, implying negligible quantum-mechanical coherence of the tunneling events, is 
correct only if the junction transparency is so low that its effective electric resistance is much higher than the 
fundamental quantum unit of resistance, RQ  /2e2  6.5 k (see, e.g., QM Sec. 3.2). However,  this condition 
is satisfied in most experimental tunnel junctions. 
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2.33. The system discussed in the previous problem is now 

generalized as the figure on the right shows. If the voltage V’ applied between 
the two bottom electrodes is sufficiently large, electrons can successively 
tunnel through two junctions of this system (called the single-electron 
transistor), carrying dc current between these electrodes. Neglecting thermal 
excitations, calculate the region of voltages V and V’ where such a current is 
fully suppressed (Coulomb-blocked). 

 
 
2.34. Use the charge image method to calculate the full surface charges induced in the plates of a 

very broad, voltage-unbiased plane capacitor of thickness D by a point charge q separated from one of 
the electrodes by distance d. Suggest at least one alternative method to obtain the same result. 
 
 2.35. Use the charge image method to calculate the potential energy of the electrostatic 
interaction between a point charge placed in the center of a spherical cavity that had been carved inside 
a grounded conductor, and the cavity’s walls. Looking at the result, could it be obtained in a simpler 
way (or ways)? 

 
2.36. Use the method of charge images to find the Green’s 

function of the system shown in the figure on the right, where the 
bulge on the (otherwise, plane) surface of a conductor has the shape 
of a semi-sphere of radius R. 

 
2.37.* Use the spherical inversion expressed by Eq. (198), to develop an iterative method for a 

more and more precise calculation of the mutual capacitance between two similar conducting spheres of 
radius R, with their centers separated by distance d  > 2R. 

 
  

 2.38.* A conducting sphere of radius R1, carrying an electric charge Q, is 
placed inside a spherical cavity of radius R2 > R1, carved inside another bulk 
conductor. Calculate the electric force exerted on the sphere if its center is 
displaced by a small distance  << R1, R2 – R1 from that of the cavity – see the 
figure on the right. 

 
 
2.39. Within the simple models of the electric field screening in conductors, discussed in Sec. 

2.1, analyze the partial screening of the electric field of a point charge q by a planar conducting film of 
constant thickness t << , where  is (depending on charge carrier statistics) either the Debye or the 
Thomas-Fermi screening length – see, respectively, Eqs. (8) or (10). Assume that the distance d between 
the charge and the film is much larger than t. 

 

 2.40. Prove the following expansion of the simplest Green’s function (204) into a series over the 
Legendre polynomials: 
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where r> is the largest of the two scalars r   r   0 and r’   r’   0, while r< is the smallest of them. 
 

 2.41. Use the expansion that was the subject of the previous problem to confirm the analysis, in 
Sec. 2.9 of the lecture notes, of the system shown in Fig. 29: a grounded conducting sphere of radius R, 
and a point charge q located at distance d > R from its center. 

 
2.42. Suggest a convenient definition of the Green’s function for 2D electrostatic problems, and 

calculate it for: 

  (i) the unlimited free space, and 
  (ii) the free space above a conducting plane. 

Use the latter result to re-solve Problem 21. 
 

2.43. A conducting plane is separated into two parts with a very narrow straight cut, and voltage 
V is applied between the resulting half-planes – see the figure below. Use the Green’s function method 
to find the distribution of the electrostatic potential and the electric field everywhere in the space. 
Compare the result with Eq. (83). In hindsight, could the problem be solved in an even simpler way (or 
ways)? 

 

 
 

 2.44. Use the last result of Problem 42  and one of the conformal mappings discussed in Sec. 4 to 
find one more solution of Problem 18.  
  
 2.45. Calculate the 2D Green’s functions for the free spaces: 

 (i) outside a round conducting cylinder, and 
 (ii) inside a round cylindrical hole in a conductor. 
 
 2.46. Solve Problem 17(i) using the Green’s function method. 
  
 2.47. Solve the 2D boundary problem that was discussed in Sec. 11 (Fig. 34) by using: 

  (i) the finite difference method with the finer square mesh h = a/3, and 
  (ii) the variable separation method. 

Compare the results at the mesh points, and comment. 
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Chapter 3. Dipoles and Dielectrics 

In contrast to conductors, the motion of charges in dielectrics is restricted to the atom/molecule 
interiors, so the electric polarization of these materials by an external field takes a different form. This 
issue is the main subject of this chapter, but in preparation for its analysis, we have to start with a 
general discussion of the electric field induced by spatially restricted systems of charges.  

 

3.1. Electric dipole 

 Let us consider a localized system of charges, of a linear scale a, and derive a simple 
approximate expression for the electrostatic field induced by the system at a distant point r. For that, let 
us select a reference frame with the origin either somewhere inside the system, or at a distance of the 
order of a from it (Fig. 1).  

 

 

 

 

  

 

 

Then the positions of all charges of the system satisfy the following condition: 

            rr'  .      (3.1) 

Using this condition, we can expand the general expression (1.38) for the electrostatic potential  (r) of 
the system into the Taylor series in small parameter r’. For any function of type f (r – r’), the expansion 
may be represented as1 
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Applying this formula to the fraction 1/r – r’ in Eq. (1.38) (i.e. essentially to the free-space Green’s 
function), we get the so-called multipole expansion of the electrostatic potential: 
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1 See, e.g., MA Eq. (2.11b). 

  whose r-independent parameters are defined as follows: 

                  r'dr'''rr'r''dr'pr'd'Q jj'j'jjj'jj
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0 Fig. 3.1. Deriving the approximate expression 
for the electrostatic field of a localized system 
of charges at a distant point (r >> r’ ~ a). 
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 (Indeed, the two leading terms of the expansion (2) may be rewritten in the vector form f(r) – r’f(r), 
and the gradient of such a spherically-symmetric function f(r) = 1/r is just nrdf/dr, so 
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
,    (3.5)  

immediately giving the two first terms of Eq. (3). The proof of the third, quadrupole term in Eq. (3) is 
similar but a bit longer, and is left for the reader’s exercise.)  

 Evidently, the scalar parameter Q in Eqs. (3)-(4) is just the total charge of the system. The 
constants pj may be considered as Cartesian components of the following vector: 

               r''d' 3)( rrp  ,     (3.6) 

called the system’s electric dipole moment, and Qjj’ are Cartesian elements of a tensor – system’s electric 
quadrupole moment.  If Q  0, all higher terms on the right-hand side of Eq. (3), at large distances (1), 
are just small corrections to the first one, and in many cases may be ignored. However,  the net charge of 
many systems is exactly zero, the most important examples being neutral atoms and molecules. For such 
neural systems, the second (dipole) term in Eq. (3) is, most frequently, the leading one. Such systems are 
called electric dipoles. Due to their importance, let us rewrite the expression for the dipole term in three 
other, mathematically equivalent forms:  
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that are more convenient for some applications. Here   is the angle between the vectors p and r, and in 
the last (Cartesian) representation, the z-axis is directed along the vector p. Fig. 2a shows equipotential 
surfaces of the dipole field – or rather their cross-sections by any plane in which the vector p resides. 
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Fig. 3.2. (a) The equipotential surfaces and (b) the electric field lines of a dipole. (Panel (b) 
adapted from  http://en.wikipedia.org/wiki/Dipole under the GNU Free Documentation License.) 
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 The simplest example of a system whose field, at large distances, approaches the dipole field (7), 
is two equal but opposite point charges (“poles”), +q and –q, with the radius vectors, respectively, r+ 
and r–: 
             )()()()(   rrrrr  qq .    (3.8) 

For this system (sometimes called the physical dipole), Eq. (4) yields 

         arrrrp qqqq   )()()( ,    (3.9) 

where a is the vector connecting the points r- and r+. Note that in this case (and indeed for all systems 
with Q = 0), the dipole moment does not depend on the choice of the reference frame’s origin. 

 A less trivial example of a dipole is a conducting sphere of radius R in a uniform external electric 
field E0. As a reminder, its field was calculated in Sec. 2.8, and its result is expressed by Eq. (2.176). 
The first term in the parentheses of that relation describes just the external field (2.173), so the field of 
the sphere itself (i.e. that of the surface charge induced by E0) is given by the second term:  

                  cos
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3
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s r

RE
 .     (3.10) 

Comparing this expression with the second form of Eq. (7), we see that the sphere has an induced dipole 
moment 
       .4 3

00 REp       (3.11) 

This is an interesting example of a virtually pure dipole field: at all points outside the sphere (r > R), the 
field has neither a quadrupole moment nor any higher moments.  

 Other examples of dipole fields are given by two more systems discussed in Chapter 2 – see Eqs. 
(2.215) and (2.219). Those systems, however, do have higher-order multipole moments, so for them, Eq. 
(7) gives only the long-distance approximation. 

 Now returning to the general properties of the dipole field (7), let us calculate its major 
characteristics. First of all, we may use Eq. (7) to calculate the electric field of a dipole: 
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This differentiation is easiest in the spherical coordinates, using the well-known expression for the 
gradient of a scalar function in these coordinates2 and taking the z-axis parallel to the dipole moment p. 
From the last form of Eq. (12), we immediately get 
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Fig. 2b above shows the electric field lines given by Eqs. (13). The most important features of this result 
are a faster drop of the field’s magnitude (Ed  1/r3, rather than E  1/r2 for a point charge), and the 
change of the signs of its radial component as a function of the polar angle   [0, ]. 

2 See, e.g., MA Eq. (10.8) with / = 0. 
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 Next, let us use Eq. (1.55) to calculate the potential energy of interaction between a dipole and 
an external electric field. Assuming that this field does not change much at distances of the order of a 
(Fig. 1), we may expand its potential ext(r) into the Taylor series, and keep only two leading terms: 

       extext
3

extext
3

ext 0)0()0()()()( Eprrrr    QrdrdU  . (3.14) 

The first term is the potential energy the system would have if it were just a point charge. If the net 
charge Q is zero, that term disappears, and the leading contribution is due to the dipole moment: 

             constfor  ,ext  pEpU .    (3.15a) 

Note that this result is only valid for a fixed dipole, with p independent of Eext. In the opposite limit, 
when the dipole is induced by the field, i.e. p  Eext (you may have one more look at Eq. (11) to see an 
example of such a proportionality), we need to start with Eq. (1.60) rather than Eq. (1.55), getting 

            extext for ,
2

1
Ep Ep U .    (3.15b) 

In particular, combining Eqs. (13) and Eq. (15a), we may get the following important formula for 
the interaction of two independent dipoles: 
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, (3.16) 

where r is the vector connecting the dipoles, and the z-axis is directed along this vector. It is easy to 
prove (this exercise is left for the reader) that if the magnitude p of each dipole moment is fixed (the 
approximation valid, in particular, for weak interaction of so-called polar molecules), this potential 
energy reaches its minimum at the parallel orientation of the dipoles along the line connecting them. 
Note also that in this case, Uint is proportional to 1/r3. On the other hand, if each moment p has a random 
value plus a component due to its polarization by the electric field of its counterpart: p1,2  E2,1  1/r3, 
their average interaction energy (which may be calculated from Eq. (16) with the additional factor ½) is 
always negative and is proportional to 1/r6. Such negative potential describes, in particular, the long-
range, attractive part (the so-called London dispersion force) of the interaction between electrically 
neutral atoms and molecules.3 

 According to Eqs. (15), the electric field should “try” to reach the minimum of U by aligning the 
dipole vector’s direction with its own. The direct quantitative description of this effect is the torque  
exerted by the field. The simplest way to calculate it is to sum up all the elementary torques d = rdFext 
= rEext(r)(r)d3r exerted on all elementary charges of the system: 

              )0()()( ext
3

ext EprrErτ rd ,    (3.17) 

where at the last step, the spatial dependence of the external field Eext(r) was again neglected. This 
dependence cannot, however, be ignored at the calculation of the total force exerted by the field on the 
dipole (with Q = 0). Indeed, Eqs. (15) shows that if the field is constant, the dipole’s energy is 

3 Several calculations of this force, using various models, are described in the QM and SM parts of this series. 
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independent of its spatial location and hence the net force is zero. However, if the field has a non-zero 
gradient, a total force does appear; for a field-independent dipole, 

           )( extEpF  U ,     (3.18) 

where the derivative has to be taken at the dipole’s position (in our notation, at r =  0). If the dipole that 
is being moved in a field retains its magnitude and orientation, then the last formula is equivalent to4  

         extEpF  .     (3.19) 

Alternatively, the last expression may be obtained similarly to Eq. (14):  

            extext
3

extext
3

ext )()0()(0)()()( EpEErErrErF  Qrdrd  . (3.20) 

 Finally, let me add a note on the so-called coarse-grain model of the dipole. The dipole 
approximation explored above is asymptotically correct only at large distances, r >> a. However, for 
some applications (including the forthcoming discussion of the molecular field effects in Sec. 3) it is 
beneficial to have an expression that might be formally used everywhere in space, though maybe 
without exact details at r ~ a, giving the correct result for the space average of the electric field, 

      
V

rd
V

31
EE ,     (3.21) 

where V is a regularly-shaped volume much larger than a3, for example, a sphere of radius R >> a, with 
the dipole at its center. For the field Ed given by Eq. (13), such an average is zero. Indeed, let us 
consider the Cartesian components of that vector in a reference frame with the z-axis directed along the 
vector p. Due to the axial symmetry of the field, the averages of the components Ex and Ey vanish. Let 
us use Eq. (13) to spell out the “vertical” component of the field (parallel to the dipole moment vector): 
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Integrating this expression over the whole solid angle  = 4, at fixed r, using a convenient variable 
substitution cos   , we get 
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 On the other hand, the exact electric field of an arbitrary charge distribution, with the total 
dipole moment p, obeys the following equality: 
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rd ,    (3.24) 

where the integration is over any sphere containing all the charges. (A proof of this formula by using 
Eqs. (1.9) and (1.22) is left for the reader’s exercise.) The origin of the difference is illustrated in Fig. 3 
on the example of a physical dipole, i.e. a system of two equal but opposite charges – see Eqs. (8)-(9). 

4 The equivalence may be proved, for example, by using MA Eq. (11.6) with f = p = const and g = Eext, taking 
into account that according to the general Eq. (1.28), Eext = 0. 
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The zero average (23) of the dipole field (13) does not take into account the contribution from the region 
between the charges where Eq. (13) is not valid, and the field is directed mostly against the dipole vector 
(9).  

 

 

 

 

 

 

  

So, in order to be used as a reasonable coarse-grain model, Eq. (13) may be modified as follows: 
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with the average (21) satisfying Eq. (24). Evidently, such a modification does not change the field at 
large distances r >> a, i.e. in the region where the expansion (3), and hence Eq. (13), are valid. 

 

3.2. Dipole media 

 Now let us generalize Eq. (7) to the case of several (possibly, many) dipoles pj located at 
arbitrary points rj. Using the linear superposition principle, we get 
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If our system (medium) contains many similar dipoles, distributed in space with density n(r), we may 
approximate the last sum with a macroscopic potential, which is the average of the genuine 
(“microscopic”) potential (26) over a local volume much larger than the distance between the dipoles, 
and as a result, is given by the integral 
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where the vector P(r), called the electric polarization, has the physical meaning of the net dipole 
moment per unit volume. (Note that by its definition, P(r) is also a “macroscopic” field.) 

 Now comes a very impressive trick, which is the basis of all the theory of “macroscopic” 
electrostatics (and eventually, “macroscopic” electrodynamics). Just as was done at the derivation of Eq. 
(5), Eq. (27) may be rewritten in the equivalent form 
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Fig. 3.3. A sketch illustrating the origin 
of Eq. (24) for a physical dipole. 
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where ’ means the del operator (in this particular case, the gradient) acting in the “source space” of 
vectors r’. The right-hand side of Eq. (28), applied to any volume V limited by a closed surface S, may 
be readily integrated by parts to give5 
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If the surface does not carry an infinitely dense (-functional) sheet of additional dipoles,6 or it is just 
very distant, the first term on the right-hand side is negligible. Now comparing the second term with the 
basic equation (1.38) for the electric potential, we see that this term may be interpreted as the field of 
certain effective electric charges with density 

       P ef .      (3.30) 

 Figure 4 illustrates the physics of this key relation for a cartoon model of a simple multi-dipole 
system: a layer of uniformly distributed two-point-charge units oriented normally to the layer’s surface. 
(In this case, P = dP/dx.) One can see that the ef defined by Eq. (30) may be interpreted as the 
density of the uncompensated surface charges of polarized elementary dipoles.  

   

 

 

 

 

 

 

 

 

  
 Next, from Sec. 1.2, we already know that Eq. (1.38) is equivalent to the inhomogeneous 
Maxwell equation (1.27) for the electric field, so the macroscopic electric field of the dipoles (defined as 
Ed = –d, where d is given by Eq. (27)) obeys a similar equation, with the effective charge density 
(30).  

 Now let us consider a more general case when a system, besides the compensated charges of the 
dipoles, also has certain stand-alone charges – not parts of the dipoles already taken into account in the 
polarization P. As was discussed in Sec. 1.1, if we average this charge over the inter-point-charge 
distances, i.e. approximate it with a continuous “macroscopic” density (r), then its macroscopic 

5 To prove this (almost evident) formula strictly, it is sufficient to apply the divergence theorem given by MA Eq. 
(12.2), to the vector function f = P(r’)/r – r’, in the “source space” of radius-vectors r’. 
6 Just like in the case of Eq. (1.9), we may always describe such a dipole sheet using the second term in Eq. (29), 
by including a delta-functional part into the polarization distribution P(r’). 

Fig. 3.4. The spatial distributions of the 
polarization and effective charges in a layer of 
similar elementary dipoles (schematically). 
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electric field also obeys Eq. (1.27), but with the stand-alone charge density. Due to the linear 
superposition principle, for the total macroscopic field E of these charges and dipoles, we may write  

                  PE   



 0

ef
0

11
.    (3.31) 

 This is already the main result of the “macroscopic” electrostatics. However, it is evidently 
tempting (and very convenient for applications) to rewrite Eq. (31) in a different form by carrying the 
dipole-related term of this equality over to its left-hand side. The resulting formula is called the 
macroscopic Maxwell equation for D: 

          D ,      (3.32) 

where D(r) is a new “macroscopic” field, called the electric displacement (in some older texts, “electric 
induction”), defined as7 
        PED  0 .      (3.33) 

The comparison of Eqs. (32) and (1.27) shows that D (or more strictly, the fraction D/0) may be 
interpreted as the “would-be electric field” that would be created by stand-alone charges in the absence 
of the dipole medium polarization. If should be distinguished from the E participating in Eqs. (31) and 
(33), i.e. from the genuine electric field, if averaged over a spatial scale of the order of the distance 
between elementary charges and dipoles. 

 In order to get an even better gut feeling of the fields E and D, let us first rewrite the 
macroscopic Maxwell equation (32) in the integral form. Applying the divergence theorem to an 
arbitrary volume V limited by surface S, we get the following macroscopic Gauss law: 

          QrdrdD
VS

n   32  ,     (3.34) 

where Q is the stand-alone charge inside volume V.  

 This general result may be used to find the boundary conditions for D at a sharp interface 
between two different dielectrics. (The analysis is applicable to a dielectric/free-space boundary as 
well.) For that, let us apply Eq. (34) to a flat pillbox formed at the interface (see the solid rectangle in 
Fig. 5), which is sufficiently small on the spatial scales of the dielectric’s nonuniformity and the 
interface’s curvature, but still contains many elementary dipoles. Assuming that the interface does not 
have stand-alone surface charges, we immediately get 

          21 nn DD  ,     (3.35) 

i.e. the normal component of the electric displacement has to be continuous. Note that a similar 
statement for the macroscopic electric field E is generally not valid, because the polarization vector P 
may have, and typically does have a leap at a sharp interface (say, due to the different polarizability of 

7 Note that according to its definition (33), the dimensionality of D in the SI units is different from that of E. In 
contrast, in the Gaussian units, the electric displacement is defined as D = E + 4P, so D = 4 (the relation ef 
= –P remains the same as in the SI units), and the dimensionalities of D and E coincide. This coincidence is a 
certain perceptional handicap because it is frequently convenient to consider the scalar components of E as 
generalized forces, and those of D as generalized coordinates (see Sec. 5 below), and it is somewhat comforting to 
have their dimensionalities different, as they are in the SI units. 
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the two different dielectrics), providing a surface layer of the effective charges (30) – see again the 
example shown in Fig. 4. 

 

 

 

 

 

 

 

 However, we still can make an important statement about the behavior of E at the interface. 
Indeed, the macroscopic electric fields defined by Eqs. (29) and (31), are evidently still potential ones, 
and hence obey the macroscopic Maxwell equation similar to Eq. (1.28):  

          0E .      (3.36) 

Integrating this equality along a narrow contour stretched along the interface (see the dashed rectangle 
in Fig. 5), we get 
                    21  EE  .     (3.37) 

Note that this condition is compatible with (and may be derived from) the continuity of the macroscopic 
electrostatic potential  related to the macroscopic field E by the relation similar to Eq. (1.33), E = –, 
at each point of the interface: 1 = 2.  

 In order to see how these boundary conditions work, let us consider the simple problem shown in 
Fig. 6. A very broad plane capacitor, with zero voltage between its conducting plates (as may be 
enforced, for example, by their connection with an external wire), is partly filled with a material with a 
uniform polarization P0,8 oriented normal to the plates. Let us calculate the spatial distribution of the 
fields E and D, and also the surface charge density of each conducting plate. 

 

 

 

 

 Due to the symmetry of the system, the vectors E and D are both normal to the plates and do not 
depend on the position in the capacitor’s plane, so we can limit the fields’ analysis to the calculation of 
their z-components E(z) and D(z). In this case, the Maxwell equation (32) is reduced to dD/dz = 0 inside 
each layer (but not at their border!), so within each of them, D is constant – say, some D1 in the layer 
with P = P0, and certain D2 in the free-space layer, where P = 0. As a result, according to Eq. (33), the 
(macroscopic) electric field inside each layer is also constant: 

8 As will be discussed in the next section, this is a good approximation for the so-called electrets, and also for 
hard ferroelectrics in not very high electric fields. 
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Fig. 3.5. Deriving the boundary conditions at an interface 
between two dielectrics, using a Gauss pillbox (shown as 
a solid-line rectangle) and a circulation contour (dashed-
line rectangle). Here n and  are the unit vectors that are, 
respectively, normal and tangential to the interface. Note 
that due to the leap of polarization, the field lines are 
generally “refracted” at the interface – see Fig. 11b for an 
example. 
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              2020101 , EDPED   .    (3.38) 

Since the voltage between the plates is zero, we may also require the integral of E, taken along a path 
connecting the plates, to vanish. This gives us one more relation: 

                .02211  dEdE      (3.39) 

Still, the three equations (38)-(39) are insufficient to calculate the four fields in the system (E1,2 and 
D1,2). The decisive help comes from the boundary condition (35): 

            21 DD  .      (3.40) 

(Note that it is valid because the layer interface does not carry stand-alone electric charges, even though 
it has a polarization surface charge, whose areal density may be calculated by integrating Eq. (30) 
across the interface: ef = P0. Note also that in our simple system, Eq. (37) is identically satisfied due to 
the system’s symmetry, and hence does not give any additional information.)  

 Now solving the resulting system of four equations (38)-(40), we readily get 
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The areal densities of the electrode surface charges may now be readily calculated by the integration of 
Eq. (32) across each surface: 

       .
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       (3.42) 

 Note that due to the spontaneous polarization of the lower layer’s material, the capacitor plates 
are charged even in the absence of voltage between them and that this charge is a function of the second 
electrode’s position (d2).9 Also notice a substantial similarity between this system (Fig. 6), and the one 
whose analysis was the subject of Problem 2.6. 

  

3.3. Polarization of dielectrics 

 The general relations derived in the previous section may be used to describe the electrostatics of 
any dielectrics – materials with bound electric charges (and hence with negligible dc electric 
conduction). However, to form a full system of equations necessary to solve electrostatics problems, 
they have to be complemented by certain constitutive relations between the vectors P  and E.10 

 In most materials, in the absence of an external electric field, the elementary dipoles p either 
equal zero or have a random orientation in space, so the net dipole moment of each macroscopic volume 

9 This effect is used in most modern microphones. In such a device, the sensed sound wave’s pressure bends a 
thin conducting membrane playing the role of one of the capacitor’s plates, and thus modulates the thickness (in 
Fig. 6, d2) of the air gap adjacent to the electret layer. This modulation produces proportional variations of the 
charges (42), and hence the corresponding electric current flowing between the plates, which is picked up by 
readout electronics. According to J. West (who, together with G. Sessler, invented the electret microphone in 
1962), currently more than 2 billion of these devices are fabricated each year. 
10 In the problem solved at the end of the previous section, the role of such relation was played by the equality P0 
= const.  
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(still containing many such dipoles) equals zero: P = 0 at E = 0. Moreover, if the field changes are 
sufficiently slow, most materials may be characterized by a unique dependence of P on E. Then using 
the Taylor expansion of function P(E), we may argue that in relatively low electric fields the function 
should be well approximated by a linear dependence between these two vectors. Such dielectrics are 
called linear (or “simple”). In an isotropic media, the coefficient of proportionality should be just a 
scalar.  In the SI units, this scalar is defined by the following relation: 

        EP 0e ,      (3.43) 

with the dimensionless constant e called the electric susceptibility. However, it is much more common 
to use, instead of e, another dimensionless parameter,11 

                    e1   ,      (3.44) 

which is sometimes called the “relative electric permittivity”, but much more often, the dielectric 
constant. This parameter is very convenient, because combining Eqs. (43) and (44),  

        E.P 01        (3.45) 

and then plugging the resulting relation into the general Eq. (33), we get simply 

        ,or  ,0 EDED        (3.46) 

where another popular parameter,12  

                    0e0 1   .     (3.47) 

 is called the electric permittivity of the material.13 Table 1 gives the approximate values of the 
dielectric constant for several representative materials. 

 In order to understand the range of these values, let me discuss (briefly and rather superficially14) 
the two simplest mechanisms of electric polarization. The first of them is typical for liquids and gases of 
polar atoms/molecules, which have their own, spontaneous dipole moments p. (A typical example is the 
water molecule H2O, with the negative oxygen ion offset from the line connecting two positive 
hydrogen ions, thus producing a spontaneous dipole moment p = ea, with a  0.3810-10m ~ rB.) In the 
absence of an external electric field, the orientation of such dipoles may be random, with the average 
polarization P = np equal to zero – see the top panel of Fig. 7a. 

11 In older physics literature, the dielectric constant is often denoted by the letter r (with the index “r” meaning 
“relative”), while in electrical engineering publications, its notation is frequently K.  
12 The reader may be perplexed by the use of three different but uniquely related parameters (e,   1 + e, and   
 0) for the description of just one scalar property. Unfortunately, such redundancy is typical for physics, whose 
different sub-field communities have different, well-entrenched traditions.  
13 In the Gaussian units, e is defined by the following relation: P = eE, while  is defined just as in the SI units, 
D = E. Because of that, in the Gaussian units, the constant  is dimensionless and equals (1 + 4e). As a result, 
Gaussian = (/0)SI  , so (e)Gaussian = (e)SI/4, sometimes creating confusion between the numerical values of the 
latter parameter – dimensionless in both systems.  
14 While I believe this discussion is very useful, it is quantitatively valid only for relatively sparse media, with low 
concentration (n << 1/a3) of elementary atomic/molecular dipoles of size scale a. Indeed, in some condensed 
materials, with na3 ~ 1, even the notion of the dipole moment p with a single atomic cell is ambiguous.  
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 A relatively weak external field does not change the magnitude of the dipole moments 
significantly, but according to Eqs. (15a) and (17), tries to orient them along the field, creating a non-
zero vector average p directed along the vector Em, where Em is the microscopic field at the point of 
the dipole’s location – cf. two panels of Fig. 7a. If the field is not two high (pEm << kBT), the induced 
average polarization p is proportional to Em. If we write this proportionality relation in the following 
traditional form, 

                    mEp  ,      (3.48) 

where  is called the atomic (or, sometimes, “molecular”) polarizability, this means that  is positive. If 
the concentration n of such elementary dipoles is low, the contribution of their own fields into the 

Table 3.1. Dielectric constants of a few representative (and/or practically important) dielectrics 

Material  

Air (at ambient conditions) 1.00054 

Teflon (polytetrafluoroethylene, [C2F4]n) 2.1 

Silicon dioxide (amorphous) 3.9 

Glasses (of various compositions) 3.7–10 

Castor oil 4.5 

Silicon(a) 11.7 

Water (at 100C) 55.3 

Water (at 20C) 80.1 

Barium titanate (BaTiO3 , at 20C ) ~1,600 
(a) Anisotropic materials, such as silicon crystals, require a susceptibility tensor to give an exact description of the 
linear relation of the vectors P and E. However, most important crystals (including Si) are only weakly anisotropic, so 
they may be reasonably well characterized with a scalar (angle-average) susceptibility.

Fig. 3.7. Crude cartoons of two 
mechanisms of the induced 
electrical polarization: (a) a partial 
ordering of spontaneous elementary 
dipoles, and (b) an elementary 
dipole induction. The upper two 
panels correspond to E = 0,  and 
the lower two panels, to E  0. 
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microscopic field acting on each dipole is negligible, and we may identify Em with the macroscopic field 
E. As a result, the second of Eqs. (27) yields 

                EpP nn  .     (3.49) 

Comparing this relation with Eq. (45), we get 

                     
0

1

 n

 ,      (3.50) 

so  > 1 (i.e. e = n/0 > 0). Note that at this particular polarization mechanism (illustrated on the lower 
panel of Fig. 7a), the thermal motion “tries” to randomize the dipole orientation, i.e. reduce its ordering 
by the field, so we may expect , and hence e   – 1 to increase as temperature T is decreased – the 
so-called paraelectricity. Indeed, the basic statistical mechanics15 shows that in this case, the electric 
susceptibility follows the so-called Curie law e  1/T. 

 The materials of the second, much more common class consist of non-polar atoms without 
intrinsic spontaneous polarization. A crude classical image of such an atom is an isotropic cloud of 
negatively charged electrons surrounding a positively charged nucleus – see the top panel of Fig. 7b. 
The external electric field shifts the positive charge in the direction of the vector E, and the negative 
charges in the opposite direction, thus creating a similarly directed average dipole moment p.16 At 
relatively low fields, this average moment is proportional to E, so we again arrive at Eq. (48), with  > 
0, and if the dipole concentration n is sufficiently low, also at Eq. (50), with  – 1 > 0. So, the dielectric 
constant is larger than 1 for both polarization mechanisms – please have one more look at Table 1. 

 In order to make a crude but physically transparent estimate of the difference  – 1, let us 
consider the following toy model of a non-polar dielectric: a set of similar conducting spheres of radius 
R, distributed in space with a low density n << 1/R3. At such density, the electrostatic interaction of the 
spheres is negligible, and we can use Eq. (11) for the induced dipole moment of a single sphere. Then 
the polarizability definition (48) yields  = 40R

3, so Eq. (50) gives 

                               nR341   .     (3.51) 

Let us use this result for a crude estimate of the dielectric constant of air at the so-called ambient 
conditions, meaning the normal atmospheric pressure P = 1.013105 Pa and temperature T = 300 K. At 
these conditions the molecular density n may be, with a few-percent accuracy, found from the well-
known equation of state of an ideal gas:17 n  P /kBT  (1.013105)/(1.3810-23300)  2.451025 m-3. 

The molecule of the air’s main component, N2, has a van-der-Waals radius18 of 1.5510-10 m. Taking 
this radius for the R of our crude model, we get e    – 1   1.1510-3. Comparing this number with the 

15 See, e.g., SM Chapter 2. 
16 Realistically, these effects are governed by quantum mechanics, so the average here should be understood not 
only in the statistical-mechanical but also (and mostly) in the quantum-mechanical sense. Because of that, for 
non-polar atoms,   is typically a very weak function of temperature, at least on the usual scale T ~ 300K. 
17 If needed, see, e.g., SM Secs. 1.4 and 3.1. 
18 Such radius is defined by the requirement that the volume of the corresponding sphere, if used in the van-der-
Waals equation (see, e. g., SM Sec. 4.1), gives the best fit to the experimental equation of state n = n (P, T).  
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first line of Table 1, we see that the model gives a surprisingly reasonable result: to get the experimental 
value, it is sufficient to decrease the effective R of the sphere by just ~30%, to ~1.210-10 m.19 

 This result may encourage us to try using Eq. (51) for a larger density n. For example, as a crude 
model for a non-polar crystal, let us assume that the conducting spheres form a simple cubic lattice with 
the period a = 2R (i.e., the neighboring spheres virtually touch). With this, n = 1/a3 = 1/8R3 and Eq. (44) 
yields  = 1 + 4/8  2.5. This estimate provides a reasonable semi-qualitative explanation for the 
values of  listed in a few middle rows of Table 1. However, at such small distances, the electrostatic 
dipole-dipole interaction should be already essential, so this simple model cannot even approximately 
describe the values of  much larger than 1, listed in the last rows of the table. 

 Such high values may be explained by the so-called molecular field effect: each elementary 
dipole is polarized not only by the external field, as Eq. (49) assumes, but by the field of neighboring 
dipoles as well. Ottavino-Fabrizio Mossotti in 1850 and (almost 30 years later) Rudolf Clausius 
suggested what is now known, rather unfairly, as the Clausius-Mossotti formula,20 which describes this 
effect reasonably well in many non-polar materials. In our notation, it reads21 

                    
0

0

0 3/1

/
1  so,

32

1










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nn







.   (3.52) 

If the dipole density is low in the sense n << 0/, this relation is reduced to Eq. (50) corresponding to 
independent dipoles. However, at higher dipole density,  and hence e   – 1 increase faster and tend 
to infinity as the density-polarizability product approaches some critical value nc, equal to 30/ in the 
Clausius-Mossotti approximation.22 This means that the zero-polarization state becomes unstable even 
in the absence of an external electric field.  

 This instability is a linear-theory (i.e. low-field) manifestation of a substantially nonlinear effect  
– the formation, in some materials, of spontaneous polarization even in the absence of an external 
electric field. Such materials are called ferroelectrics, and may be experimentally recognized by the 
hysteretic behavior of their polarization as a function of the applied (external) electric field – see Fig. 8. 
As the plots show, the polarization of a ferroelectric depends on the applied field’s history. For example, 
the direction of its spontaneous remnant polarization PR may be switched by first applying, and then 
removing a sufficiently high field (larger than the so-called coercive field EC – see Fig. 8) of the 
opposite orientation. The physics of this switching is rather involved; the polarization vector P of a 
ferroelectric material is typically constant only within each of the spontaneously formed spatial regions 
(called domains), with a typical size of a few tenths of a micron, and different (frequently, opposite) 
directions of the vector P in adjacent domains. The change of the applied electric field results not in the 

19 As will be discussed in QM Chapter 6, for a hydrogen atom in its ground state, the low-field polarizability may 
be calculated analytically:  = (9/2)40rB

3, corresponding to our metallic-ball model with a close value of the 
effective radius: R = (9/2)1/3rB  1.65 rB  0.8710–10 m. 
20 Applied to the high-frequency electric field, with  replaced by the square of the refraction coefficient at the 
field’s frequency (see Chapter 7), this formula is known as the Lorenz-Lorentz relation.  
21 The proof of Eq. (52), by using Eq. (24) for the molecular field’s evaluation, is left for the reader’s exercise. 
22 The Clausius-Mossotti formula does not give quantitatively correct results for many condensed materials, 
notably including ferroelectrics. For a review of modern approaches to the theory of their polarization, see, e.g., 
the paper by R. Resta and D. Vanderbilt in the review collection by K. Rabe, C. Ahn, and J.-M. Triscone (eds.), 
Physics of Ferroelectrics: A Modern Perspective, Springer, 2010. 

Clausius-
Mossotti  
formula 
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switching of the direction of P inside each domain, but rather in a shift of the domain walls, resulting in 
the change of the average polarization of the sample. 

 

 

 

 

 

 

 

 

 

 Depending on the ferroelectric’s material, temperature, and the sample’s geometry (a solid 
crystal, a ceramic material, or a thin film), the hysteretic loops may be rather different, ranging from a 
rather smooth form in the so-called soft ferroelectrics (which include most ferroelectric thin films) to an 
almost rectangular form in hard ferroelectrics – see Fig. 8. In low fields, soft ferroelectrics behave 
essentially as linear paraelectrics, but with a very high average dielectric constant – see the bottom line 
of Table 1 for such a classical material as BaTiO3 (which is a soft ferroelectric at temperatures below Tc 
 120C, and a paraelectric above this critical temperature). On the other hand, the polarization of a hard 
ferroelectric in the fields below its coercive field remains virtually constant, and the analysis of their 
electrostatics may be based on the condition P = PR = const – already used in the problem discussed in 
the end of the previous section.23 This condition is even more applicable to the so-called electrets – 
synthetic polymers with a spontaneous polarization that remains constant even in very high electric 
fields. 

 Some materials exhibit even more complex polarization effects, for example, antiferroelectricity, 
helielectricity, and (practically very valuable) piezoelectricity. Unfortunately, I do not have time for a 
discussion of these exotic phenomena in this course;24 the main reason I am mentioning them is to 
emphasize again that the constitutive relation P = P(E) is material-specific rather than fundamental. 
However, most insulators, in practicable fields, behave as linear dielectrics, so the next section will be 
committed to the discussion of their electrostatics. 

23 Due to this property, hard ferroelectrics, such as the lead zirconate titanate (PZT) and strontium bismuth 
tantalite (SBT), with high remnant polarization PR (up to ~1 C/m2), may be used in nonvolatile random-access 
memories (dubbed either FRAM or FeRAM) – see, e.g., J. Scott, Ferroelectric Memories, Springer, 2000. In a 
cell of such a memory, binary information is stored in the form of one of two possible directions of spontaneous 
polarization at E = 0 (see Fig. 8). Unfortunately, the time of spontaneous depolarization of ferroelectric thin films 
is typically well below 10 years – the industrial standard for data retention in nonvolatile memories, and this time 
may be decreased even more by “fatigue” from the repeated polarization recycling at information recording. Due 
to these reasons, the industrial production of FRAM is currently just a tiny fraction of the nonvolatile memory 
market, which is dominated by floating-gate memories – see, e.g., Sec. 4.2 below.  
24 For detailed coverage of ferroelectrics, I can recommend the encyclopedic monograph by M. Lines and A. 
Glass, Principles and Applications of Ferroelectrics and Related Materials,  Oxford U. Press, 2001, and the 
recent review collection edited by K. Rabe et al., that was cited above. 

Fig. 3.8. The average polarization of soft 
and hard ferroelectrics as functions of the 
applied electric field (schematically). 
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3.4. Electrostatics of linear dielectrics 

 First, let us consider the simplest but very important problem: how is the electrostatic field of a 
set of stand-alone charges of density (r) modified if it is placed into a uniform linear dielectric medium 
that obeys Eq. (46) with a dielectric constant  constant in the whole region we are interested in. In this 
case, we may combine Eqs. (32) and (46) to write 

               



E .      (3.53) 

As a reminder, in the free space, we had a similar equation (1.27), but with a different constant, 0 = /. 
Hence all the results discussed in Chapter 1 are valid inside a uniform linear dielectric, for the 
macroscopic field the E (and the corresponding macroscopic electrostatic potential ), if they are 
reduced by the factor of  > 1. Thus, the most straightforward result of the induced polarization of a 
dielectric medium is the electric field reduction. This is a very important effect, especially taking into 
account the very high values of   in such common dielectrics as water – see Table 1. Indeed, it is the 
reduction of the attraction between positive and negative ions (called, respectively, cations and anions) 
in water that enables their substantial dissociation and hence almost all biochemical reactions, which are 
the basis of the biological cell functions – and hence of the life itself. 

 Let us apply this general result to the important particular case of the plane capacitor (Fig. 2.3) 
filled with a linear, uniform dielectric. Applying the macroscopic Gauss law (34) to a pillbox-shaped 
volume on the conductor surface, we get the following relation, 

            
n

ED nn 



 ,     (3.54) 

which differs from Eq. (2.3) only by the replacement 0    0. Hence, for a fixed field En, the 
charge density calculated for the free-space case should be increased by the factor of  – that’s it. In 
particular, this means that the capacitance (2.28) has to be increased by this factor: 

              
d

A

d

A
C


 0 .     (3.55) 

(As a reminder, this increase of C by  has been already incorporated, without proof, into some 
estimates made in Secs. 2.1 and 2.2, to make them realistic.)  

 If a linear dielectric is nonuniform, the situation is more complex. For example, let us consider 
the case of a sharp interface between two otherwise uniform dielectrics, free of stand-alone charges. In 
this case, we still may use Eq. (37) for the tangential component of the macroscopic electric field, and 
also Eq. (36), with Dn = En, for its normal component, getting 

          
nn

EE nn 






 2
2

1
121   i.e.,





 .    (3.56) 

 Let us apply these boundary conditions, first of all, to consider how carving a slit of some width 
d and a much smaller thickness t << d from inside a dielectric, changes an initially uniform electric field 
E0, depending on its orientation – see Fig. 9.  
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planar 
capacitor 
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 First of all, intuition tells us that regardless of its orientation, a slit cannot change the field far 
from it; moreover, at t  0, it cannot modify substantially even the field right outside its “major” 
(broader) surfaces. This conclusion may be supported either by direct calculations (see, e.g., the problem 
illustrated by Fig. 11 below), or by energy arguments: at t << d, any potential energy decrease due to the 
field change inside the slit’s volume (proportional to td) cannot compensate its increase in the outer 
volume proportional to d2. However, it may induce some local field changes – inside the slit, and even 
outside it, close to its “minor” surfaces.  

 To calculate the inner field for case A, with the slit’s plane normal to the applied field, we may 
apply Eq. (56) to its major surfaces (shown horizontal), to prove that the vector D should be continuous. 
But according to Eq. (46), this means that in the free space inside the slit, the electric field should equal 
D/0, and hence be  times higher than the field E0 = D/0 far from the slit. This field, and hence D, 
may be measured by a sensor placed inside the gap, so the electric displacement is not an entirely 
mathematical construct.25  On the contrary, for case B, with the slit’s plane parallel to the initial field, 
we may apply Eq. (37) to the major (now, vertical) interfaces of the slit, to see that now the electric field 
E is continuous, while the electric displacement D = 0E inside the gap is a factor of  lower than its 
value in the dielectric. (Similarly to case A, any perturbations of the field uniformity, caused by the 
compliance with Eq. (56) at the minor surfaces, settle down at distances ~t  from them.) 

 For other problems with piecewise-constant , with more complex geometries, we may need to 
apply the methods studied in Chapter 2. In particular, in the simplest cases, we can select such a set of 
orthogonal coordinates that the electrostatic potential depends on just one of them. Consider, for 
example, two types of filling a plane capacitor with two different dielectrics – see Fig. 10.  

 

 

 

 

 
 In case (a), the voltage V between the electrodes is the same for each part of the capacitor, telling 
us that at least far from the dielectric interface, the electric field is vertical, uniform, and constant (E = 
V/d). Hence the boundary condition (37) is satisfied even if such a distribution is valid near the surface 

25 Superficially, this result violates the boundary condition (37) at the vertical (“minor”) surfaces of the gap. This 
apparent contradiction is resolved by the fact the thin slit can deform the field both inside and outside it, at 
distances of the order of t around these interfaces, but not far beyond them, so the above relations for E and D are 
valid at most of the slit area. 

Fig. 3.10. Plane capacitors filled 
with two different dielectrics. 
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as well, i.e. at any point of the system. The only effect of different values of  in the two parts is that the 
electric displacement D = E and hence electrodes’ surface charge density  = D are different in them. 
Thus we can calculate the electrode charges Q1,2 of the two parts independently, and then add up the 
results to get the total mutual capacitance 

               2211
21 1

AA
dV

QQ
C  


 .    (3.57) 

Note that this formula may be interpreted as the total capacitance of two separate lumped capacitors 
connected (by wires) in parallel. This is natural, because we may cut the system along the dielectric 
interface, without any effect on the fields in either part, and then connect the corresponding electrodes 
by external wires, again without any effect on the system – besides very close vicinities of the 
capacitor’s edges, where the fringe 

 Case (b) may be analyzed just as in the problem illustrated by Fig. 6, by applying Eq. (34) to a 
Gaussian pillbox with one lid inside the (for example) bottom electrode, and the other lid inside any of 
the layers. As a result, we see that D anywhere inside the system should be equal to the surface charge 
density  of the electrode, i.e. constant. Hence, according to Eq. (46), the electric field E inside each 
dielectric layer is also constant: in the top layer,  it is E1 = D1/1 = /1, while in bottom layer, E2 = D2/2 
= /2. Integrating the field E across the whole capacitor, we get 
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so the mutual capacitance per unit area  
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Note that this result is similar to the total capacitance of an in-series connection of two plane capacitors 
based on each of the layers. This is also natural because we could insert an uncharged, thin conducting 
sheet (rather than a cut as in the previous case) at the layer interface, which is an equipotential surface, 
without changing the field distribution in any part of the system. Then we could thicken the conducting 
sheet as much as we liked (and possibly shape its internal part into a thin wire), also without changing 
the fields in the dielectric parts of the system, and hence the capacitance. 

 Proceeding to problems with more complex geometry, let us consider the system shown in Fig. 
11a: a dielectric sphere placed into an initially uniform external electric field E0. According to Eq. (53) 
for the macroscopic electric field, and the definition of the macroscopic electrostatic potential, E = –, 
the potential satisfies the Laplace equation both inside and outside the sphere, though not at its border. 
Due to the spherical symmetry of the dielectric sample, this problem invites the variable separation 
method in spherical coordinates, which was discussed in Sec. 2.8. From that discussion, we already 
know, in particular, the general solution (2.172) of the Laplace equation outside of the sphere. To satisfy 
the uniform-field condition at r  , we have to reduce this solution to 
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Inside the sphere, we can also use Eq. (2.172), but keeping only the radial functions finite at r  0: 
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Now, spelling out the boundary conditions (37) and (56) at r = R, we see that for all coefficients al and 
bl with l  2, we get homogeneous linear equations (just like for the conducting sphere discussed in Sec. 
2.8) that have only trivial solutions. Hence, all these terms may be dropped, while for the only surviving 
terms with l = 1, proportional to the Legendre polynomial P1(cos)  cos, we get two equations: 
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Solving this simple system of linear equations for a1 and b1, and plugging the result into Eqs. (60) and 
(61), we get the final solution of the problem: 
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 Figure 11b shows the equipotential surfaces given by this solution, for a particular value of the 
dielectric constant . Note that according to Eq. (62), at r  R the dielectric sphere, just as the 
conducting sphere in a similar problem, produces (on top of the uniform external field) a pure dipole 
field, with the dipole moment 
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This is an evident generalization of Eq. (11), to which Eq. (64) tends at   . By the way, this 
property is common: for their electrostatic properties, conductors may be adequately described as 
dielectrics with   . 

 Another remarkable feature of Eqs. (63) is that the electric field and polarization inside the 
sphere are uniform, with R-independent values 
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Fig. 3.11. A dielectric sphere in an initially uniform electric field: (a) the problem, and (b) the 
equipotential surfaces, as given by Eq. (63), for  = 3. 
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In the limit   1 (for example, the “sphere made of free space”, i.e. no sphere at all), the electric field 
inside it naturally tends to the external one, and its polarization vanishes. In the opposite limit   , 
the electric field inside the sphere vanishes. Curiously enough, in this limit the electric displacement 
inside the sphere remains finite: D  30E0. 

 More complex problems with piecewise-uniform dielectrics also may be addressed by the 
methods discussed in Chapter 2, and hopefully, the reader will be able to use them to solve a few such 
problems offered in Sec. 6, on their own. Let me discuss just one of such problems because it exhibits a 
new feature of the charge image method that was discussed in Secs 2.9 (and is the basis of Green’s 
function approach – see Sec. 2.10). Consider the system shown in Fig. 12: a point charge near a 
dielectric half-space; it obviously parallels the system discussed in Sec. 2.9 – see Fig. 2.26. 

   

 

 

 

 

 

 

 

 

 As for the case of a conducting half-space, the Laplace equation for the electrostatic potential in 
the upper half-space z > 0 (besides the charge point  = 0, z = d) may be satisfied using a single image 
charge q’ at the point with  = 0 and z = – d, but now q’ may differ from (–q). In addition, in contrast to 
the case analyzed in Sec. 2.9, we should also calculate the field inside the dielectric (at z  0). This field 
cannot be contributed by the image charge q’, because that would give a potential divergence at its 
location. Thus, in the dielectric-filled half-space we should try to use the real point source only, but with 
a re-normalized charge q” rather than the genuine charge q – see Fig. 12. As a result, we may look for 
the potential distribution in the form 
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at this stage of solution, with unknown q’ and q”. Plugging this equality into the boundary conditions 
(37) and (56) at z = 0 (with /n = /z), we see that they are indeed satisfied (so Eq. (66) does express 
the solution of the boundary problem), provided that the effective charges q’ and q’’ obey the following 
relations: 

Fig. 3.12. Charge images for a dielectric half-space. 
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      q''q'qq''q'q  , .    (3.67) 

Solving this simple system of linear equations, we get 

              qq''qq'
1

2
,

1

1











.    (3.68) 

 If   1, then q’  0, and q’’  q – both facts very natural because in this limit (no polarization 
at all) we have to recover the unperturbed field of the initial point charge in both semi-spaces. In the 
opposite limit     (which, as was discussed above, may describe a conducting half-space),  q’  –q 
(repeating the result we have discussed in detail in Sec. 2.9), and q’’  0. The last result means that in 
this limit, the electric field E in the dielectric tends to zero – as it should.   

 In conclusion of this section, please note that if the permittivity  of a linear dielectric is a 
continuous rather than piecewise function of coordinates, the distribution of the electrostatic potential  
may be found from Eq. (32) with the electric displacement given by Eq. (46): D = (r)E = –(r). 
However, analytical solutions of the resulting partial differential equation of the second order may be 
found only for rare particular cases; one of them is offered in Sec. 6 for the reader’s exercise. 

  

3.5. Electric field energy in a dielectric 

 In Chapter 1, we have obtained two key results for the electrostatic energy: Eq. (1.55) for a 
charge interaction with an independent (“external”) field, and a similarly structured formula (1.60), but 
with an additional factor ½, for the field induced by the charges under consideration. These relations are 
universal, i.e. valid for dielectrics as well, provided that the charge density includes all charges –
including those bound into the elementary dipoles. However, for most applications, it is convenient to 
recast them into a form where these bound charges participate not explicitly, but only via the 
macroscopic polarization effects they create. 

 If a field is created only by the stand-alone charges under consideration and is proportional to 
(r) (requiring that we deal with linear dielectrics), we can repeat all the argumentation of the beginning 
of Sec. 1.3, and again arrive at Eq. (1.60), provided that  is now the macroscopic field’s potential. Now 
we can recast this result in the terms of fields – essentially as this was done in Eqs. (1.62)-(1.64), but 
now making a clear difference between the macroscopic electric field E = – and the electric 
displacement field D, which obeys the macroscopic Maxwell equation (32). Plugging (r) expressed 
from that equation, into Eq. (1.60), we get 

               rdU 3

2

1 D .     (3.69) 

Using the fact26 that for differentiable functions  and D, 

               DDD  )()()(   ,    (3.70) 

we may rewrite Eq. (69) as 

            rdrdU 33 )(
2

1

2

1
  DD   .    (3.71) 

26 See, e.g., MA Eq. (11.4a). 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 3                 Page 22 of 28 

The divergence theorem, applied to the first term on the right-hand side, reduces it to a surface integral 
of Dn. (As a reminder, in Eq. (1.63) the integral was of ()n  En.) If the surface of the volume we 
are considering is sufficiently far, this surface integral vanishes. On the other hand, the gradient in the 
second term of Eq. (71) is just (minus) field E, so it gives  

           rdErdEErdU 32033 )()(
2

)()()(
2

1

2

1
rrrrrDE 


 .  (3.72) 

This expression is a natural generalization of Eq. (1.65), and shows that we can, as we did in free space, 
represent the electrostatic energy in a local form:27 

              



222

1
with  ,)(

2
23 D

EurduU   DEr .   (3.73) 

As a sanity check, in the trivial case  = 0 (i.e.  = 1), this result is reduced to Eq. (1.65). 

 Of course, Eq. (73) is valid only for linear dielectrics, because our starting point, Eq. (1.60), is 
only valid if  is proportional to . To make our calculation more general, we should intercept the 
calculations of Sec. 1.3 at an earlier stage, at which this proportionality had not yet been used. For 
example, the first of Eqs. (1.56) may be rewritten, in the continuous form,  as  

              rdU 3)()( rr  ,     (3.74) 

where the symbol  means a small variation of the function – e.g., its change in time, sufficiently slow to 
ignore the relativistic and magnetic-field effects. Applying such variation to Eq. (32), and plugging the 
resulting relation  =  D into Eq. (74), we get 

                rdU 3 D .     (3.75) 

(Note that in contrast to Eq. (69), this expression does not have the front factor ½.) Now repeating the 
same calculations as in the linear case, for the energy density’s variation we get a remarkably simple 
(and general!) formula, 

           



3

1j
jj DEu  DE ,     (3.76) 

where the last expression uses the Cartesian components of the vectors E and D. This is as far as we can 
go for the general dependence D(E). If the dependence is linear and isotropic, as in Eq. (46), then D = 
E and 

          









2

2E
u  EE .     (3.77)  

The integration of this expression over the whole variation, from the field equal to zero to a certain final 
distribution E(r), brings us back to Eq. (73).  

An important role of Eq. (76), in its last form, is to indicate that from the point of view of 
analytical mechanics, the Cartesian coordinates of E may be interpreted as generalized forces, and those 

27 In the Gaussian units, each of the last three expressions should be divided by 4. 
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of D as generalized coordinates of the field’s effect on a unit volume of the dielectric. This allows one, 
in particular, to form the proper Gibbs potential energy28 of a system with an electric field E(r) fixed, at 
every point, by some external source: 

         rDrErrr   uurduU
V

G
3

GG , .   (3.78) 

The essence of this notion is that if the generalized external force (in our case, E) is fixed, the stable 
equilibrium of the system corresponds to the minimum of UG, rather than of the potential energy U as 
such – in our case, that of the field in our system.  

 As the simplest illustration of this important concept, let us consider a very long cylinder (with 
an arbitrary cross-section shape), made of a uniform linear dielectric, placed into a uniform external 
electric field parallel to the cylinder’s axis – see Fig. 13.    

 

 

           

 

 

 

 
 For this simple problem, the equilibrium value of D inside the cylinder may be, of course, readily 
found without any appeal to energies. Indeed, the solution of the Laplace equation inside the cylinder, 
with the boundary condition (37) is evident: E(r) = Eext, and so Eq. (46) immediately yields D(r) = 
Eext. One may wonder why the minimum of the potential energy U, given by Eq. (73) in its last form, 

           
2

2D

V

U
 ,      (3.79) 

corresponds to a different (zero) value of D, but let us recall that Eq. (73) was derived for the case when 
the electric field is created by the stand-alone charges in the system under consideration. If it is created 
by external sources, we have to use the Gibbs potential energy (78) instead. For our current uniform 
case, this energy per unit volume of the cylinder is 

    
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
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
DEDE ,   (3.80) 

and its minimum as a function of every Cartesian component of D corresponds to the correct value of 
the displacement:  Dj = Ej, i.e. to D = E = Eext. So, the systems’ equilibrium indeed corresponds to the 
minimum of the Gibbs potential energy (78) rather than of the energy (73). 

28 See, e.g., CM Sec. 1.4, in particular Eq. (1.41). Note that as Eq. (78) clearly illustrates, once again, that the 
difference between the potential energies UG and U, usually discussed in courses of thermodynamics and 
statistical physics as the difference between the Gibbs and Helmholtz free energies (see, e.g., SM 1.4), is much 
more general than the effects of random thermal motion addressed by these disciplines. 
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Fig. 3.13. A cylindrical dielectric sample 
in a longitudinal external electric field. 
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 Now note that Eq. (80), at this equilibrium point (only!), may be rewritten as 

        
 22

22
G DD

V

U

V

U
 D

D
DE ,    (3.81) 

i.e. formally coincides with Eq. (79), besides the (perhaps, somewhat counter-intuitive) opposite sign. A 
similar but more general relation (not limited to linear dielectrics and uniform fields) may be obtained 
by taking the variation of the uG expressed by Eq. (78), and then using Eq. (76): 

          EDDEDEDEDE   uuG .   (3.82) 

In order to see how this expression works, let us plug D from Eq. (33): 

       EPEPE 
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2
0

0G

E
u .   (3.83)  

 So far, this relation is general. In the particular case when the polarization P is field-independent, 
we may integrate Eq. (83) over the full electric field’s variation, say from 0 to some finite value E, 
getting 

             EP 
2

2
0

G

E
u


.     (3.84) 

Again, the Gibbs energy is relevant only if E is dominated by an external field Eext independent of the 
orientation of P. If, in addition, P(r)  0 only in some finite volume V, we may integrate Eq. (84) over 
that volume, getting 
    

V

rdU 3
extG )(with  const, rPpEp ,   (3.85) 

where the “const” means the terms independent of p. In this expression, we may readily recognize Eq. 
(15a) for an electric dipole p of a fixed magnitude, which was obtained in Sec. 1 in a different way. This 
comparison illustrates again that UG is nothing mysterious; it is just the relevant part of the potential 
energy of the system in a fixed external field, including the energy of its interaction with the field. 

 Finally, in the other important case of a linear dielectric, when according to Eqs. (45) and (47), P 
= ( - 0)E, the similar integration of the general Eq. (83) over the field yields the additional factor ½: 

     const
2

1 3
extG  

V

rdU EP .    (3.86) 

This expression may be very convenient for analyses of the forces exerted by electric fields on linear 
dielectric media – see, for, example, a few exercises on this topic, offered at the end of this chapter. 

 

3.6. Exercise problems 

 3.1. Prove Eqs. (3)-(4), starting from Eqs. (1.38) and (3.2). 
 
 3.2. A thin ring of radius R is charged with a constant linear density . Calculate the exact 
electrostatic potential distribution along the symmetry axis of the ring, and prove that at large distances, 
r >> R, the three leading terms of its multipole expansion are indeed correctly described by Eqs. (3)-(4). 
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 3.3. In suitable reference frames, calculate the dipole and quadrupole moments of the following 
systems (see the figures below): 

 (i) four point charges of the same magnitude but alternating signs, placed in the corners of a 
square;  
 (ii) a similar system but with a pair charge sign alternation; and 
 (iii) a point charge in the center of a thin ring carrying a similar but opposite charge uniformly 
distributed along its circumference. 
 
 

 

 

 

 

 
  
 3.4. Calculate the dipole and quadrupole moments of a thin spherical shell of radius R, carrying 
an electric charge with the areal density  = 0cos. Discuss the relation between the results and the 
solution of Problem 2.28. 
 
 3.5. For a regular cubic lattice of similarly oriented identical dipoles, calculate the electric field it 
creates at the location of each dipole. 

 3.6. Without carrying out an exact calculation, can you predict the spatial dependence of the 
interaction between various electric multipoles, including point charges (in this context, frequently 
called electric monopoles), dipoles, and quadrupoles? Based on these predictions, what is the functional 
dependence of the interaction between homonuclear diatomic molecules such as H2, N2, O2, etc., on the 
distance between them when the distance is much larger than the molecular size? 
 
 3.7. Two similar electric dipoles, of a fixed magnitude p, located at a fixed distance r from each 
other, are free to change their directions. What stable equilibrium position(s) they may take as a result of 
their electrostatic interaction? 
 
 3.8. An electric dipole is located above a grounded infinite 
conducting plane (see the figure on the right). Calculate: 

 (i) the distribution of the induced charge in the conductor, 
 (ii) the dipole-to-plane interaction energy, and 
 (ii) the force and the torque exerted on the dipole. 
 
 
 
 3.9. Calculate the net charge Q induced in a grounded conducting sphere 
of radius R by a dipole p located at point r outside the sphere – see the figure on 
the right.  
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 3.10. Use two different approaches to calculate the energy of interaction between a grounded 
conductor and an electric dipole p placed in the center of a spherical cavity of radius R, carved in the 
conductor. 
  
 3.11. A plane separating two halves of otherwise free space is densely and uniformly (with a 
constant areal density n) filled with electric dipoles, with similar moments p oriented normally to the 
plane.  

 (i) Use two different approaches to calculate the electrostatic potential at distances d >> 1/n1/2 on 
both sides of the plane.  
 (ii) Give a physical interpretation of your result. 
 (iii) Use the result to calculate the potential distribution created in space by a spherical surface of 
radius R, densely and uniformly filled with radially oriented dipoles. 
 
 3.12. Prove Eq. (24). 

 Hint: You may like to use the basic Eq. (1.9) to spell out the left-hand side of Eq. (1.24), change 
the order of integration over r and r’, and then contemplate the physical sense of the inner integral. 
 
 3.13. A sphere of radius R is made of a material with a uniform spontaneous polarization P0. 
Calculate the electric field everywhere in space – both inside and outside the sphere, and compare the 
result for the internal field with Eq. (24). 
 
 3.14. Calculate the electric field at the center of a cube made of a material with the uniform 
spontaneous polarization P0 of arbitrary orientation. 
 
 3.15. Derive the Clausius-Mossotti formula (52) by combining Eq. (24) with the result of the 
solution of Problem 5. 
 
 3.16. Stand-alone charge Q is distributed, in some way, within the volume of a body made of a 
uniform linear dielectric with a dielectric constant . Calculate the total polarization charge Qef residing 
on the surface of the body, provided that it is surrounded by free space. 
 

3.17.  In two separate experiments, a thin plane sheet of a linear dielectric with  = const is 
placed into a uniform external electric field E0, in two different ways: 

 (i) with the sheet’s surfaces parallel to the electric field, and 
 (ii) with its surfaces normal to the field. 

 For each case, find the electric field E, the electric displacement D, and the polarization P inside 
the dielectric, sufficiently far from the sheet’s edges. 
 
 3.18. A fixed dipole p is placed in the center of a spherical cavity of radius R, carved inside a 
uniform linear dielectric. Calculate the electric field distribution everywhere in the system.  

 Hint: You may start with the assumption that the field at r > R has a distribution typical for a 
dipole. However, be ready for surprises. 
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 3.19. A spherical capacitor (see the figure on the right) is filled with a 
linear dielectric whose permittivity  depends on the spherical angles  and , 
but not on the distance r from the system’s center. Derive an explicit 
expression for its capacitance C. 
 
 
 
 3.20. A spherical capacitor similar to that considered in the previous problem is now filled with a 
linear dielectric whose permittivity depends only on the distance from the center. Obtain an explicit 
expression for its capacitance, and spell it out for the particular case (r) = (a)(r/a)n. 
 
 
 
 3.21. A uniform electric field E0 has been created (by distant external 
sources) inside a uniform linear dielectric. Find the electric field’s change 
created by carving out a cavity in the shape of a round cylinder of radius R, 
with its axis normal to the external field – see the figure on the right.  

 
 
 
3.22. Similar small spherical particles, made of a linear dielectric, are dispersed in free space 

with a low concentration n << 1/R3, where R is the particle's radius. Calculate the average dielectric 
constant of such a medium. Compare the result with the apparent but wrong answer 

               nV11   ,  (WRONG!) 

(where  is the dielectric constant of the particle's material and V = (4/3)R3 is its volume), and explain 
the origin of the difference. 
 
 3.23. A straight thin filament, uniformly charged with linear density , is positioned parallel to 
the plane separating two uniform linear dielectrics, at a distance d from it. Calculate the electric 
potential’s distribution everywhere in the system. 
 
 3.24. A point charge q is located at a distance d > R from the center of a sphere of radius R, made 
of a uniform linear dielectric with permittivity .  
 (i) Calculate the electrostatic potential’s distribution in all the space, for an arbitrary ratio d/R. 
 (ii) For large d/R, use two different approaches to calculate the interaction force and the energy 
of interaction between the sphere and the charge, in the first nonzero approximation in R/d << 1. 

 Hint: Task (i) cannot be carried out using the method of charge images, so you may like to use 
the expansion of the function 1/ r – r’  in the series over the Legendre polynomials, whose proof was 
the subject of Problem 2.40. 
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 3.25. Calculate the spatial distribution of the electrostatic potential induced by 
a point charge q located at distance d from a very wide parallel plate, of thickness D, 
made of a uniform linear dielectric – see the figure on the right. 

 
  
 3.26. Discuss the physical nature of Eq. (76). Apply your conclusions to a material with a fixed 
(field-independent) polarization P0(r), and calculate the electric field’s energy of a uniformly polarized 
sphere (see Problem 13 above). 
 
 3.27. Use Eqs. (73) and (82) to calculate the force of attraction of a plane capacitor’s plates (per 
unit area), for two cases: 

 (i) the capacitor is charged to voltage V, and then disconnected from the battery,29 and 
 (ii) the capacitor remains connected to the battery. 
 
  3.28. A slab made of a linear dielectric is partly inserted into 
a plane capacitor – see the figure on the right. Assuming the 
simplest (cylindrical) geometry of the system, calculate the force 
exerted by the field on the slab, for the same two cases as in the 
previous problem 
 
 3.29. For each of the two capacitors shown in Fig. 10, calculate the electric force exerted on the 
interface between two different dielectrics, in terms of the fields in the system. 
 
 
 3.30. One half of a conducting sphere of radius R, carrying electric 
charge Q, is submerged into a half-space filled with a linear dielectric with 
permittivity  – see the figure on the right. Calculate the electric force 
exerted on the sphere by the dielectric. 

29 “Battery” is a common if misleading term for what is usually a single galvanic element. (The last term stems 
from the name of Luigi Galvani, a pioneer of electric current studies. Another term derived from his name is the 
galvanic connection, meaning a direct connection of two conductors, enabling a dc current flow – see the next 
chapter.) The term “battery” had to be, in all fairness, reserved for the connection of several galvanic elements in 
series – as was pioneered in 1800 by L. Galvani’s friend Alexander Volta. 
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Chapter 4. DC Currents 

The goal of this chapter is to discuss the distribution of stationary (“dc”) currents in conducting samples 
and their “global” characteristics such as resistance. In the most important case of linear (“Ohmic”) 
conductivity, the current distribution is governed by the same Laplace and Poisson equations whose 
solution methods were discussed in detail in the previous chapters. Because of that, we can piggyback 
on most approaches discussed earlier, enabling me to keep this chapter rather brief.  

 

4.1. Continuity equation and the Kirchhoff laws 

 Until this point, our discussion of conductors has been limited to the cases when they are 
separated with insulators (meaning either the free space or some dielectric media), preventing any 
continuous motion of charges from one conductor to another, even if there is a non-zero voltage (and 
hence electric field) between them – see Fig. 1a.  

   

 

 

 

 

 

 

 

 

 
 Now let us connect the two conductors with a wire – a thin, elongated conductor (Fig. 1b). Then 
the electric field causes the motion of charge carriers in the wire, from the conductor with a higher 
electrostatic potential toward that with lower potential, until the potentials equilibrate. Such a process is 
called charge relaxation. The main equation governing this process may be obtained from the 
fundamental experimental fact (already mentioned in Sec. 1.1) that electric charges cannot appear or 
disappear – though opposite charges may recombine with the conservation of the net charge. As a result, 
the charge Q in a conductor may change only due to the electric current I  through the wire: 

          tI
dt

dQ
 ;      (4.1) 

this relation may be understood as the definition of the current.1 

1 Just as a (hopefully, unnecessary :-) reminder, in the SI units the current is measured in amperes (A). In legal 
metrology, the ampere (rather than the coulomb, which is defined as 1C = 1A  1s) is a primary unit. (Its formal 
definition will be discussed in the next chapter.) In the Gaussian units, Eq. (1) remains the same, so the current’s 
unit is the statcoulomb per second – the so-called statampere. 

Fig. 4.1. Two oppositely charged conductors: (a) in the electrostatic situation, (b) at the charge 
relaxation through an additional narrow conductor (“wire”), and (c) in a system sustaining a dc current I. 

(a)      (b)         (c) 
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 Let us express Eq. (1) in a differential form, introducing the notion of the current density j(r). 
This vector may be defined via the following relation for the elementary current dI crossing an 
elementary area dA (Fig. 2): 
            dAjdAjjdAdI n )cos(cos  ,    (4.2) 

where  is the angle between the direction normal to the surface and the charge carrier motion direction, 
which is taken for the direction of the vector j. 

 

 

 

 

 

With that definition, Eq. (1) may be rewritten as 

            
S

n

V

rdjrd
dt

d 23 ,     (4.3) 

where V is an arbitrary but stationary volume limited by the closed surface S. Applying to this volume 
the same divergence theorem as was repeatedly used in previous chapters, we get 

            03 
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rd
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.     (4.4) 

Since the volume V is arbitrary, this equation may be true only if 

       0



j
t


.     (4.5) 

This is the fundamental continuity equation – which is true even for time-dependent phenomena.2 

 The charge relaxation, illustrated by Fig. 1b, is of course a dynamic, time-dependent process. 
However, electric currents may also exist in stationary situations, when a certain current source, for 
example a battery, drives the current against the electric field, and thus replenishes the conductor 
charges and sustains currents at a certain time-independent level – see Fig. 1c. (This process requires a 
persistent replenishment of the electrostatic energy of the system from either a source or a large storage 
of energy of a different kind – say, the chemical energy of the battery.) Let us discuss the laws 
governing the distribution of such dc currents. In this case (/t = 0), Eq. (5) reduces to a very simple 
equation 
            0 j .      (4.6) 

 This relation acquires an even simpler form in the particular but important case of dc electric 
circuits (Fig. 3) – the systems that may be fairly represented as direct (“galvanic”) connections of 
components of two types:  

2 Similar differential relations are valid for the density of any conserved quantity, for example for mass in 
classical dynamics (see, e.g., CM Sec. 8.3), and for the probability, as it is defined in statistical physics (SM Sec. 
5.6) and in quantum mechanics (QM Sec. 1.4). 

Continuity 
equation 

j

dAcosdA


Fig. 4.2. The current density vector j. 

dI
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 (i) relatively-small-size (lumped) circuit elements, meaning either a passive resistor, or a current 
source, etc. – generally, any “black box” with two or more terminals, and 

 (ii) perfectly conducting wires, with a negligible drop of the electrostatic potential along them, 
that are galvanically connected at certain points called nodes (or “junctions”).   

 

 

 

 

 

 
  

 In the standard circuit theory, the electric charges of the nodes are considered negligible,3 and we 
may integrate Eq. (6) over the closed surface drawn around any node to get a simple equality 

           0
j

jI ,      (4.7a) 

where the summation is over all the wires (numbered with index j) connected in the node. On the other 
hand, according to its definition (2.25), the voltage Vk across each circuit element may be represented as 
the difference of the electrostatic potentials of the adjacent nodes, Vk = k – k-1. Summing such 
differences around any closed loop of the circuit (Fig. 3), we get all terms canceled, so 

          0
k

kV .      (4.7b) 

These relations are called, respectively, the 1st and 2nd Kirchhoff laws4 – or sometimes the node 
rule (7a) and the loop rule (7b). They may seem elementary, and their genuine power is in the 
mathematical fact that any set of Eqs. (7) covering every node and every circuit element of the system at 
least once, gives a system of equations sufficient for the calculation of all currents and voltages in it – 
provided that the relation between the current and voltage is known for each circuit element.   

 It is almost evident that in the absence of current sources, the system of equations (7) has only 
the trivial solution: Ij = 0, Vk = 0 – with the exotic exception of superconductivity, to be discussed in 
Sec. 6.3. The current sources that allow non-zero current flows may be described by their electromotive 
forces (e.m.f.) Vk, having the dimensionality of voltage, which have to be taken into account in the 
corresponding terms Vk of the sum (7b). Let me hope that the reader has some experience of using Eqs. 
(7) for analyses of simple circuits – say, consisting of several resistors and batteries, so I can save our 
time by skipping their discussion. Still, due to their practical importance, I would recommend the reader 
to carry out a self-test by solving a couple of problems offered at the beginning of Sec. 6. 

3 In many cases, the charge accumulation/relaxation may be described without an explicit violation of Eq. (7a), 
just by adding other circuit elements, lumped capacitors (see Fig. 2.5 and its discussion), to the circuit under 
analysis. The resulting circuit may be used to describe not only the transient processes but also periodic ac 
currents. However, it is convenient for me to postpone the discussion of such ac circuits until Chapter 6, where 
one more circuit element type, lumped inductances, will be introduced. 
4 Named after Gustav Kirchhoff (1824-1887) – who also suggested the differential form (8) of the Ohm law. 

Fig. 4.3. A typical system obeying Kirchhoff 
laws.

“node” 

“loop” 

“circuit 
element” 

“wire” 
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4.2. The Ohm law 

 As was mentioned above, the relations spelled out in Sec. 1 are sufficient for forming a closed 
system of equations for finding electric current and field in a system only if they are complemented with 
some constitutive relations between the scalars I and V in each lumped circuit element, or alternatively 
between the macroscopic (atomic–scale–averaged) vectors j and E at each point of the material of such 
an element. The simplest of such relations is the famous Ohm law whose differential (or “local”) form is 

            Ej  ,      (4.8) 

where  is a constant called the Ohmic conductivity (or just the “conductivity” for short).5 Though the 
Ohm law (discovered, in its simpler form, by Georg Simon Ohm in 1827) is one of constitutive rather 
than fundamental relations, and is approximate for any conducting medium, we can argue that if: 

 (i) the medium carries no current at E = 0 (mind superconductors!), 
 (ii) the medium is isotropic or virtually isotropic (a notable exception: some organic conductors), 
 (iii) the mean free path l of the current carriers (the notion to be discussed in detail in SM Ch. 6) 
in this medium is much smaller than the characteristic scale a of the spatial variations of j and E, 

then the law may be viewed as the leading, linear term of the Taylor expansion of the local relation j(E), 
and thus is general for relatively low fields. 

 Table 1 gives approximate experimental values of  for some representative (and/or practically 
important) materials. Note that the range of these values is very broad, even without going to such 
extremes as very pure metallic crystals at very low temperatures, where   may reach ~1012 S/m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 In SI units, the conductivity is measured in S/m, where one siemens (S) is the reciprocal of the ohm: 1S  (1)-1 
 1A/1V. The constant reciprocal to conductivity, 1/, is called resistivity and is commonly denoted by the letter 
. I will, however, try to avoid using this notion, because in these notes this letter is already overused. 

Ohm  
law 

Table 4.1. Ohmic dc conductivities for some materials at 20C. 

Material  (S/m) 

Teflon (PTFE, [C2F4]n) 10-22-10-24 

Silicon dioxide 10-16-10-19 

Various glasses 10-10-10-14 

Deionized water ~10-6 

Seawater 5 

Silicon n-doped to 1016cm-3 2.5102 

Silicon n-doped to 1019cm-3 1.6104 

Silicon p-doped to 1019cm-3 1.1104 

Nichrome (alloy 80% Ni + 20% Cr) 0.9106 

Aluminum 3.8107 

Copper 6.0107 

Zinc crystal along a-axis 1.65107 

Zinc crystal along c-axis 1.72107 
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In order to get a better feeling of what these values mean, let us consider a very simple system 
(Fig. 4): a plane capacitor of area A >> d2, filled with a material that has not only a dielectric constant , 
but also some Ohmic conductivity , with much more conductive electrodes. 

 

 

 

 

 
 Assuming that these properties are compatible with each other,6 we may assume that the 
distribution of the electric potential (not too close to the capacitor’s edges) still obeys Eq. (2.39), so the 
electric field is normal to the electrode surfaces and uniform, with E = V/d. Then, according to Eq. (6), 
the current density is also uniform, j = E = V/d. From here, the total current between the plates is 

         .A
d

V
EAjAI        (4.9) 

On the other hand, from Eqs. (2.26) and (3.45), the instantaneous value of the total charge of the top 
electrode is Q = CV = (0A/d)V.  Plugging these relations into Eq. (1), we see that the speed of charge 
(and voltage) relaxation is independent of the geometric parameters A and d of the capacitor: 

          









 0
r

r

with  ,
V

dt

dV
,    (4.10) 

so the relaxation time constant r may be used to characterize the gap-filling material as such.  

 As we already know (see Table 3.1), for most practical materials the dielectric constant  is 
within one order of magnitude from 10, so the numerator in the second of Eqs. (10) is of the order of 10-

10 (SI units). As a result, according to Table 1, the charge relaxation time ranges from ~1014s (more than 
a million years!) for the best insulators like Teflon (polytetrafluoroethylene, PTFE),7 to ~10-18s for the 
least resistive metals. What is the physics behind such a huge range of , and why, for some materials, 
Table 1 gives them with such a large uncertainty? As in Chapters 2 and 3, in this course, I have time 
only for a brief, admittedly superficial discussion of these issues.8 

 If the charge carriers move almost as classical particles (e.g., in plasmas or non-degenerate 
semiconductors), a very reasonable description of the conductivity is given by the famous Drude 
formula.9 In his picture, due to a weak electric field, the charge carriers are accelerated in its direction 
(on top of their random motion in all directions, with the average velocity vector equal to zero): 

          E
v

m

q

dt

d
 ,      (4.11) 

and as a result, their velocity acquires the average value 

6 As will be discussed in Chapter 6, this is true only if  is not too high. 
7 This polymer is broadly used in engineering and physical experiment, due to its many remarkable properties. 
8 A more detailed discussion of this issue may be found in SM Chapter 6. 
9 It was suggested by Paul Drude in 1900. 

Fig. 4.4. A “leaky” plane capacitor. 
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              E
v

v
m

q

dt

d
 ,     (4.12) 

where the phenomenological parameter  = l/v (not to be confused with r!) may be understood as the 
average time since the last scattering event. From here, the current density:10 

          
m

nq

m

nq
qn

 22

i.e.,  Evj .    (4.13a) 

(Notice the independence of  of the charge sign.) Another form of the same result, more popular in the 
physics of semiconductors, is 

       
m

nq
  with ,2 ,     (4.13b) 

where the parameter , defined by the relation v  E, is called the charge carrier mobility. 

 Most good conductors (e.g., metals) are essentially degenerate Fermi gases (or liquids), in which 
the average thermal energy of a particle, kBT is much lower than the Fermi energy F. In this case, a 
quantum theory is needed for the calculation of . Such a theory was developed by A. Sommerfeld in 
1927 (and is sometimes called the Drude-Sommerfeld model). I have no time to discuss it in this 
course,11 and here will only notice that for a nearly ideal, isotropic Fermi gas the result is reduced to Eq. 
(13), with a certain effective value of , so it may be used for estimates of , with due respect to the 
quantum theory of scattering. In a typical metal, n is very high (~1023 cm-3) and is fixed by the atomic 
structure, so the sample quality may only affect   via the scattering time .  

 At room temperature, the scattering of electrons by thermally-excited lattice vibrations 
(phonons) dominates, so   and  are high but finite, and do not change much from one sample to 
another. (Hence the relatively accurate values given for metals in Table 1.) On the other hand, at T  0, 
quantum mechanics says a perfect crystal should not exhibit scattering at all, and its conductivity should 
be infinite. In practice, this is never true (for one, due to electron scattering from imperfect boundaries 
of finite-size samples), and the effective conductivity  is infinite (or practically infinite, at least above 
the largest measurable values ~1020 S/m) only in superconductors.12 

 On the other hand, the conductivity of quasi-insulators (including deionized water) and 
semiconductors depends mostly on the carrier density n, which is much lower than in metals. From the 
point of view of quantum mechanics, this happens because the ground-state wavefunctions of charge 
carriers are localized within an atom (or molecule), and their energies are separated from those of 
excited states, with space-extended wavefunctions, by a large energy gap – often called the bandgap. 
For example, in SiO2 the bandgap approaches 9 eV, equivalent to ~4,000 K. This is why even at room 
temperatures the density of thermally-excited free charge carriers in good insulators is negligible. In 
these materials, n is determined by impurities and vacancies, and may depend on a particular chemical 
synthesis or other fabrication technology, rather than on the fundamental properties of the material. (On 
the contrary, the carrier mobility  in these materials is almost technology-independent.) 

10 Note that j in Eq. (8) is defined as an already macroscopic variable, averaged over inter-particle distances, so no 
additional average sign is necessary in the first of  Eqs. (13a). 
11 For such a discussion see, e.g., SM Sec. 6.3. 
12 The electrodynamic properties of superconductors are so interesting (and fundamentally important) that I will 
discuss them in more detail in Chapter 6. 

Drude  
formula: 
two  
versions 
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 The practical importance of the fabrication technology may be illustrated by the following 
example. In the cells of the so-called floating-gate memories, in particular, the flash memories, which 
currently dominate the nonvolatile digital memory technology, data bits are stored as small electric 
charges (Q ~ 10-16 C ~ 103 e) of highly doped silicon islands (so-called floating gates) separated from 
the rest of the integrated circuit with ~10-nm-thick layers of silicon dioxide, SiO2. Such layers are 
fabricated by high-temperature oxidation of virtually perfect silicon crystals. The conductivity of the 
resulting high-quality (though amorphous) material is so low,  ~ 10–19 S/m, that the relaxation time r, 
defined by Eq. (10), is well above 10 years – the industrial standard for data retention in nonvolatile 
memories. To appreciate how good this technology is, the cited value should be compared with the 
typical conductivity  ~ 10–16 S/m of the usual, bulk SiO2 ceramics.13 

 To conclude this chapter, let me note that the Ohm law, for all its importance, is not a universal 
law of nature. As a reminder of this fact, in Sec. 5 below I describe two very simple systems (leaving 
their analysis for the reader’s exercise) whose I-V relation is nonlinear even for very small currents.  

 

4.3. Boundary problems 

 For an Ohmic conducting medium, we may combine Eqs. (6) and (8) to get the following 
differential equation 
        0   .     (4.14) 

For a uniform conductor (  = const), Eq. (14) is reduced to the Laplace equation for the (macroscopic) 
electrostatic potential . As we already know from Chapters 2 and 3, its solution depends on the 
boundary conditions. These conditions, in turn, depend on the interface type.   

 (i) Conductor-conductor interface. Applying the continuity equation (6) to a Gauss-type pillbox 
at the interface of two different conductors (Fig. 5), we get  

        (jn)1 = (jn)2,       (4.15) 

so if the Ohm law (8) is valid inside each medium, then  

               
nn 





 2

2
1

1





 .     (4.16) 

 

 

 

 

 

13 This course is not an appropriate platform to discuss details of the floating-gate memory technology. However, 
I think that every educated physicist should know its basics, because such memories are presently the driver of all 
semiconductor integrated circuit technology development, and hence of the whole information technology 
progress. Perhaps the best available general book on this topic is still the relatively old review collection by J. 
Brewer and M. Gill (eds.), Nonvolatile Memory Technologies with Emphasis on Flash, IEEE Press, 2008. 

1
12  

2j

1j

Fig. 4.5. DC current’s “refraction” at the interface between 
two different conductors. 
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 Also, since the electric field should be finite, its potential  has to be continuous across the 
interface – the condition that may also be written as 

         











 21 .      (4.17) 

Both these conditions (and hence the solutions of the boundary problems using them) are similar to 
those for the interface between two dielectrics – cf. Eqs. (3.46)-(3.47). Note that using the Ohm law, Eq. 
(17) may be rewritten as 

                 2
2

1
1

11
 
jj  .     (4.18) 

Comparing it with Eq. (15) we see that, generally, the current density’s magnitude changes at the 
interface: j1  j2. It is also curious that if 1  2, the current line slope changes at the interface (Fig. 5), 
qualitatively similar to the refraction of light rays in optics – see Chapter 7. 

 (ii) Conductor-electrode interface. An electrode is defined as a body made of a “perfect 
conductor”, i.e. of a medium with   . Then, at a fixed current density at the interface, the electric 
field in the electrode tends to zero, and hence it may be described by the equality 

      const j ,     (4.19) 

where constants j may be different for different electrodes (numbered with index j).  Note that with 
such boundary conditions, the Laplace boundary problem becomes exactly the same as in electrostatics 
– see Eq. (2.35) – and hence we can use the methods (and some solutions :-) discussed in Chapter 2 for 
finding the dc current distribution. 

 (iii) Conductor-insulator interface. For the description of a good insulator, we can use the 
equality   = 0, so Eq. (16) yields the following boundary condition, 

           0



n


,      (4.20) 

for the potential derivative inside the conductor. From the Ohm law (8) in the form j = –, we see 
that this is just the very natural requirement for the dc current not to flow into an insulator. Now note 
that this condition makes the Laplace problem inside the conductor completely well-defined, and 
independent of the potential distribution in the adjacent insulator. On the contrary, due to the continuity 
of the electrostatic potential at the border, its distribution inside the surrounding insulator has to follow 
that inside the conductor.  

 Let us discuss this conceptual issue on the following (apparently, trivial) example: dc current in 
a uniform wire of length l and a cross-section of area A. The reader certainly knows the answer:  

              
A

l

I

V
R

R

V
I


   where, ,    (4.21) 

where the constant R is called the wire’s resistance.14  

14 The first of Eqs. (21) is essentially the (historically, initial) integral form of the Ohm law, and is valid not only 
for a uniform wire but also for Ohmic conductors of any geometry in that I and V may be clearly defined. 

Uniform 
wire’s 
resistance 
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 However, let us derive this result formally from our theoretical framework. For the simple 
geometry shown in Fig. 6a, this is easy to do. Here the potential evidently has a linear 1D distribution 

           ,const V
l

x
      (4.22) 

both in the conductor and the surrounding free space, with both boundary conditions (16) and (17) 
satisfied at the conductor-insulator interfaces, and the condition (20) satisfied at the conductor-electrode 
interfaces. As a result, the electric field is constant and has only one Cartesian component: Ex = V/l, so  
inside the conductor 

        AjIEj xxx  , ,     (4.23) 

giving us the well-known Eq. (21). 

 

 

 

 

 

 

 

 

  

 

However, what about the geometry shown in Fig. 6b? In this case, the field distribution in the 
free space around the conductor is dramatically different, but according to the boundary problem 
defined by Eqs. (14) and (20), inside the conductor, the solution is exactly the same as it was in the 
former case. Now, the Laplace equation in the surrounding insulator has to be solved with the boundary 
values of the electrostatic potential, “dictated” by the distribution of the current (and hence potential) in 
the conductor. Note that as a result, the electric field lines are generally not normal to the conductor’s 
surface, because the surface is not equipotential – see Eq. (22) again. 

Let us solve a problem in that this conduction hierarchy may be followed analytically to the very 
end. Consider an empty spherical cavity carved in a conductor with an initially uniform current flow 
with a constant density j0 = nzj0 (Fig. 7a). Following the hierarchy, we have to solve the boundary 
problem in the conducting part of the system, i.e. outside the sphere (at r  R), first. Since the problem is 
evidently axially symmetric, we already know the general solution of the Laplace equation – see Eq. 
(2.172). Moreover, we know that in order to match the uniform field distribution at r  , all 
coefficients al but one (a1 = –E0 = –j0/) have to be zero, and that the boundary conditions at r = R will 
give zero solutions for all coefficients bl  but one (b1), so 

     Rr
r

b
r

j
 for ,coscos

2
10 


 .    (4.24) 

In order to find the remaining coefficient b1, we have to use the boundary condition (20) at r = R: 

A,

'

0V

l

Fig. 4.6. (a) An elementary 
problem and (b) a (slightly) 
less obvious problem of the 
field distribution at dc 
current flow (schematically). '

(a)      (b) 

V
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E

E

E

E
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
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
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 
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r Rr .    (4.25) 

This gives b1 = –j0R
3/2, so, finally, 

    Rr
r

R
r

j
r 








 for  ,cos

2
),(

2

3
0 


 .   (4.26) 

(Note that this potential distribution corresponds to the dipole moment p = –E0R
3/2. It is straightforward 

to check that if the spherical cavity was cut in a dielectric, the potential distribution outside it would be 
similar, with p = –E0R

3( – 1)/( + 2). In the limit   , these two results coincide, despite the rather 
different type of the problem: in the dielectric case, there is no current at all.) 

 

 

 

 

 

 

 

 

 

 

 

 
 Now, as the second step in the conductivity hierarchy, we may find the electrostatic potential 
distribution (r,) in the insulator, in this particular case inside the empty cavity (at r  R). It should also 
satisfy the Laplace equation with the boundary values at r = R, “dictated” by the distribution (26): 

        


 cos
2

3
),( 0 R

j
R  .     (4.27) 

We could again solve this problem by the formal variable separation (keeping in the general solution 
(2.172) only the term proportional to al, which does not diverge at r  0), but if we notice that the 
boundary condition (27) depends on just one Cartesian coordinate, z = Rcos, the solution may be just 
guessed: 

             Rrr
j

z
j

r  at ,cos
2

3

2

3
),( 00 


 .   (4.28) 

Indeed, it evidently satisfies the Laplace equation and the boundary condition (27), and corresponds to a 
constant electric field parallel to the vector j0 and equal to 3j0/2 – see Fig. 7b. Again, the cavity surface 
is not equipotential, and the electric field lines at r  R are not normal to it at almost all points. 

 More generally, the conductivity hierarchy says that static electrical fields and charges outside 
conductors (e.g., electric wires) do not affect currents flowing in the wires, and it is physically very clear 

0j

R



z

0

Fig. 4.7. A spherical cavity carved in a uniform conductor: (a) the problem’s geometry, and (b) the 
equipotential surfaces as given by Eqs. (26) and (28). 

(a)        (b) 
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why. For example, if a charge in the free space is slowly moved close to a wire, it (in accordance with 
the linear superposition principle) only induces an additional surface charge (see Sec. 2.1) that screens 
the external charge’s field, without participating in the current flow inside the conductor. 

 Besides this conceptual issue, the two examples given above may be considered as applications 
of the first two methods discussed in Chapter 2 – the orthogonal coordinates (Fig. 6) and the variable 
separation (Fig. 7) – to dc current distribution problems. As the reader may recall, in that chapter we 
also discussed the method of charge images. It turns out that its analog may be also used for the solution 
of some dc conductivity problems. Indeed, let us consider a spherically-symmetric potential distribution 
of the electrostatic potential, similar to that given by the basic Eq. (1.35): 

      
r

c
 .      (4.29) 

As we know from Chapter 1, this is a particular solution of the 3D Laplace equation at all points but r = 
0. In free space, this distribution would correspond to a point charge q = 40c; but what about a 
uniform Ohmic conductor? Calculating the corresponding electric field and current density, 

     ,,
33

rEjrE
r

c

r

c        (4.30) 

we see that the total current flowing from the origin through a sphere of an arbitrary radius r does not 
depend on the radius: 

    .44 2 cjrAjI         (4.31) 

Plugging the resulting coefficient c into Eq. (29), we get 

          
r

I




4
 .      (4.32) 

 Hence the Coulomb-type distribution of the electric potential in a conductor is possible (at least 
at some distance from the singular point r = 0), and describes the dc current I flowing out of a small-size 
electrode – or into such an electrode if the coefficient c is negative. Such current injection may be 
readily implemented experimentally; think for example about an insulated wire with a small bare end, 
inserted into a poorly conducting soil – an important method in geophysical research. Such point 
injection is even simpler in 2D situations – think about a wire attached, within a small spot, to a thin 
resistive layer, such as the thin films used for wiring in microelectronics.15  

 Now let the current injection point r’ be close to a plane interface between the conductor and an 
insulator  (Fig. 8). In this case, besides the Laplace equation, we should satisfy the boundary condition, 

     0




n

Ej nn

 ,     (4.33) 

at the interface. It is clear that this can be done by replacing the insulator with an imaginary similar 
conductor with an additional current injection point, at the mirror image point r”. Note, however, that in 
contrast to charge images, the sign of the imaginary current has to be similar, not opposite, to the initial 
one, so the total electrostatic potential inside the conducting semi-space is 

15 Note that in such layers, the current distribution near the injection point is different, j   1/r  rather than 1/r2. 
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(The image current’s sign would be opposite at the interface between a conductor with moderate 
conductivity and a perfect conductor (“electrode”), whose potential should be virtually constant.) 

 

 

 

 

 

 
 
 
 This result may be readily used, for example, to calculate the current density at a plane surface of 
a uniform conductor, as a function of distance  from point 0 – the surface’s point closest to the current 
injection site – see Fig. 8. At such surface, Eq. (34) yields 
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so the current density is: 
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 Deviations from Eqs. (35) and (36) may be used to find and characterize conductance 
inhomogeneities, say, those due to mineral deposits in the Earth’s crust.16 

 So, the methods used in electrostatics to calculate the potential distribution in linear dielectrics 
may be also used to find such distributions in Ohmic conductors. Moreover, some of these methods are 
more valuable in this field. For example, in electrostatics, the effective methods of solution of the 2D 
Laplace equation, discussed in Secs. 2.3-2.6, could be only applied to cylindrical geometries. At Ohmic 
conduction, this equation is also valid in some 3D cases. A practically important example is the current 
flow in thin resistive layers where, due to the conductivity hierarchy principle, the 3D-distributed field 
outside a layer, induced by the 2D-distributed current in it, does not affect the flow and in many cases is 
not important. A few problems of this kind, formulated in Sec. 5, are left for the reader’s exercise. 

 

4.4. Energy dissipation 

Let me conclude this brief chapter with an ultra-short discussion of energy dissipation in 
conductors. In contrast to the electrostatic situations in insulators (vacuum or dielectrics), at dc 

16 The current injection may be also produced, due to electrochemical reactions, by an ore mass itself, so one need 
only measure (and correctly interpret :-) the resulting potential distribution – the so-called self-potential method – 
see, e.g., Sec. 6.1 in W. Telford et al., Applied Geophysics,  2nd ed., Cambridge U. Press, 1990. 

Fig. 4.8. Applying the method of images 
for the current injection analysis.  
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conduction, the electrostatic energy U is “dissipated” (i.e. transferred to heat) at a certain rate P  –
dU/dt, with the dimensionality of power.17 The rate of this energy dissipation may be evaluated by 
calculating the power of the electric field’s work on a single moving charge: 

vEvF  q1P .     (4.37) 

After the summation over all charges, Eq. (37) gives us the average power of energy dissipation. 
If the charge density n is uniform, multiplying by it both parts of this relation, and taking into account 
that qnv = j, for the energy dissipation rate in a unit volume we get the following Joule law18       

          jEvE  nqn
V

N

V 1
1 P

PP
p .    (4.38) 

In the case of the Ohmic conductivity (8), this expression may be also rewritten in two other forms: 




2
2 j

E p .     (4.39) 

With our electrostatics background, it is also straightforward (and hence left for the reader’s exercise) to 
prove that the dc current distribution in a uniform Ohmic conductor, at a fixed voltage distribution along 
its surface, corresponds to the minimum of the total dissipation in the sample, 

                     rdErd
VV

323   pP .     (4.40) 

  
           4.5. Exercise problems 

 4.1. DC voltage V0 is applied to the end of a semi-infinite 
chain of lumped Ohmic resistors, shown in the figure on the right. 
Calculate the voltage across the jth link of the chain. 

 
 4.2. It is well known that properties of many dc current sources (e.g., batteries) may be 
reasonably well represented as a connection in series of a perfect voltage source and an Ohmic internal 
resistance. Discuss the option, and possible advantages, of using a different equivalent circuit that 
would include a perfect current source. 
 
 4.3. Prove the following Rayleigh-Lorentz-Carson reciprocity 
relation: the results of the two separate experiments shown schematically 
in the figure on the right, with an arbitrary Ohmic conductor with four 
electrodes/terminals, are related as I1V2 = I2V1. 

 Hint: Try to apply the same approach as was used to prove Green’s 
reciprocity relation of electrostatics in Problem 1.18, but with proper 
modifications.  

17 If this electric field and hence the electrostatic energy are time-independent, the energy is replenished at the 
same rate from the current source(s). 
18 Named after James Prescott Joule, who quantified this effect in 1841. 
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 4.4. Calculate the resistance between two large uniform Ohmic 
conductors separated by a very thin, plane, insulating partition with a 
circular hole of radius R in it  – see the figure on the right. 

 Hint: You may like to use the oblate spheroidal coordinates that 
were discussed in Sec. 2.4. 
 
  
 4.5. A very narrow plane crack inside a round conducting wire of 
radius R does not reach its surface by a small distance w – see the figure 
on the right. Assuming that the Ohmic conductivity  of the wire’s 
material is otherwise constant, calculate the electric resistance of the 
obstacle in the first approximation in small w/R << 1. 

 Hint: You may like to use the same elliptic coordinates as were 
employed at the solution of Problem 2.12. 
 
  
 4.6. Calculate the effective (average) conductivity ef of a 
medium with many empty spherical cavities of radius R, carved at 
random positions in a uniform Ohmic conductor (see the figure on the 
right), in the limit of a low density n << R–3 of the cavities. 

 Hint: You may like to use the analogy with an electric-dipole 
medium – see, e.g., Sec. 3.2. 

4.7. In two separate experiments, a narrow gap, possibly of irregular width, between two close, 
perfectly conducting electrodes is filled with some material: in the first case, a uniform linear dielectric 
with an electric permittivity , and in the second case, a uniform conducting material with an Ohmic 
conductivity . Neglecting the fringe effects, calculate the relation between the mutual capacitance C 
between the electrodes (in the first case) and the dc resistance R between them (in the second case). 
 
 
 
 4.8. Calculate the voltage V across a uniform, wide resistive 
slab of thickness t, at distance  from the points of injection/pickup of 
the dc current I passed across the slab – see the figure on the right. 
 
 
 
 
 4.9. Calculate the distribution of the dc current’s density in a thin, round, 
uniform resistive disk, if the current is inserted into some point at the disk’s rim, 
and picked up in its center – see the figure on the right. 
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 4.10. DC current is passed between two point electrodes 
connected to a wide, thin, uniform resistive sheet – see the figure on 
the right. Use the model solution of the previous problem to prove, 
without much new calculation, that cutting a round hole in the sheet 
(outside of the current injection/extraction points) doubles the voltage 
between any two points on its border. 
 

 4.11. The rim of a hemispherical thin shell, of radius R and 
thickness t << R, made of a uniform Ohmic conductor, is connected to a 
plane ground electrode. Calculate the distribution of the electrostatic 
potential created in the shell by a dc current I injected into it through a 
small-size electrode located at a polar angle ’ < /2 from the symmetry 
axis – see the figure on the right.  

 Hint: You may like to use the variable substitution   tan(/2) to map the hemisphere onto a 
unit circle. 
 
 4.12. A rectangle of area lw is cut from a uniform resistive sheet 
of thickness t << l, w. Use two different approaches to calculate the 
voltage V between its two adjacent corners, induced by the dc current I 
passed between the two other corners – see the figure on the right.  

 Hint: Besides the charge/current image method, you may like to 
consider using the variable separation method, with due respect to the 
current injection/extraction points. 
  
 4.13.* The simplest reasonable model of a vacuum diode consists of two parallel planar metallic 
electrodes of area A, separated by a gap of thickness d << A1/2: a “cathode” that emits electrons into the 
gap, and an “anode” that absorbs the electrons arriving from the gap at its surface. Calculate the dc I-V 
curve of the diode, i.e. the relation between the average current I flowing between the electrodes and the 
dc voltage V applied between them, using the following simplifying assumptions: 

 (i) due to the effect of the negative space charge of the emitted electrons, the current I is much 
lower than the emission ability of the cathode,  
 (ii) the initial velocity of the emitted electrons is negligible, and 
 (iii) the direct Coulomb interaction of electrons (besides the space charge effect) is negligible. 
 
 4.14.*  Calculate the space-charge-limited current in a system with the same geometry as in the 
previous problem, and using the same assumptions besides that now the emitted charge carriers do not 
fly ballistically, but rather drift in accordance with the Ohm law, with the conductivity given by Eq. 
(13):  = q2n, with a constant mobility .19 

 Hint: In order to get a realistic result, assume that the medium in which the charge carriers move 
has a certain dielectric constant  unrelated to the carriers. 

19 As was mentioned in Sec. 2, the approximation of a constant (in particular, field- and charge-density-
independent) mobility is most suitable for semiconductors. 
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 4.15. Prove that the distribution of dc currents in a uniform Ohmic conductor with a given 
voltage distribution along its surface corresponds to the minimum of the total energy dissipation rate 
(“Joule heat”). 
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Chapter 5. Magnetism 

Even though this chapter addresses a completely new type of electric charge interaction, its discussion 
(for the stationary case) will take not too much time/space, because it recycles many ideas and methods 
of electrostatics, though with a twist or two. 

 

5.1. Magnetic interaction of currents 

 DC currents in conductors usually leave them electroneutral, (r) = 0, with very good precision, 
because even a minute imbalance of positive and negative charge density results in extremely strong 
Coulomb forces that restore the electroneutrality by a very fast additional shift of free charge carriers. 
This is why let us start the discussion of magnetism from the simplest case of two spatially separated, 
dc-current-carrying, electroneutral conductors (Fig. 1).  

 

 

 

 

 

 

 According to the Coulomb law, there is no electrostatic force between them. However, several 
experiments carried out in 18201 proved that there is a different, magnetic interaction between the 
currents. In the present-day notation, the results of all such experiments may be summarized with just 
one formula, in SI units expressed as 
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Here the coefficient 0/4 (where 0 is called either the magnetic constant or the free space 
permeability) equals almost exactly 10-7 SI units, with the product 00 equal to exactly 1/c2. 2 

1 Most notably, by Hans Christian Ørsted who discovered the effect of electric currents on magnetic needles, and 
André-Marie Ampère who extended this work by finding the magnetic interaction between two currents.  
2 For details, see Appendix UCA: Selected Units and Constants. In the Gaussian units, the coefficient 0/4 in 
Eq. (1) and beyond is replaced with 1/c2. 

 Note a close similarity of this expression to the Coulomb law (1.1) rewritten for  the interaction 
of two continuously distributed charges, with the account of the linear superposition principle (1.4): 
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Besides the different coefficient and a different sign, the “only” difference of Eq. (1) from Eq. (2) is the 
scalar product of the current densities, evidently necessary because of their vector character. We will see 
soon that this difference brings certain complications in applying the approaches discussed in the 
previous chapters, to magnetostatics.  

 Before going to their discussion, let us have one more glance at the coefficients in Eqs. (1) and 
(2). To compare them, let us consider two objects with uncompensated charge distributions (r) and 
’(r), moving parallel to each other with certain velocities v and v’, as measured in the same inertial 
(“laboratory”) reference frame. In this case, j(r) = (r)v, so j(r)j’(r) = (r)’(r)vv’, and the integrals in 
Eqs. (1) and (2) become functionally similar, differing only by the factor 
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.    (5.3) 

(The last expression is valid in any consistent system of units.) We immediately see that magnetism is 
an essentially relativistic phenomenon, very weak in comparison with the electrostatic interaction at the 
human scale velocities, v << c, and may dominate only if the latter interaction vanishes – as it does in 
electroneutral systems.3 The discovery and initial studies4 of such a subtle, relativistic phenomenon as 
magnetism were much facilitated by the relative abundance of natural ferromagnets: materials with a 
spontaneous magnetic polarization, whose strong magnetic field is due to relativistic effects (such as 
spin) inside the constituent atoms – see Sec. 5 below. 

 Also, Eq. (3) points to an interesting paradox. Consider two electron beams moving parallel to 
each other, with the same velocity v with respect to a lab reference frame. Then, according to Eq. (3), 
the net force of their total (electric plus magnetic) interaction is proportional to (1 – v2/c2), tending to 
zero in the limit v  c. However, in the reference frame moving together with the electrons, they are not 
moving at all, i.e. v = 0. Hence, from the point of view of such a moving observer, the electron beams 
should interact only electrostatically, with a repulsive force independent of the velocity v. Historically, 
this had been one of several paradoxes that led to the development of special relativity; its resolution 
will be discussed in Chapter 9 devoted to this theory. 

 Returning to Eq. (1), in some simple cases the double integration in it may be carried out 
analytically. First of all, let us simplify this expression for the case of two thin, long conductors 
(“wires”) separated by a distance much larger than their thickness. In this case, we may integrate the 
products jd3r and j’d3r’ over the wires’ cross-sections first, neglecting the corresponding change of the 
factor (r – r’). Since the integrals of the current density over the cross-sections of the wires are just the 
currents I and I’ flowing in the wires, and cannot change along their lengths (say, l and l’, respectively), 
they may be taken out of the remaining integrals, reducing Eq. (1) to 
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3 An important case when the electroneutrality may not hold is the motion of electrons in free space. (However, in 
this case, the electron speed is often comparable with the speed of light, so the magnetic forces may be 
comparable in strength with electrostatic forces, and hence important.) Minor local violations of electroneutrality 
also play an important role in some semiconductor devices – see, e.g., SM Chapter 6. 
4 The first detailed book on this subject, De Magnete by William Gilbert (a.k.a. Gilberd), was published as early 
as 1600. 
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As the simplest example, consider two straight, parallel wires (Fig. 2) separated by distance d, 
both with length l  >> d.  

 

 

 

 

 

 

 

Due to the symmetry of this system, the vector of the magnetic interaction force has to: 

(i) lie in the same plane as the currents, and  
(ii) be normal to the wires – see Fig. 2. 

Hence we may limit our calculations to just one component of the force – normal to the wires. Using the 
fact that with the coordinate choice shown in Fig. 2, the scalar product drdr’ is just dxdx’, we get 
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Now introducing, instead of x’, a new, dimensionless variable   (x – x’)/d, we may reduce the internal 
integral to a table one, which we have already encountered in this course: 
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The integral over x formally diverges, but it gives a finite interaction force per unit length of the wires: 
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Note that the force drops rather slowly (only as 1/d) as the distance d  between the wires is increased, 
and is attractive (rather than repulsive as in the Coulomb law) if the currents are of the same sign. 

 This is an important result,5 but again, the problems so simply solvable are few and far between, 
and it is intuitively clear that we would strongly benefit from the same approach as in electrostatics, i.e., 
from decomposing Eq. (1) into a product of two factors via the introduction of a suitable field. Such 
decomposition may be done as follows: 

        
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rd 3)()( rBrjF ,     (5.8) 

5 In particular, until very recently (2018), Eq. (7) was used for the legal definition of the SI unit of current, the 
ampere (A), via the SI unit of force (the newton, N), with the coefficient 0 considered exactly fixed. (A brief 
description of the recent changes in legal metrology is given in Appendix UCA.) 
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where the vector B is called the magnetic field.6  In the case when it is induced by the current j’:  
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The last relation is called the Biot-Savart law,7 while the force F expressed by Eq. (8) is sometimes 
called the Lorentz force.8 However, more frequently the latter term is reserved for the full force,  

       BvEF  q ,     (5.10) 

exerted by electric and magnetic fields field on a point charge q, moving with velocity v.9 

Now we have to prove that the new formulation, given by Eqs. (8)-(9), is equivalent to Eq. (1). 
At first glance, this seems unlikely. Indeed, first of all, Eqs. (8) and (9) involve vector products, while 
Eq. (1) is based on a scalar product. More profoundly, in contrast to Eq. (1), Eqs. (8) and (9) do not 
satisfy the 3rd Newton’s law applied to elementary current components jd3r and j’d3r’, if these vectors 
are not parallel to each other. Indeed, consider the situation shown in Fig. 3.  

 

 

 

 

Here the vector j’ is perpendicular to the vector (r – r’), and hence, according to Eq. (9), 
produces a non-zero contribution dB’ to the magnetic field directed (in Fig. 3) normally to the plane of 
the drawing, i.e. perpendicular to the vector j. Hence, according to Eq. (8), this field provides a non-zero 
contribution to F. On the other hand, if we calculate the reciprocal force F’ by swapping the prime 
indices in Eqs. (8) and (9), the latter equation immediately shows that dB(r’)  j(r’ – r) = 0, because 
the two operand vectors are parallel – see Fig. 3 again. Hence, the current component j’d3r’ does exert a 
force on its counterpart, while jd3r does not.  

6 The SI unit of the magnetic field is called tesla (T) – after Nikola Tesla, a pioneer of electrical engineering. In 
the Gaussian units, the already discussed constant 1/c2 in Eq. (1) is equally divided between Eqs. (8) and (9), so in 
them both, the constant before the integral is 1/c. The resulting Gaussian unit of the field B is called gauss (G); 
taking into account the difference of units of electric charge and length, and hence of the current density, 1 G 
equals exactly 10-4 T. Note also that in some textbooks, especially old ones, B is called either the magnetic 
induction or the magnetic flux density, while the term “magnetic field” is reserved for the field H that will be 
introduced in Sec. 5 below.  
7 Named after Jean-Baptiste Biot and Félix Savart who made several key contributions to the theory of magnetic 
interactions – in the same notorious 1820. 
8 Named after Hendrik Antoon Lorentz, famous mostly for his numerous contributions to the development of 
special relativity – see Chapter 9 below. To be fair, the magnetic part of the Lorentz force was implicitly 
described in a much earlier (1865) paper by J. C. Maxwell and then spelled out by Oliver Heaviside (another 
genius of electrical engineering – and mathematics!) in 1889, i.e. also before the 1895 work by H. Lorentz. 
9 From the magnetic part of Eq. (10), Eq. (8) may be derived by the elementary summation of all forces acting on 
n >> 1 particles in a unit volume, with j = qnv – see the footnote on Eq. (4.13a). On the other hand, the reciprocal 
derivation of Eq. (10) from Eq. (8) with j = qv(r – r0), where r0 is the current particle’s position (so dr0/dt = v), 
requires certain mathematical care and will be performed in Chapter 9.  
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 Fig. 5.3. The apparent violation of the 
3rd Newton law in magnetism. 
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Despite this apparent problem, let us still go ahead and plug Eq. (9) into Eq. (8): 
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This double vector product may be transformed into two scalar products, using the vector algebraic 
identity called the bac minus cab rule, a(bc) = b(ac) – c(ab).10 Applying this relation, with a = j, b 
= j’, and c = R  r – r’, to Eq. (11), we get 
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The second term on the right-hand side of this equality coincides with the right-hand side of Eq. (1), 
while the first term equals zero because its internal integral vanishes. Indeed, we may break the volumes 
V and V’ into narrow current tubes – the stretched elementary volumes whose walls are not crossed by 
current lines (so on their walls, jn = 0). As a result, the elementary current in each tube, dI = jdA = jd2r, 
is the same along its length, and, just as in a thin wire, jd2r may be replaced with dIdr, with the vector 
dr directed along j. Because of this, each tube’s contribution to the internal integral in the first term of 
Eq. (12) may be represented as 
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where the operator  acts in the r-space, and the integral is taken along the tube’s length l. Due to the 
current continuity expressed by Eq. (4.6), each loop should follow a closed contour, and an integral of a 
full differential of some scalar function (in our case, of 1/R) along such contour equals zero.  

 So we have recovered Eq. (1). Returning for a minute to the paradox illustrated in Fig. 3, we may 
conclude that the apparent violation of the 3rd Newton law was the artifact of our interpretation of Eqs. 
(8) and (9) as the sums of independent elementary components. In reality, due to the dc current 
continuity, these components are not independent. For the whole currents, Eqs. (8)-(9) do obey the 3rd 
law – as follows from their already proved equivalence to Eq. (1).  

 Thus it is possible to break the magnetic interaction into two effects: the induction of the 
magnetic field B by one current (in our notation, j’), and the effect of this field on the other current (j). 
Now comes an additional experimental fact: other elementary components jd3r’ of the current j(r) also 
contribute to the magnetic field (9) acting on the component jd3r.11 This fact allows us to drop the prime 
sign after j in Eq. (9), and rewrite Eqs. (8) and (9) as 
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10 See, e.g., MA Eq. (7.5). 
11 Just as in electrostatics, one needs to exercise due caution in transforming these expressions for the limit of 
discrete classical particles, and extended wavefunctions in quantum mechanics, to avoid the (non-existing) 
magnetic interaction of a charged particle with itself.  
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Again,  the field observation point r and the field source point r’ have to be clearly distinguished. We 
immediately see that these expressions are close to, but still different from the corresponding relations of 
the electrostatics, namely Eq. (1.9) and the distributed-charge version of Eq. (1.6):  
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             rd
V

3)()( rErF    .      (5.17) 

(Note that the sign difference has disappeared, at the cost of the replacement of scalar-by-vector 
multiplications in electrostatics with cross-products of vectors in magnetostatics.) 

 For the frequent particular case of a thin wire of length l’, Eq. (14) may be re-written as 
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Let us see how this formula works for the simplest case of a straight wire (Fig. 4a). The magnetic field 
contributions dB due to all small fragments dr’ of the wire’s length are directed along the same line 
(perpendicular to both the wire and the shortest distance d from the observation point to the wire’s line), 
and its magnitude is 
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Summing up all such elementary contributions, we get 
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 This is a simple but important result. (Note that it is only valid for very long (l >> d), straight 
wires.) It is especially crucial to note the “vortex” character of the field: its lines go around the wire, 
forming rings with the centers on the current line. This is in sharp contrast to the electrostatic field lines, 
which can only begin and end on electric charges and never form closed loops (otherwise the Coulomb 
force qE would not be conservative). In the magnetic case, the vortex structure of the field may be 
reconciled with the potential character of the magnetic forces, which is evident from Eq. (1), due to the 
vector products in Eqs. (14)-(15). 

Fig. 5.4. Calculating magnetic fields: (a) of a straight current, and (b) of a current loop. 
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 Now we may readily use Eq. (15), or rather its thin-wire version 

      )(rBrF  
l

dI ,     (5.21) 

to apply Eq. (20) to the two-wire problem (Fig. 2). Since for the second wire, the vectors dr and B are 
perpendicular to each other, we immediately arrive at our previous result (7), which was obtained 
directly from Eq. (1). 

 The next important example of the application of the Biot-Savart law (14) is the magnetic field at 
the axis of a circular current loop (Fig. 4b). Due to the problem’s symmetry, the net field B has to be 
directed along the axis, but each of its elementary components dB is tilted by the angle   = tan-1(z/R) to 
this axis, so its axial component is  
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Since the denominator of this expression remains the same for all wire components dr’, the integration 
over r’ is easy (dr’ = 2R), giving finally 
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.     (5.23) 

Note that the magnetic field in the loop’s center (i.e., for z = 0), 

           
R

I
B

2
0 ,      (5.24) 

is   times higher than that due to a similar current in a straight wire, at the distance d  = R from it. This 
difference is readily understandable, since all elementary components of the loop are at the same 
distance R from the observation point, while in the case of a straight wire, all its points but one are 
separated from the observation point by distances larger than d. 

 Another notable fact is that at large distances (z2 >> R2), the field (23) is proportional to z-3:  
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,    (5.25) 

where A = R2 is the loop area. Comparing this expression with Eq. (3.13), for the particular case  = 0, 
we see that such field is similar to that of an electric dipole (at least along its direction), with the 
replacement of the electric dipole moment magnitude p with the m so defined – besides the front factor. 
Indeed, such a plane current loop is the simplest example of a system whose field, at distances much 
larger than R, is that of a magnetic dipole, with a dipole moment m – the notions to be discussed in 
much more detail in Sec. 4 below.  

 

5.2. Vector potential and the Ampère law 

 The reader could see that the calculations of the magnetic field using Eq. (14) or (18) are still 
somewhat cumbersome even for the very simple systems we have examined. As we saw in Chapter 1, 
similar calculations in electrostatics, at least for several important highly symmetric systems, could be 
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substantially simplified using the Gauss law (1.16). A similar relation exists in magnetostatics as well, 
but has a different form, due to the vortex character of the magnetic field.  

 To derive it, let us notice that in an analogy with the scalar case, the vector product under the 
integral (14) may be transformed as 
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where the operator  acts in the r-space. (This equality may be readily verified by Cartesian 
components, noticing that the current density is a function of r’ and hence its components are 
independent of r.) Plugging Eq. (26) into Eq. (14), and moving the operator  out of the integral over r’, 
we see that the magnetic field may be represented as the curl of another vector field – the so-called 
vector potential, defined as:12 

                )()( rArB   ,     (5.27) 
and in our current case equal to  
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Please note a beautiful analogy between Eqs. (27)-(28) and, respectively, Eqs. (1.33) and (1.38).13 This 
analogy implies that the vector potential A plays, for the magnetic field, essentially the same role as the 
scalar potential   plays for the electric field (hence the name “potential”), with due respect to the vortex 
character of B. This notion will be discussed in more detail below. 

 Now let us see what equations we may get for the spatial derivatives of the magnetic field. First, 
vector algebra says that the divergence of any curl is zero.14 In application to Eq. (27), this means that 

          0B .      (5.29) 

Comparing this equation with Eq. (1.27), we see that Eq. (29) may be interpreted as the absence of a 
magnetic analog of an electric charge, on which magnetic field lines could originate or end. Numerous 
searches for such hypothetical magnetic charges, called magnetic monopoles, using very sensitive and 
sophisticated experimental setups,15 have not given any reliable evidence of their existence in Nature. 

 Proceeding to the alternative, vector derivative of the magnetic field, i.e. to its curl, and using 
Eq. (28), we obtain 
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This expression may be simplified by using the following general vector identity:16 

                     ccc 2  ,     (5.31) 

applied to vector c(r)  j(r’)/r – r’: 

12 In the Gaussian units, Eq. (27) remains the same, and hence in Eq. (28), 0/4  is replaced with 1/c. 
13 In Eq. (1.38), there was no real need for the additional clarification provided by the integration volume label V’. 
14 See, e.g., MA Eq. (11.2). 
15 For a recent example, see B. Acharya et al., Nature 602, 63 (2022). 
16 See, e.g., MA Eq. (11.3). 
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As was already discussed during our study of electrostatics in Sec. 3.1, 
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so the last term of Eq. (32) is just 0j(r). On the other hand, inside the first integral, we can replace  
with (–’), where prime means the differentiation in the space of the radius vectors r’. Integrating that 
term by parts, we get 
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Applying this equality to the volume V’ limited by a surface S’ either sufficiently distant from the field 
concentration or with no current crossing it, we may neglect the first term on the right-hand side of Eq. 
(34), while the second term always equals zero in statics, due to the dc charge continuity – see Eq. (4.6). 
As a result, we arrive at a very simple differential equation17 

        jB 0 .      (5.35) 

 This is (the dc form of) the inhomogeneous Maxwell equation – which in magnetostatics plays a 
role similar to Eq. (1.27) in electrostatics. Let me display, for the first time in this course, this 
fundamental system of equations (at this stage, for statics only), and give the reader a minute to stare, in 
silence, at their beautiful symmetry – which has inspired so much of the later development of physics: 
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Their only asymmetry, two zeros on the right-hand sides (for the magnetic field’s divergence and 
electric field’s curl), is due to the absence in the Nature of magnetic monopoles and their currents. I will 
discuss these equations in more detail in Sec. 6.7, after the first two equations (for the fields’ curls) have 
been generalized to their full, time-dependent versions.  

 Returning now to our current, more mundane but important task of calculating the magnetic field 
induced by simple current configurations, we can benefit from an integral form of Eq. (35). For that, let 
us integrate this equation over an arbitrary surface S limited by a closed contour C, and apply to the 
result the Stokes theorem.18 The resulting expression, 

       Irdjd
C S

n 0
2

0   rB ,     (5.37) 

where I  is the net electric current crossing surface S, is called the Ampère law. 

17 As in all earlier formulas for the magnetic field, in the Gaussian units, the coefficient 0 in this relation is 
replaced with 4/c. 
18 See, e.g., MA Eq. (12.1) with f = B. 
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 As the first example of its application, let us return to the current in a straight wire (Fig. 4a). 
With the Ampère law in our arsenal, we can readily pursue an even more ambitious goal than that 
achieved in the previous section, namely to calculate the magnetic field both outside and inside of a wire 
of an arbitrary radius R, with an arbitrary (albeit axially-symmetric) current distribution j() – see Fig. 5.  

 

 

 

 

 

 

 

 
 Selecting the Ampère-law contour C in the form of a ring of some radius in the plane normal to 
the wire’s axis z, we have Bdr = Bd, where  is the azimuthal angle, so Eq. (37) yields: 
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   (5.38) 

Thus we have not only recovered our previous result (20), with the notation replacement d  , in a 
much simpler way but also have been able to calculate the magnetic field’s distribution inside the wire. 
In the most common particular case when the current is uniformly distributed along its cross-section,  
j() = const, the first of Eqs. (38) immediately yields B    for   R. 

 Another important system is a straight, long solenoid (Fig. 6a), with dense winding: n2A >> 1, 
where n is the number of wire turns per unit length, and A is the area of the solenoid’s cross-section. 

 

 

 

 

 

 

 

 
 
From the symmetry of this problem, the longitudinal (in Fig. 6a, vertical) component Bz of the 

magnetic field may only depend on the distance  of the observation point from the solenoid’s axis. First 
taking a plane Ampère contour C1, with both long sides outside the solenoid, we get Bz(2) – Bz(1) = 0, 

Fig. 5.5. The simplest application of the Ampère 
law: the magnetic field of a straight current. 
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Fig. 5.6. Calculating 
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because the total current piercing the contour equals zero. This is only possible if Bz = 0 at any  outside 
of the solenoid, provided that it is infinitely long.19 With this result on hand, from the Ampère law 
applied to the contour C2, we get the following relation for the only (z-) component of the internal field: 

      NIBl 0 ,      (5.39) 

where N is the number of wire turns passing through the contour of length l. This means that regardless 
of the exact position of the internal side of the contour, the result is the same: 

              nII
l

N
B 00   .     (5.40) 

Thus, the field inside an infinitely long solenoid (with an arbitrary shape of its cross-section) is uniform; 
in this sense, a long solenoid is a magnetic analog of a wide plane capacitor, explaining why this system 
is so widely used in physical experiment. 

 As should be clear from its derivation, the obtained results, especially that the field outside of the 
solenoid equals zero, are conditional on the solenoid length being very large in comparison with its 
lateral size. (From Eq. (25), we may predict that for a solenoid of a finite length l, the close-range 
external field is a factor of ~A/l2 lower than the internal one.) A much better suppression of such 
“fringe” fields may be obtained using toroidal solenoids (Fig. 6b). The application of the Ampère law to 
this geometry shows that in the limit of dense winding (N >> 1), there is no fringe field at all (for any 
relation between the two radii of the torus), while inside the solenoid, at distance  from the system’s 
axis, 

        



2

0 NI
B  .      (5.41) 

We see that a possible drawback of this system for practical applications is that the internal field does 
depend on , i.e. is not quite uniform; however, if the torus is relatively thin, this deficiency is minor. 

 Next let us discuss a very important question: how can we solve the problems of magnetostatics 
for systems whose low symmetry does not allow getting easy results from the Ampère law? (The 
examples are of course too numerous to list; for example, we cannot use this approach even to reproduce 
Eq. (23) for a round current loop.) From the deep analogy with electrostatics, we may expect that in this 
case, we could calculate the magnetic field by solving a certain boundary problem for the field’s 
potential – in our current case, the vector potential A defined by Eq. (28). However, despite the 
similarity of this formula and Eq. (1.38) for , which was noticed above, there is an additional issue we 
should tackle in the magnetic case – besides the obvious fact that calculating the vector potential 
distribution means determining three scalar functions (say, Ax, Ay, and Az), rather than just one ().  

 To reveal the issue, let us plug Eq. (27) into Eq. (35): 

                jA 0  ,     (5.42) 

and then apply to the left-hand side of this equation the same identity (31). The result is 

19 Applying the Ampère law to a circular contour of radius , coaxial with the solenoid, we see that the field 
outside (but not inside!) it has an azimuthal component B, similar to that of the straight wire (see Eq. (38) above) 
and hence (at N >> 1) much weaker than the longitudinal field inside the solenoid – see Eq. (40). 
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          jAA 0
2)(  .     (5.43) 

On the other hand, as we know from electrostatics (please compare Eqs. (1.38) and (1.41)), the vector 
potential A(r) given by Eq. (28) has to satisfy a simpler (“vector-Poisson”) equation 

         jA 0
2  ,     (5.44) 

which is just a set of three usual Poisson equations for each Cartesian component of A. 

 To resolve the difference between these results, let us note that Eq. (43) is reduced to Eq. (44) if 
A = 0. In this context, let us discuss what discretion we have in the choice of the potential. In 
electrostatics, we may add, to the scalar function ’ that satisfies Eq. (1.33) for the given field E, not 
only an arbitrary constant but even an arbitrary function of time: 

          E 'tf'   )( .     (5.45) 

Similarly, using the fact that the curl of the gradient of any scalar function equals zero,20 we may add to 
any vector function A’ that satisfies Eq. (27) for the given field B, not only any constant but even a 
gradient of an arbitrary scalar function (r, t), because 

            BAAA  '''  )()(  .   (5.46) 

Such additions, which keep the fields intact, are called gauge transformations.21 Let us see what such a 
transformation does to A’: 
      2)(  '' AA  .    (5.47) 

For any choice of such a function A’, we can always choose the function  in such a way that it satisfies 
the Poisson equation 2 = –A’, and hence makes the divergence of the transformed vector potential, 
A  A’ + , equal to zero everywhere, 

          0A ,      (5.48) 
thus reducing Eq. (43) to Eq. (44). 

 To summarize, the set of distributions A’(r) that satisfy Eq. (27) for a given field B(r), is not 
limited to the vector potential A(r) given by Eq. (44), but is reduced to it upon the additional Coulomb 
gauge condition (48). However, as we will see in a minute, even this condition still leaves some degrees 
of freedom in the choice of the vector potential. To illustrate this fact, and also to get a better gut feeling 
of the vector potential’s distribution in space, let us calculate A(r) for two very basic cases. 

 First, let us revisit the straight wire problem shown in Fig. 5. As Eq. (28) shows, in this case the 
vector potential A has just one component (along the axis z). Moreover, due to the problem’s axial 
symmetry, its magnitude may only depend on the distance from the axis: A = nzA(). Hence, the 
gradient of A is directed across the z-axis, so Eq. (48) is satisfied at all points. For our symmetry (/ = 
/z = 0), the Laplace operator, written in cylindrical coordinates, has just one term,22 reducing Eq. (44) 
to 

20 See, e.g., MA Eq. (11.1). 
21 The use of the term “gauge” (originally meaning “a measure” or “a scale”) in this context is purely historic, so 
the reader should not try to find too much hidden sense in it. 
22 See, e.g., MA Eq. (10.3). 
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Multiplying both sides of this equation by  and integrating them over the coordinate once, we get 

              const)(
0

0  





 ''d'j
d

dA
.    (5.50) 

Since in the cylindrical coordinates, for our symmetry, B = –dA/d,23 Eq. (50) is nothing else than our 
old result (38) for the magnetic field.24 However, let us continue the integration, at least for the region 
outside the wire, where the function A() depends only on the full current I rather than on the current 
distribution. Dividing both parts of Eq. (50) by , and integrating them over this argument again, we get 

        RdjI
I

A
R

  



 for  ,)(2  whereconst,ln

2 0

0 .  (5.51) 

As a reminder, we had similar logarithmic behavior for the electrostatic potential outside a uniformly 
charged straight line. This is natural because the Poisson equations for both cases are similar. 

 Now let us find the vector potential for the long solenoid (Fig. 6a), with its uniform magnetic 
field. Since Eq. (28) tells us that the vector A should follow the direction of the inducing current, we 
may start by looking for it in the form A = n A(). (This is especially natural if the solenoid’s cross-
section is circular.) With this orientation of A, the same general expression for the curl operator in 
cylindrical coordinates yields  A = nz(1/)d(A)/d. According to Eq. (27), this expression should be 
equal to B – in our current case to nzB, with a constant B – see Eq. (40). Integrating this equality, and 
selecting such integration constant that A(0) is finite, we get  

               
 nA
2

  i.e.,
2

BB
A  .    (5.52) 

Plugging this result into the general expression for the Laplace operator in the cylindrical coordinates,25 
we see that the Poisson equation (44) with j = 0 (i.e. the Laplace equation) is satisfied again – which is 
natural since, for this distribution, the Coulomb gauge condition (48) is satisfied: A = 0.  

 However, Eq. (52) is not the unique (or even the simplest) vector potential that gives the same 
uniform field B = nzB. Indeed, using the well-known expression for the curl operator in Cartesian 
coordinates,26 it is straightforward to check that each of the vector functions A’ = nyBx and A”= –nxBy 
also has the same curl, and also satisfies the Coulomb gauge condition (48).27 If such solutions do not 
look very natural because of their anisotropy in the [x, y] plane, please consider the fact that they 
represent the uniform magnetic field regardless of its source – for example, regardless of the shape of 
the long solenoid’s cross-section. Such choices of the vector potential may be very convenient for some 

23 See, e.g., MA Eq. (10.5) with / = /z = 0. 
24 Since the magnetic field at the wire’s axis has to be zero (otherwise, being normal to the axis, where would it 
be directed?), the integration constant in Eq. (50) has to equal zero. 
25 See, e.g., MA Eq. (10.6). 
26 See, e.g., MA Eq. (8.5). 
27 The axially symmetric vector potential (52) is just a weighed sum of these two functions: A = (A’ + A”)/2. 
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problems, for example for the quantum-mechanical analysis of the 2D motion of a charged particle in 
the perpendicular magnetic field, giving the famous Landau energy levels.28 

 

5.3. Magnetic energy, flux, and inductance 

 Considering the currents flowing in a system as generalized coordinates, the magnetic forces (1) 
between them are their unique functions, and in this sense, the energy U of their magnetic interaction 
may be considered the potential energy of the system. The apparent (but somewhat deceptive) way to 
derive an expression for this energy is to use the analogy between Eq. (1) and its electrostatic analog, 
Eq. (2). Indeed, Eq. (2) may be transformed into Eq. (1) with just three replacements: 

 (i) (r)’(r’) should be replaced with [j(r)j’(r’)], 

 (ii) 0 should be replaced with 1/0, and  

 (iii) the sign before the double integral has to be replaced with the opposite one. 

Hence we may avoid repeating the calculation made in Chapter 1, by making these replacements in Eq. 
(1.59), which gives the electrostatic potential energy of the system with (r) and ’(r’) describing the 
same charge distribution, i.e. with ’(r) = (r), to get the following expression for the magnetic 
potential energy in the system with, similarly, j’(r) = j(r):29  
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 But this is not the unique answer! Indeed, Eq. (53) describes the proper potential energy of the 
system (in particular, giving the correct result for the current interaction forces) only in the case when 
the interacting currents are fixed – just as Eq. (1.59) is adequate when the interacting charges are fixed. 
Here comes a substantial difference between electrostatics and magnetostatics: due to the fundamental 
fact of electric charge conservation (already discussed in Secs. 1.1 and 4.1), keeping electric charges 
fixed does not require external work, while the maintenance of currents generally does. As a result, Eq. 
(53) describes the energy of the magnetic interaction plus of the system keeping the currents constant – 
or rather of its part depending on the system under our consideration. In this situation, using the 
terminology already used in Sec. 3.5 (see also a general discussion in CM Sec. 1.4.), Uj may be called 
the Gibbs potential energy of our magnetic system.  

 Now to exclude from Uj the contribution due to the interaction with the current-supporting 
system(s), i.e. calculate the potential energy U of our system as such, we need to know this contribution. 
The simplest way to do this is to use the Faraday induction law that describes this interaction and will 
be discussed at the beginning of the next chapter. This is why let me postpone the derivation until that 
point, and for now, ask the reader to believe me that the removal of the interaction leads to an 
expression similar to Eq. (53), but with the opposite sign:   
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,    (5.54) 

28 See, e.g., QM Sec. 3.2. 
29 Just as in electrostatics, for the interaction of two independent current distributions j(r) and j’(r’), the factor ½ 
should be dropped. 
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I will prove this result in Sec. 6.2, but actually, this sign dichotomy should not be quite surprising to the 
attentive reader, in the context of a similar duality of Eqs. (3.73) and (3.81) for the electrostatic energies 
including and excluding the interaction with the field source. 

Due to the importance of Eq. (54), let us rewrite it in several other forms, convenient for various 
applications. First of all, just as in electrostatics, it may be recast into a potential-based form. Indeed, 
with the definition (28) of the vector potential A(r), Eq. (54) becomes 

             rdU 3)()(
2

1
rArj .      (5.55) 

This formula, which is a clear magnetic analog of Eq. (1.60) of electrostatics, is very popular among 
field theorists, because it is very handy for their manipulations; it is also useful for some practical 
applications. However, for many calculations, it is more convenient to have a direct expression of the 
energy via the magnetic field. Again, this may be done very similarly to what had been done for 
electrostatics in Sec. 1.3, i.e. by plugging into Eq. (55) the current density expressed from Eq. (35) and 
then transforming it as30 
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. (5.56) 

Now using the divergence theorem, the second integral may be transformed into a surface integral of 
(AB)n. According to Eqs. (27)-(28) if the current distribution j(r) is localized, this vector product 
drops, at large distances, faster than 1/r2, so if the integration volume is large enough, the surface 
integral is negligible. In the remaining first integral in Eq. (56), we may use Eq. (27) to rewrite A as 
B. As a result, we get a very simple and fundamental formula. 

                rdBU 32

02

1


.     (5.57a) 

Just as with the electric field, this expression may be interpreted as a volume integral of the magnetic 
energy density u: 

             rBrr 2
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  urduU ,    (5.57b) 

clearly similar to Eq. (1.65).31 Again, the conceptual choice between the spatial localization of magnetic 
energy – either at the location of electric currents only, as implied by Eqs. (54) and (55), or in all regions 
where the magnetic field exists, as apparent from Eq. (57b), cannot be done within the framework of 
magnetostatics, and only the electrodynamics gives a decisive preference for the latter choice. 

 For the practically important case of currents flowing in several thin wires, Eq. (54) may be first 
integrated over the cross-section of each wire, just as was done at the derivation of Eq. (4).  As before, 
since the integral of the current density over the kth  wire's cross-section is just the current Ik in the wire, 
and cannot change along its length, it may be taken from the remaining integrals, giving 

30 For that, we may use MA Eq. (11.7) with f = A and g = B, giving A(B) = B(A) – (AB). 
31 The transfer to the Gaussian units in Eqs. (57) may be accomplished by the usual replacement 0  4, thus 
giving, in particular, u = B2/8. 
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where lk is the full length of the kth wire loop. Note that Eq. (58) is valid if all currents Ik are independent 
of each other, because the double sum counts each current pair twice, compensating the coefficient ½ in 
front of the sum. It is useful to decompose this relation as 
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kk LIIU  ,     (5.59) 

where the coefficients Lkk’ are independent of the currents: 
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 The coefficient Lkk’ with k  k’, is called the mutual inductance between current the kth and k’th 

loops, while the diagonal coefficient Lk  Lkk is called the self-inductance (or just inductance) of the kth 
loop.32 From the symmetry of Eq. (60) with respect to the index swap, k  k’, it is evident that the 
matrix of coefficients Lkk’ is symmetric:33 
           k'kkk' LL  ,      (5.61) 

so for the practically most important case of two interacting currents I1 and I2, Eq. (59) reads 

       2
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ILIMIILU  ,    (5.62) 

where M  L12 = L21 is the mutual inductance coefficient. 

 These formulas clearly show the importance of the self- and mutual inductances, so I will 
demonstrate their calculation for at least a few basic geometries. Before doing that, however, let me 
recast Eq. (58) into one more form that may facilitate such calculations. Namely, let us notice that for 
the magnetic field induced by current Ik in a thin wire, Eq. (28) is reduced to 
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so Eq. (58) may be rewritten as 
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But according to the same Stokes theorem that was used earlier in this chapter to derive the Ampère law, 
and Eq. (27), the integral in Eq. (64) is nothing else than the magnetic field’s flux  (more frequently 
called just the magnetic flux) through a surface S limited by the contour l : 

32 As evident from Eq. (60), these coefficients depend only on the geometry of the system. Moreover, in the 
Gaussian units, in which Eq. (60) is valid without the factor 0/4, the inductance coefficients have the dimension 
of length (centimeters). The SI unit of inductance is called the henry, abbreviated H – after Joseph Henry, who in 
particular discovered the effect of electromagnetic induction (see Sec. 6.1) independently of Michael Faraday. 
33 Note that the matrix of the mutual inductances Ljj’ is very similar to the matrix of reciprocal capacitance 
coefficients pkk’ – for example, compare Eq. (62) with Eq. (2.21). 
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– in the particular case of Eq. (64), the flux kk’ of the field induced by the k’th current through the loop 
of the kth current.34 As a result, Eq. (64) may be rewritten as 

      '
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kk
kIU  .     (5.66) 

Comparing this expression with Eq. (59), we see that 
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 This expression not only gives us one more means for calculating the coefficients Lkk’, but also 
shows their physical sense: the mutual inductance characterizes what part of the magnetic flux 
(colloquially, “what fraction of field lines”) induced by the current Ik' pierces the kth loop’s area Sk – see 
Fig. 7.  
 
 
 
 
 
 
 
 
 
 

Due to the linear superposition principle, the total flux piercing the kth loop may be represented as 

         
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kkk
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kkk IL '''ΦΦ      (5.68) 

For example, for the system of two currents, this expression is reduced to a clear analog of Eqs. (2.19): 

               
.Φ

,Φ

2212

2111

ILMI

MIIL




     (5.69) 

For the even simpler case of a single current, 

           LI ,      (5.70) 

so the magnetic energy of the current may be represented in several equivalent forms: 

34 The SI unit of magnetic flux is called weber, abbreviated Wb – after Wilhelm Edward Weber (1804-1891), who 
in particular co-invented (with Carl Gauss) the electromagnetic telegraph. More importantly for this course, in 
1856 he was the first (together with Rudolf Kohlrausch) to notice that the value of (in modern terms) 1/(00)

1/2, 
derived from electrostatic and magnetostatic measurements, coincides with the independently measured speed of 
light c. This observation gave an important motivation for Maxwell’s theory. 
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Fig. 5.7. The physical sense of 
the mutual inductance coefficient 
Lkk’  kk’/Ik’ – schematically.  
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These relations, similar to Eqs. (2.14)-(2.15) of electrostatics, show that the self-inductance L of a 
current loop may be considered a measure of the system’s magnetic energy. However, as we will see in 
Sec. 6.1, this measure is adequate only if the flux , rather than the current I, is fixed.    

 Now we are well equipped for the calculation of inductance coefficients for particular systems, 
having three options. The first one is to use Eq. (60) directly.35 The second one is to calculate the 
magnetic field energy from Eq. (57) as the function of all currents Ik in the system, and then use Eq. (59) 
to find all coefficients Lkk’. For example, for a system with just one current, Eq. (71) yields 

           
2/2I

U
L  .      (5.72) 

Finally, if the system consists of thin wires, so the loop areas Sk and hence the fluxes kk’ are well 
defined, we may calculate them from Eq. (65), and then use Eq. (67) to find the inductances.   

 Usually, the third option is simpler, but the first two may be very useful even for thin-wire 
systems, especially if the notion of magnetic flux in them is not quite apparent. As an important 
example, let us find the self-inductance of a long solenoid – see Fig. 6a again. We have already 
calculated the magnetic field inside it – see Eq. (40) – so, due to the field uniformity, the magnetic flux 
piercing each turn of the wire is just 

              nIABA 01  ,     (5.73) 

where A is the area of the solenoid’s cross-section – for example R2 for a round solenoid, though Eq. 
(40), and hence Eq. (73) are valid for cross-sections of any shape. Comparing Eqs. (73) with Eq. (70), 
one might wrongly conclude that L = 1/I = 0nA (WRONG!), i.e. that the solenoid’s inductance is 
independent of its length. Actually, the magnetic flux 1 pierces each wire turn, so the total flux through 
the whole current loop, consisting of N turns, is  

             lAInN 2
01  ,     (5.74) 

and the correct expression for the long solenoid’s self-inductance is  
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i.e. at fixed A and l, the inductance scales as N2, not as N. Since this reasoning may seem not quite 
evident, it is prudent to verify this result by using Eq. (72), with the full magnetic energy inside the 
solenoid (neglecting minor fringe field contributions), given by Eq. (57) with B = const within the 
internal volume V = lA, and zero outside of it: 
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Plugging this relation into Eq. (72) immediately confirms the result (75).  

35 Numerous applications of that Neumann formula (derived in 1845 by F. Neumann) to electrical engineering 
problems may be found, for example, in the classical text by F. Grover, Inductance Calculations, Dover, 1946. 

U of a  
single  
current 

L of a  
solenoid 
 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 5                 Page 19 of 42 

This energy-based approach becomes virtually inevitable for continuously distributed currents. 
As an example, let us calculate the self-inductance L of a long coaxial cable with the cross-section 
shown in Fig. 8, 36 and the full current in the outer conductor equal and opposite to that (I) in the inner 
conductor. 

 

 

 

 

 
 

Let us assume that the current is uniformly distributed over the cross-sections of both 
conductors. (As we know from the previous chapter, this is indeed the case if both the internal and 
external conductors are made of a uniform resistive material.) First, we should calculate the radial 
distribution of the magnetic field – which has only one, azimuthal component because of the axial 
symmetry of the problem. This distribution may be immediately found by applying the Ampère law (37) 
to circular contours of radii  within four different ranges: 

     


















.for ,0

for ,

,for ,1

,for ,

2
2222

22

0contour    thepiercing0








c

c,bbcc

bρa

aρa

IIB   (5.77) 

 Now, an easy integration yields the magnetic energy per unit length of the cable: 
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From here, and Eq. (72), we get the final answer: 
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Note that for the particular case of a thin outer conductor, c – b << b, this expression reduces to 
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where the first term in the parentheses is due to the contribution of the magnetic field energy in the free 
space between the conductors. This distinction is important for some applications because in 

36 As a reminder, the mutual capacitance C between the conductors of such a system was calculated in Sec. 2.3. 

a
b

c0

I

I
Fig. 5.8. The cross-section of a coaxial cable. 
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superconductor cables, as well as the normal-metal cables at high frequencies (to be discussed in the 
next chapter), the field does not penetrate the conductor’s bulk, so Eq. (80) is valid without the last term 
¼ in the parentheses – for any b < c. 

As the last example, let us calculate the mutual inductance between a long straight wire and a 
round wire loop adjacent to it (Fig. 9), neglecting the thickness of both wires.  

 

 

 

 

 

 
 

 Here there is no problem with using the last approach discussed above, based on the direct 
calculation of the magnetic flux. Indeed, as was discussed in Sec. 1, the field B1 induced by the current 
I1 at any point of the round loop is normal to its plane – e.g., to the plane of the drawing of Fig. 9. In the 
Cartesian coordinates shown in that figure, Eq. (20) reads B1 = 0I1/2y, giving the following magnetic 
flux through the loop: 
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This is a table integral equal to ,37 so 21 = 0I1R, and the final answer for the mutual inductance M  
L12 = L21 = 21/I1 is finite (and very simple): 

    RM 0 ,      (5.82) 

despite the magnetic field's divergence at the lowest point of the loop (y = 0).  

 Note that in contrast with the finite mutual inductance of this system, the self-inductances of both 
its wires are formally infinite in the thin-wire limit – see, e.g., Eq. (80), which, in the limit b/a >> 1, 
describes a thin straight wire. However, since this divergence is very weak (logarithmic), it is quenched 
by any deviation from this perfectly axial geometry. For example, a fair estimate of the inductance of a 
wire of a large but finite length l >> a may be obtained from Eq. (80) by the replacement of b with l: 
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(Note, however, that the exact result depends on where from/to the current flows beyond that segment.) 
It turns out that a similar approximate result, with l replaced with 2R in the front factor, and with R 
under the logarithm, is valid for the self-inductance of a round loop with a << R. (A proof of this fact is 
a very useful exercise, highly recommended to the reader.) 

37 See, e.g., MA Eq. (6.13), with a = 1. 
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5.4. Magnetic dipole moment, and magnetic dipole media 

 The most natural way of the magnetic media description parallels that for dielectrics in Chapter 
3, and is based on the properties of magnetic dipoles – the notion close (but not identical!) to that of the 
electric dipoles discussed in Sec. 3.1. To introduce this notion quantitatively, let us consider, just as in 
Sec. 3.1, a spatially-localized system with a current distribution j(r’), whose magnetic field is measured 
at relatively large distances r >> r’ (Fig. 10). 

 

 

 

 

 

 

Applying the truncated Taylor expansion (3.5) of the fraction 1/r – r’ to the vector potential 
given by Eq. (28), we get 
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Now, due to the vector character of this potential, we have to depart somewhat from the approach of 
Sec. 3.1 and use the following vector algebra identity:38  
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 jj ,    (5.85) 

that is valid for any pair of smooth (differentiable) scalar functions f(r) and g(r), and any vector function 
j(r) that, as the dc current density, satisfies the continuity condition j = 0 and whose normal 
component vanishes on the surface of the volume V. First, let us use Eq. (85) with f equal to 1, and g 
equal to any Cartesian component of the radius-vector r: g = rl (l = 1, 2, 3). Then it yields 
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so for the vector as the whole 
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showing that the first term on the right-hand side of Eq. (84) equals zero. Next, let us use Eq. (85) again, 
but now with f = rl, g = rl’ (where l, l’ = 1, 2, 3); then it yields 
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so the lth Cartesian component of the second integral in Eq. (84) may be transformed as 

38 See, e.g., MA Eq. (12.3) with the additional condition  jnS = 0, pertinent to space-restricted currents. 
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Fig. 5.10. Calculating the magnetic field of localized 
currents at a distant point (r >> a). 
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As a result, Eq. (84) may be rewritten as   
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where the vector m, defined as39 
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is called the magnetic dipole moment of a field source – which itself, within the long-range 
approximation (90), is called the magnetic dipole.  

 Note a close analogy between the m defined by Eq. (91), and the orbital40 angular momentum of 
a non-relativistic particle with mass mk: 

          kkkkkk m vrprL  ,     (5.92) 

where pk = mkvk is its linear momentum. Indeed, for a continuum of such particles with equal electric 
charges q, distributed with spatial density n, we have j = qnv, and Eq. (91) yields 

                    rd
nq

rd
VV

33

22

1
  vrjrm ,    (5.93) 

while the total angular momentum of such a system of particles of equal masses m0, is 

              
V

rdnm 3
0 vrL , 

so we get a very straightforward relation 

                Lm
02m

q
 .      (5.95) 

 For the orbital motion, this classical relation survives in quantum mechanics for linear operators, 
and hence for eigenvalues of the observables. Since the orbital angular momentum is quantized in the 
units of the Planck constant , the orbital magnetic moment of an electron is always a multiple of the so-
called Bohr magneton  

         
e

B 2m

e
 ,      (5.96) 

where me is the free electron mass.41 However, for particles with spin, such a universal relation between 
the vectors m and L is no longer valid. For example, the electron’s spin s = ½ gives a contribution of /2 
to its mechanical angular momentum, but a contribution very close to B to its magnetic moment. 

39 In the Gaussian units, the definition (91) is kept valid “as is”, so Eq. (90) is stripped of the factor 0/4. 
40 This adjective is used, especially in quantum mechanics, to distinguish the motion of a particle as a whole (not 
necessarily along a closed orbit!) from its intrinsic angular momentum, the spin – see, e.g., QM Chapters 3-6. 
41 In the SI units, me  0.9110-30 kg, so B  0.9310-23 J/T. 
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 The next important example of a magnetic dipole is a planar thin-wire loop, limiting area A (of 
arbitrary shape), and carrying current I, for which m has a surprisingly simple form,  

            Am I ,      (5.97) 

where the modulus of the vector A equals the loop’s area A, and its direction is normal to the loop’s 
plane. This formula may be readily proved by noticing that if we select the coordinate frame origin on 
the plane of the loop (Fig. 11), then the elementary component of the magnitude of the integral (91), 

       
CCC

drIdIdIdm 2
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2

1

2

1
rrrr ,   (5.98) 

is just the elementary area dA = (1/2)rd(r)  = r2d/2 – the equality already used in CM Eq. (3.40). 

 

 

 

 

  

  

 
The comparison of Eqs. (96) and (97) allows a useful estimate of atomic currents, by finding 

what current I should flow in a circular loop of the atomic size scale (the Bohr radius) rB ~ 0.510-10 m, 
i.e. of area A ~ 10-20 m2, to produce a magnetic moment of the order of B.42 The result is surprisingly 
macroscopic: I ~ 1 mA – quite comparable to the current driving the sound in your phone’s earbuds. 

Though due to the quantum-mechanical spread of electron wavefunctions, this estimate should not be 
taken too literally, it is very useful for getting a gut feeling of how significant the atomic magnetism is, 
and hence why ferromagnets may provide such strong magnetic fields. 

 After these illustrations, let us return to the discussion of the general Eq. (90). Plugging it into 
(also general) Eq.  (27), we may calculate the magnetic field of a magnetic dipole: 43 

42 Another way to arrive at the same estimate is to take I ~ ef = e/2  with  ~ 1016 s-1 being the typical 
frequency of radiation due to atomic interlevel quantum transitions.  
43 Similarly to the situation with the electric dipoles (see Eq. (3.24) and its discussion), it may be shown that the 
magnetic field of any closed current loop (or any system of such loops) satisfies the following equality: 
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where the integral is over any sphere confining all the currents. On the other hand, as we know from Sec. 3.1, for 
a field with the structure (99), derived from the long-range approximation (90), such an integral vanishes. As a 
result, to get a coarse-grain description of the magnetic field of a small system located at r = 0, that would give the 
correct average value of the magnetic field, Eq. (99) should be modified as follows: 
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in a conceptual (though not quantitative) similarity to Eq. (3.25). 
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Fig. 5.11. Calculating the 
magnetic dipole moment 
of a  planar current loop. 0
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The structure of this formula exactly replicates that of Eq. (3.13) for the electric dipole field – including 
the sign). Because of this similarity, the energy of a dipole of a fixed magnitude m in an external field, 
and hence the torque and the force exerted on it by a fixed external field, are given by expressions fully 
similar to those for an electric dipole – see Eqs. (3.15)-(3.19):44 

       extBm U ,     (5.100) 

and as a result, 
                extBmτ  ,      (5.101) 

                 )( extBmF   .     (5.102) 

 Now let us consider a system of many magnetic dipoles (e.g., atoms or molecules), distributed in 
space with an atomic-scale-averaged density n. Then we can use Eq. (90) generalized in an evident way 
for an arbitrary position r’ of the dipole, and the linear superposition principle, to calculate the 
macroscopic vector potential A:  
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where M  nm is the magnetization: the average magnetic moment per unit volume. Transforming this 
integral absolutely similarly to how Eq. (3.27) had been transformed into Eq. (3.29), we get: 
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 Comparing this result with Eq. (28), we see that M is equivalent, in its magnetic effect, to the 
density jef of a certain effective “magnetization current”. Just as the electric-polarization charge ef 
discussed in Sec. 3.2 (see Fig. 3.4), the vector jef = M may be interpreted as the uncompensated part 
of the loop currents representing single magnetic dipoles m – see Fig. 12. Note, however, that since the 
atomic magnetic dipoles may be due to particles’ spins, rather than the actual electric currents due to the 
orbital motion, the magnetization current’s nature is not as direct as that of the polarization charge. 

  

 

 

 

 

 

 

44 Note that the fixation of m and Bext effectively means that the currents producing them are fixed – please have 
one more look at Eqs. (35) and (97). As a result, Eq. (100) is a particular case of Eq. (53) rather than (54) – hence 
the minus sign.  

Fig. 5.12. A cartoon illustrating the physical nature of 
the effective magnetization current jef = M. 
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 Now, using Eq. (28) to add the possible contribution from the stand-alone currents j not 
included in the currents of microscopic magnetic dipoles, we get the general expression for the vector 
potential of the macroscopic field: 
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Repeating the calculations that have led us from Eq. (28) to the Maxwell equation (35), with the account 
of the magnetization current term, for the macroscopic magnetic field B we get  

            MjB   0 .     (5.106) 

 Following the same reasoning as in Sec. 3.2, we may recast this equation as 

          jH  ,      (5.107) 
where the field defined as 

       M
B

H 
0

,      (5.108) 

for historic reasons (and very unfortunately) is also called the magnetic field.45 This is why it is crucial 
to remember that the physical sense of field H is very much different from field B. To understand this 
difference better, let us use Eq. (107) to bring Eqs. (3.32), (3.36), (29), and (107) together, writing them 
as the following system of macroscopic Maxwell equations (again, so far for the stationary case /t = 
0):46 
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These equations clearly show that the roles of the vector fields D and H are very similar: they both may 
be called “would-be fields” – meaning the fields that would be induced by the stand-alone charges  and 
currents j, if the medium had not modified them by its dielectric and magnetic polarization.  

 Despite this similarity, let me note an important difference of signs in the relation (3.33) between  
E, D, and P, on one hand, and the relation (108) between B, H, and M, on the other hand. This is not 
just a matter of definition. Indeed, due to the similarity of Eqs. (3.15) and (100), including similar signs, 
the electric and magnetic fields both try to orient the corresponding dipole moments along the field. 
Hence, in the media that allow such an orientation (and as we will see momentarily, for magnetic media 
it is not always the case), the induced polarizations P and M are directed along, respectively, the vectors 
E and B of the genuine (though macroscopic, i.e. atomic-scale-averaged) fields. According to Eq. (3.33), 
if the would-be field D is fixed – say, by a fixed stand-alone charge distribution (r) – such a 
polarization reduces the electric field E = (D – P)/0. On the other hand, Eq. (108) shows that in a 
magnetic media with a fixed would-be field H, the magnetic polarization making M parallel to B, 

45 This confusion is exacerbated by the fact that in Gaussian units, Eq. (108) has the form H = B – 4M, and 
hence the fields B and H have the same dimensionality (and are formally equal in free space!) – though the unit of 
H has a different name (oersted, abbreviated as Oe). Mercifully, in the SI units, the dimensionality of B and H is 
different, with the unit of H called the ampere per meter. 
46 Let me remind the reader once again that in contrast with the system (36) of the Maxwell equations for the 
genuine (microscopic) fields, the right-hand sides of Eqs. (109) represent only the stand-alone charges and 
currents, not included in the microscopic electric and magnetic dipoles. 
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enhances the magnetic field B = 0(H + M). This difference may be traced back to the sign difference in 
the basic relations (1) and (2), i.e. to the fundamental fact that the electric charges of the same sign 
repulse, while the currents of the same direction attract each other. 

 

5.5. Magnetic materials 

 In order to form a complete system, sufficient for the calculation of all fields from given (r) and 
j(r), the macroscopic Maxwell equations (109) have to be complemented with the constitutive relations 
describing the medium: D  E, j  E, and B  H. The first two of them were discussed, in brief, in 
the last two chapters; let us proceed to the last one. 

 A major difference between the dielectric and magnetic constitutive relations D(E) and B(H) is 
that while a dielectric medium always reduces the external field, magnetic media may either reduce or 
enhance it. To quantify this fact, let us consider the most common case – linear magnetic materials in 
that M (and hence H) is proportional to B. For isotropic materials, this proportionality is characterized 
by a scalar – either the magnetic permeability  defined by the following relation: 

     HB  ,      (5.110) 
or the magnetic susceptibility47 defined as 

         HM m .      (5.111) 

Plugging these relations into Eq. (108), we see that these two parameters are not independent, but are 
related as 
                 0m )1(   .     (5.112) 

 Note that despite the superficial similarity between Eqs. (110)-(112) and the corresponding 
relations (3.43)-(3.47) for linear dielectrics: 

       0e0e 1,,   EPED ,   (5.113) 

there is an important conceptual difference between them. Namely, while the vector E on the right-hand 
sides of Eqs. (113) is the actual (though macroscopic) electric field, the vector H on the right-hand side 
of Eqs. (110)-(111) represents a “would-be” magnetic field, in most aspects similar to D rather than E – 
see, for example, Eqs. (109).  This historic difference in the traditional form of the constitutive relations 
for the electric and magnetic fields is not without its physical reasons. Most experiments with electric 
and magnetic materials are performed by placing their samples into nearly uniform electric and 
magnetic fields, and the simplest systems for their implementation are, respectively, plane capacitors 
(Fig. 2.3) and long solenoids (Fig. 6). The field in the former system may be most conveniently 

47 According to Eqs. (110) and (112), i.e. in the SI units, m is dimensionless, while  has the same dimensionality 
as 0. In the Gaussian units,  is dimensionless: ()Gaussian = ()SI/0, and m is also introduced differently, as  = 1 
+ 4m, Hence, just as for the electric susceptibilities, these dimensionless coefficients are different in the two 
systems: (m )SI = 4(m)Gaussian. Note also that m is formally called the volumic magnetic susceptibility, to 
distinguish it from the atomic (or “molecular”) susceptibility  defined by a similar relation, m  H, where m 
is the induced magnetic moment of a single dipole – e.g., an atom. ( is an analog of the electric atomic 
polarizability  – see Eq. (3.48) and its discussion.) In a dilute medium, i.e. in the absence of substantial dipole-
dipole interactions, m = n, where n is the dipole density. 
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controlled by fixing the voltage V between its plates, which is proportional to the electric field E. On the 
other hand, the field provided by the solenoid may be fixed by the current I in it, and according to Eq. 
(107), the field proportional to this stand-alone current is H, rather than B.48 

 Table 1 lists the approximate magnetic susceptibility values for several materials. It shows that 
in contrast to linear dielectrics whose susceptibility e is always positive, i.e. the dielectric constant  = 
e + 1 is always larger than 1 (see Table 3.1), linear magnetic materials may be either paramagnets 
(with m > 0, i. e.  > 0) or diamagnets (with m < 0,  i.e.  < 0).  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The reason for this difference is that in dielectrics, two different polarization mechanisms 
(schematically illustrated by Fig. 3.7) lead to the same sign of the average polarization – see the 
discussion in Sec. 3.3. One of these mechanisms, illustrated by Fig. 3.7b, i.e. the ordering of 
spontaneous dipoles by the applied field, is also possible for magnetization – for the atoms and 
molecules with spontaneous internal magnetic dipoles of magnitude m0 ~ B, due to their net spins. 
Again, in the absence of an external magnetic field the spins, and hence the dipole moments m0 may be 
disordered, but according to Eq. (100), the external magnetic field tends to align the dipoles along its 
direction. As a result, the average direction of the spontaneous elementary moments m0, and hence the 
direction of the arising magnetization M, is the same as that of the microscopic field B at the points of 
the dipole location (i.e., for a diluted media, of H  B/0), resulting in a positive susceptibility m, i.e. in 
the paramagnetism, such as that of oxygen and aluminum – see Table 1.  

48 This fact also explains the misleading term “magnetic field” for H. 

Table 5.1. Susceptibility (m)SI of a few representative and/or important magnetic materials(a) 
 

“Mu-metal” (75% Ni + 15% Fe + a few %% of Cu and Mo)  ~20,000(b) 

Permalloy (80% Ni + 20% Fe) ~8,000(b) 

“Electrical” (or “transformer”) steel (Fe + a few %% of Si) ~4,000(b) 

Nickel ~100 

Aluminum +210-5 

Oxygen (at ambient conditions) +0.210-5 

Water –0.910-5 

Diamond –210-5 

Copper –710-5 

Bismuth (the strongest non-superconducting diamagnet) –1710-5 
(a)The table does not include bulk superconductors, which may be described, in a so-called 

coarse-scale approximation, as perfect diamagnets (with B  = 0, i.e. formally with m = –1 and  = 0), 
though the actual physics of this phenomenon is different – see Sec. 6.3 below. 
 (b) The exact values of m  >> 1 for soft ferromagnetic materials (see, e.g., the upper three rows 
of the table) depend not only on their composition but also on their thermal processing (“annealing”). 
Moreover, due to unintentional vibrations, the extremely high values of m of such materials may 
decay with time, though they may be restored to the original values by new annealing. The reason for 
such behavior is discussed in the text below. 
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However, in contrast to the electric polarization of atoms/molecules with no spontaneous electric 
dipoles, which gives the same sign of e   – 1 (see Fig. 3.7a and its discussion), the magnetic materials 
with no spontaneous atomic magnetic dipole moments have m < 0 – the effect called the orbital (or 
“Larmor”49) diamagnetism. As the simplest model of this effect,  let us consider the orbital motion of an 
atomic electron about an atomic nucleus as that of a classical particle of mass m0, with an electric charge 
q, about an immobile attracting center. As classical mechanics tells us, the central attractive force does 
not change the particle’s angular momentum L  m0rv, but the applied magnetic field B (that may be 
taken uniform on the atomic scale) does, due to the torque (101) it exerts on the magnetic moment (95): 

             BLBmτ
L


02m

q

dt

d
.     (5.114)

 The diagram in Fig. 13 shows that in the limit of a relatively weak field, when the magnitude of 
the angular momentum L may be considered constant, this equation describes the rotation (called the 
torque-induced precession50) of the vector L about the direction of the vector B, with the angular 
frequency  = –qB/2m0, independent of the angle . According to Eqs. (91) and (114), the resulting 
additional (field-induced) magnetic moment m  q  –q2B/m0 has, irrespectively of the sign of q, a 
direction opposite to the field. Hence, according to Eq. (111) with H  B/0, the susceptibility m    
m/H is indeed negative. (Let me leave its quantitative estimate within this classical model for the 
reader’s exercise.) The quantum-mechanical treatment confirms this qualitative picture of the Larmor 
diamagnetism, giving only quantitative corrections to the classical result for m.51 

 

 

 

 

 

 

  
 

 A simple estimate (also left for the reader’s exercise) shows that in atoms with spontaneous non-
zero net spins, the magnetic dipole orientation mechanism prevails over the orbital diamagnetism, so the 
materials incorporating such atoms usually exhibit net paramagnetism – see Table 1. Due to possible 
strong quantum interaction between the spin dipole moments, the magnetism of such materials is rather 
complex, with numerous interesting phenomena and elaborate theories. Unfortunately, all this physics is 
well outside the framework of this course, and I have to refer the interested reader to special literature,52 
but still will mention some key facts. 

49 Named after Sir Joseph Larmor who was the first (in 1897) to describe this effect mathematically. 
50 For a detailed discussion of this effect see, e.g., CM Sec. 4.5. 
51 See, e.g., QM Sec. 6.4. Quantum mechanics also explains why in most common (s-) ground states, the average 
contribution (95) of the orbital angular momentum L to the net vector m vanishes. 
52 See, e.g., D. J. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed., CRC Press, 1998, or R. C. 
O’Handley, Modern Magnetic Materials, Wiley, 1999. 

Fig. 5.13. The torque-induced precession of a 
classical charged particle in a magnetic field. 
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 Most importantly, a sufficiently strong magnetic dipole-dipole interaction may lead to their 
spontaneous ordering, even in the absence of the applied field. This ordering may correspond to either 
parallel alignment of the dipoles (ferromagnetism) or anti-parallel alignment of the adjacent dipoles 
(antiferromagnetism). Evidently, the external effects of ferromagnetism are stronger, because this phase 
corresponds to a substantial spontaneous magnetization M even in the absence of an external magnetic 
field. (The corresponding magnitude of B = 0M is called the remanence field, BR.) The direction of the 
vector BR may be switched by the application of an external magnetic field, with a magnitude above a 
certain value HC called coercivity, leading to the well-known hysteretic loops on the [H, B] plane (see 
Fig. 14 for a typical example) – similar to those in ferroelectrics, already discussed in Sec. 3.3. 

  

 

 

 

 

 

 

 

 

 

 Just as the ferroelectrics, the ferromagnets may also be hard or soft – in the magnetic rather than 
mechanical sense. In hard ferromagnets (also called permanent magnets), the dipole interaction is so 
strong that B stays close to BR in all applied fields below HC, so the hysteretic loops are virtually 
rectangular. Hence, in lower fields, the magnetization M of a permanent magnet may be considered 
constant, with the magnitude BR/0. Such hard ferromagnetic materials (notably, rare-earth compounds 
such as SmCo5, Sm2Co17, and especially Nd2Fe14B), with high remanence fields (~1 T) and high 
coercivity (~106 A/m), have numerous practical applications.53 Let me give just two, most important 
examples.  

 First, permanent magnets are the core components of most electric motors.  By the way, this 
venerable (~150-years-old) technology is currently experiencing a quiet revolution, driven mostly by the 
electric car development. In the most advanced type of motors, called permanent-magnet synchronous 
machines (PMSM), the remanence magnetic field BR of a permanent-magnet rotating part of the 
machine (called the rotor) interacts with the magnetic field of ac currents passed through wire windings 
in the external, static part of the motor (called the stator). The resulting torque may drive the rotor to 
extremely high speeds, exceeding 10,000 rotations per minute, enabling the motor to deliver several 
kilowatts of mechanical power from each kilogram of its mass. 

 As the second important example, despite the decades of the exponential (Moore’s-law) progress 
of semiconductor electronics, most computer data storage systems (e.g., in data centers) are still based 

53 Currently, the neodymium-iron-boron compound holds nearly 95% percent of the world permanent-magnet 
application market, due to its combination of high BR and HC  with lower fabrication costs. 

Fig. 5.14. Experimental magnetization 
curves of specially processed (cold-rolled) 
electrical steel – a solid solution of ~10% 
C and ~6% Si in Fe. (Reproduced from 
www.thefullwiki.org/Hysteresis under the 
Creative Commons BY-SA 3.0 license.) 
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on hard disk drives whose active media are submicron-thin layers of hard ferromagnets, with the data 
bits stored in the form of the direction of the remanent magnetization of small film spots. This 
technology has reached fantastic sophistication, with the recorded data density of the order of 1012 bits 
per square inch.54 (Only recently it started to be seriously challenged by solid-state drives based on the 
floating-gate semiconductor memories already mentioned in Chapter 3.) 55 

 In contrast, in soft ferromagnets, with their lower magnetic dipole interactions, the magnetization 
is constant only inside each of the spontaneously formed magnetic domains, while the volume and shape 
of the domains are affected by the applied magnetic field. As a result, the hysteresis loop’s shape of soft 
ferromagnets is dependent on the cycled field’s amplitude and cycling history – see Fig. 14. At high 
fields, their B (and hence M) is driven into saturation, with B   BR, but at low fields, they behave 
essentially as linear magnetics with very high values of m and hence  – see the top rows of Table 1. 
(The magnetic domain interaction, and hence the low-field susceptibility of such soft ferromagnets are 
highly dependent on the material’s fabrication technology and its post-fabrication thermal and 
mechanical treatments.) Due to these high values of , soft ferromagnets, especially iron and its alloys 
(e.g., various special steels), are extensively used in electrical engineering – for example in the cores of 
transformers – see the next section. 

 Due to the relative weakness of the magnetic dipole interaction in some materials, their 
ferromagnetic ordering may be destroyed by thermal fluctuations, if the temperature is increased above 
some value called the Curie temperature TC, specific for each material. The transition between the 
ferromagnetic and paramagnetic phases at T = TC is a classical example of a continuous phase 
transition, with the average polarization M playing the role of the so-called order parameter that (in the 
absence of external fields) becomes different from zero only at T < TC, increasing gradually at the 
further temperature reduction.56 

 

5.6. Systems with magnetic materials 

 Just as the electrostatics of linear dielectrics, the magnetostatics is very simple in the particular 
case when all essential stand-alone currents are embedded into a linear magnetic medium with a 
constant permeability . Indeed, let us assume that we know the solution B0(r) of the magnetic pair of 

54 “A magnetic head slider [the read/write head – KKL] flying over a disk surface with a flying height of 25 nm 
with a relative speed of 20 meters/second [all realistic parameters – KKL] is equivalent to an aircraft flying at a 
physical spacing of 0.2 µm at 900 kilometers/hour.” B. Bhushan, as quoted in the (generally good) book by G. 
Hadjipanayis, Magnetic Storage Systems Beyond 2000, Springer, 2001. 
55 The high-frequency properties of hard ferromagnets are also very non-trivial. For example, according to Eq. 
(101), an external magnetic field Bext exerts torque  = MBext on the spontaneous magnetic moment M of a unit 
volume of a ferromagnet. In some nearly-isotropic, mechanically fixed ferromagnetic samples, this torque causes 
the precession, around the direction of Bext (very similar to that illustrated in Fig. 13), of not the sample as such, 
but of the magnetization M inside it, with a certain frequency r. If the frequency  of an additional ac field 
becomes very close to r, its absorption sharply increases – the so-called ferromagnetic resonance. Moreover, if  
is somewhat higher than r, the effective magnetic permeability () of the material for the ac field may become 
negative, enabling a series of interesting effects and practical applications. Very unfortunately, I could not find 
time for their discussion in this series and have to refer the interested reader to literature, for example the 
monograph by A. Gurevich and G. Melkov, Magnetization Oscillations and Waves, CRC Press, 1996. 
56 In this series, a quantitative discussion of such transitions is given in SM Chapter 4. 
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the genuine (“microscopic”) Maxwell equations (36) in free space, i.e. when the genuine current density 
j coincides with that of stand-alone currents. Then the macroscopic Maxwell equations (109) and the 
linear constitutive equation (110) are satisfied with the pair of functions 

         rBrHrB
rB

rH 0
00

0 ,




 .    (5.115) 

Hence the only effect of the complete filling of a fixed-current system with a uniform, linear 
magnetic medium is the change of the magnetic field B at all points by the same constant factor /0  1 
+ m, which may be either larger or smaller than 1. (As a reminder, a similar filling of a system of fixed 
stand-alone charges with a uniform, linear dielectric always leads to a reduction of the electric field E by 
a factor of /0  1 + e – the difference whose physics was already discussed at the end of Sec. 4.) 

 However, this simple result is generally invalid in the case of nonuniform (or piecewise-uniform) 
magnetic samples. To analyze this case, let us first integrate the macroscopic Maxwell equation (107) 
along a closed contour C limiting a smooth surface S. Now using the Stokes theorem just as at the 
derivation of Eq. (37), we get the macroscopic version of the Ampère law (37): 

        Id
C

 rH .      (5.116)   

 Let us apply this relation to a sharp boundary between two regions with different magnetic 
materials, with no stand-alone currents on the interface, similarly to how this was done for the field E in 
Sec. 3.4 – see Fig. 3.5. The result is similar as well: 

    constH .     (5.117) 

On the other hand, the integration of the Maxwell equation (29) over a Gaussian pillbox enclosing a 
border fragment (again just as shown in Fig. 3.5 for the field D) yields a result similar to Eq. (3.35):  

                constnB .      (5.118) 

For linear magnetic media, with B = H, the latter boundary condition is reduced to 

      const nH .     (5.119) 

Let us use these boundary conditions, first of all, to see what happens with a long cylindrical 
sample of a uniform magnetic material, placed parallel to a uniform external magnetic field B0 – see Fig. 
15. Such a sample cannot noticeably disturb the field in the free space outside it, at most of its length: 
Bext = B0, Hext = 0Bext= 0B0. Now applying Eq. (117) to the dominating surfaces of the sample, we get 
Hint = H0.57  For a linear magnetic material, these relations yield Bint = Hint = (/0) B0.58 For the high-
 media, this means that Bint >> B0. This effect may be vividly represented as the concentration of the 
magnetic field lines in high- samples – see Fig. 15 again. (The concentration affects the external field 

57 The independence of H on magnetic properties of the sample in this geometry explains why this field’s 
magnitude is commonly used as the argument in the plots like Fig. 14: such measurements are typically carried 
out by placing an elongated sample of the material under study into a long solenoid with a controllable current I, 
so according to Eq. (116), H0 = nI, regardless of the sample. 
58 The reader is highly encouraged to carry out a similar analysis of the fields inside narrow gaps cut in a linear 
magnetic material, similar to that carried in Sec. 3.3 out for linear dielectrics – see Fig. 3.6 and its discussion. 

Macroscopic 
Ampère  

law 
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distribution only at distances of the order of (/0)t << l near the sample’s ends.) Such concentration is 
widely used in such practically important devices as transformers, in which two multi-turn coils are 
wound on a ring-shaped (e.g., toroidal, see Fig. 6b) core made of a soft ferromagnetic material (such as 
the transformer steel, see Table 1) with  >> 0. This minimizes the number of “stray” field lines, and 
makes the magnetic flux  piercing each wire turn of either coil virtually the same – the equality 
important for the secondary voltage induction – see the next chapter. 

 

 

 

 

 

 

 Samples of other geometries may create strong perturbations of the external field, extended to 
distances of the order of the sample’s dimensions. To analyze such problems, we may benefit from a 
simple, partial differential equation for a scalar function, e.g., the Laplace equation, because in Chapter 
2 we have learned how to solve it for many simple geometries. In magnetostatics, the introduction of a 
scalar potential is generally impossible due to the vortex-like magnetic field lines. However, if there are 
no stand-alone currents within the region we are interested in, then the macroscopic Maxwell equation 
(107) for the field H is reduced to   H = 0, similar to Eq. (1.28) for the electric field, showing that we 
may introduce the scalar potential of the magnetic field, m, using a relation similar to Eq. (1.33): 

         m– H .      (5.120) 

Combining it with the homogenous Maxwell equation (29) for the magnetic field, B = 0, and Eq. 
(110) for a linear magnetic material, we arrive at a single differential equation, (m) =0. For a 
uniform medium ((r) = const), it is reduced to our beloved Laplace equation:  

                     0m
2   .      (5.121) 

Moreover, Eqs. (117) and (119) give us very familiar boundary conditions: the first of them 

       constm 





,               (5.122a) 

being equivalent to  
         constm  ,               (5.122b) 

while the second one giving 

                 constm 



n


 .     (5.123) 

Indeed, these boundary conditions are absolutely similar for (3.37) and (3.56) of electrostatics, with the 
replacement   .59  

59 This similarity may seem strange because earlier we have seen that the parameter  is physically more similar 
to 1/. The reason for this paradox is that in magnetostatics, the magnetic potential m is traditionally used to 
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Fig. 5. 15. Magnetic field concentration in long, high- magnetic samples (schematically). 
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 Let us analyze the geometric effects on magnetization, first using the (too?) familiar structure: a 
sphere, made of a linear magnetic material, placed into a uniform external field H0  B0/0. Since the 
differential equation and the boundary conditions are similar to those of the corresponding electrostatics 
problem (see Fig. 3.11 and its discussion), we can use the above analogy to reuse the solution we 
already have – see Eqs. (3.63). Just as in the  electric case, the field outside the sphere, with  

           ,cos
2 2

3

0

0
0m 




 










 r

R
rHRr                      (5.124) 

is a sum of the uniform external field H0, with the potential –H0rcos  –H0z, and the dipole field (99) 
with the following induced magnetic dipole moment of the sphere:60 
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 .               (5.125) 

On the contrary, the internal field is perfectly uniform, and directed along the external one: 
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Note that the field Hint inside the sphere is not equal to the applied external field H0. This 
example shows that the interpretation of H as the “would-be” magnetic field generated by external 
stand-alone currents j should not be exaggerated by saying that its distribution is independent of the 
magnetic bodies in the system. In the limit  >> 0, Eqs. (126) yield Hint/H0 << 1, Bint/H0 = 30, the 
factor 3 being specific for the particular geometry of the sphere. If a sample is strongly stretched along 
the applied field, with its length l much larger than the scale t of its cross-section, this geometric effect is 
gradually decreased, and Bint tends to its value H0 >> B0, as was discussed above – see Fig. 15. 

Now let us calculate the field distribution in a similar, but slightly more complex (and practically 
important) system: a round cylindrical shell, made of a linear magnetic material, placed into a uniform 
external field H0 normal to its axis – see Fig. 16.  

 

 

 

 

 

 

describe the “would-be field” H, while in electrostatics, the potential  describes the actual electric field E. (This 
tradition persists from the days when H was perceived as a genuine magnetic field.) 
60 To derive Eq. (125), we may either calculate the gradient of the m given by Eq. (124), or use the similarity of 
Eqs. (3.13) and (99), to derive from Eq. (3.17) a similar expression for the magnetic dipole’s potential: 
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Now comparing this formula with the second term of Eq. (124), we immediately get Eq. (125). 
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Fig. 5.16. Cylindrical magnetic shield. 
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 Since there are no stand-alone currents in the region of our interest, we can again represent the 
field H(r) by the gradient of the magnetic potential m – see Eq. (120). Inside each of three constant- 
regions, i.e. at  < b, a <  < b, and b <  (where  is the 2D distance from the cylinder's axis), the 
potential obeys the Laplace equation (121). In the convenient, polar coordinates (see Fig. 16), we may, 
guided by the general solution (2.112) of the Laplace equation and our experience in its application to 
axially-symmetric geometries, look for m in the following form: 
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 Plugging this solution into the boundary conditions (122)-(123) at both interfaces (  = b and   
= a), we get the following system of four equations: 
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for four unknown coefficients a1, b1, b1’, and Hint. Solving the system, we get, in particular: 
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 According to these formulas, at   > 0, the field in the free space inside the cylinder is lower 
than the external field. This fact allows using such structures, made of high- materials such as 
permalloy (see Table 1), for passive shielding61 from unintentional magnetic fields (e.g., the Earth's 
field) – the task very important for the design of many physical experiments. As Eq. (129) shows, the 
larger is , the closer is c to 1, and the smaller is the ratio Hint/H0, i.e. the better is the shielding, for the 
same a/b ratio. On the other hand, for a given magnetic material, i.e. for a fixed parameter c, the 
shielding is improved by making the ratio a/b < 1 smaller, i.e. the shield thicker. On the other hand, as 
Fig. 16 shows, smaller a leaves less space for the shielded samples, calling for a compromise. 

Note that in the limit /0  , both Eq. (126) and Eq. (129), describing different geometries, 
yield Hint/H0  0. Indeed, as it follows from Eq. (119), in this limit, the field H tends to zero inside 
magnetic samples of virtually any geometry. (The formal exception is the longitudinal cylindrical 
geometry shown in Fig. 15, with t/l  0, where Hint = H0 for any finite , but even in it, the last equality 
holds only if t/l << 0/.) 

Now let us discuss a curious (and practically important) approach to systems with relatively thin, 
closed magnetic cores made of several sections of high- magnetic materials, with the cross-section 
areas Ak much smaller than the squared lengths lk of the sections – see Fig. 17. If all k >> 0, virtually 
all field lines are confined to the interior of the core. Then, applying the macroscopic Ampère law (116) 
to a contour C that follows a magnetic field line inside the core (see, for example, the dashed line in Fig. 
17), we get the following approximate expression (exactly valid only in the limit k/0, lk

2/Ak  ): 

61 Another approach to the undesirable magnetic fields' reduction is the "active shielding" – the external field’s 
compensation with the counter-field induced by controlled currents in specially designed wire coils. 
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However, since the magnetic field lines stay in the core, the magnetic flux k  BkAk should be the same 
( ) for each section, so Bk = /Ak. Plugging this condition into Eq. (130), we get 

            
kk

k
k

k
k A

lNI





R

R
  where,Φ .    (5.131) 

 Note a close analogy of the first of these equations with the usual Ohm law for several resistors 
connected in series, with the magnetic flux playing the role of electric current, while the product NI, the 
role of the voltage applied to the chain of resistors. This analogy is fortified by the fact that the second 
of Eqs. (131) is similar to the expression for the resistance R = l/A of a long, uniform conductor, with 
the magnetic permeability  playing the role of the electric conductivity . (To sound similar, but still 
different from the resistance R, the parameter R  is called reluctance.) This is why Eq. (131) is called 
the magnetic Ohm law; it is very useful for approximate analyses of systems like ac transformers, 
magnetic energy storage systems, etc.  

 Now let me proceed to a brief discussion of systems with permanent magnets. First of all, using 
the definition (108) of the field H, we may rewrite the Maxwell equation (29) for the field B as 

          MHMHB     as  i.e.,00 ,   (5.132) 

While this relation is general, it is especially convenient in permanent magnets, where the magnetization 
vector M may be approximately considered field-independent.62 In this case, Eq. (132) for H is an exact 
analog of Eq. (1.27) for E, with the fixed term –M playing the role of the fixed charge density (more 
exactly, of /0).  For the scalar potential m, defined by Eq. (120), this gives the Poisson equation 

      M m
2 ,     (5.133) 

similar to those solved, for quite a few geometries, in the previous chapters.  

 In the case when M is not only field-independent but also uniform inside a permanent magnet’s 
volume, then the right-hand sides of Eqs. (132) and (133) vanish both inside the volume and in the 

62 Note that in this approximation, there is no difference between the remanence magnetization MR  BR/0, of the 
magnet and its saturation magnetization MS  limH[B(H)/0 - H]. 

Fig. 5.17. Deriving the “magnetic Ohm law” (131). 
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surrounding free space, and give a non-zero effective charge only on the magnet’s surface. Integrating 
Eq. (132) along a short path normal to the surface and crossing it, we get the following boundary 
conditions: 
            ,cosmagnetin spacefreein MMHHH nnnn     (5.134) 

where  is the angle between the magnetization vector and the outer normal to the magnet’s surface. 
This relation is an exact analog of Eq. (1.24) for the normal component of the field E, with the effective 
surface charge density (or rather /0) equal to Mcos.  

 This analogy between the magnetic field induced by a fixed, constant magnetization and the 
electric field induced by surface electric charges enables one to reuse the solutions of quite a few 
problems considered in Chapters 1-3. Leaving a few such problems for the reader's exercise (see Sec. 7), 
let me demonstrate the power of this analogy on just two examples specific to magnetic systems. First, 
let us calculate the force necessary to detach the flat ends of two long, uniform rod magnets, of length l 
and cross-section area A << l2, with the saturated remanent magnetization M0 directed along their 
length – see Fig. 18.  

 

 

 

 

 Let us assume we have succeeded in separating the magnets by an infinitesimal distance  << 
A1/2, l. Then, according to Eqs. (133)-(134), the distribution of the magnetic field near this small gap 
should be similar to that of the electric field in a system of two equal by opposite surface charges with 
the surface density   proportional to M0. From Chapters 1-3, we know the properties of such a system 
very well: within the gap, the field is virtually constant, uniform, proportional to , and independent of 
. For its magnitude in the magnetic case, Eq. (134) gives simply H = M0, and hence B = μ0M0. (Just 
outside of the gap, the field is very low, because due to the condition A << l2, the effect of the similar 
effective charges at the "outer" ends of the rods on the field near the gap t is negligible.)  

 From here, we can readily calculate Fmin as the force exerted by this field on the effective surface 
"charges". However, it is even easier to find it from the following energy argument. Since the magnetic 
field energy localized inside the magnets and near their outer ends cannot depend on , this small 
detachment may only alter the energy inside the gap. For this part of the energy, Eq. (57) yields: 
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The gradient of this potential energy is equal to the attraction force F = –(U), trying to reduce ΔU by 
decreasing the gap, with the following magnitude: 
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The magnet detachment requires an equal and opposite external force. For a typical permanent magnet, 
with 0M0  BR ~ 1T, the force corresponds to a ratio F/A close to 4105 Pa, a few times the normal 
atmospheric pressure. 

A 0M
?min F0M

Fig. 5.18. Detaching two magnets. 
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 Now let us consider the situation when similar long permanent magnets (such as the magnetic 
needles used in magnetic compasses) are separated, in otherwise free space, by a larger distance d >> 
A1/2 – see Fig. 19. For each needle (Fig. 19a), of a length l >> A1/2, the right-hand side of Eq. (133) is 
substantially different from zero only in two relatively small areas at the needle’s ends. Integrating the 
equation over each area, we see that at distances r >> A1/2 from each end, we may reduce Eq. (132) to 

     )()(  i.e.,)()( m
0

m
  rrrrBrrrrH 


q

q
 , (5.137) 

where r are the ends’ positions, and qm  0M0A, with A being the needle’s cross-section area.63 This 
expression for B is completely similar to Eq. (3.32) for the electric displacement D, for the particular 
case of two equal and opposite point charges, i.e. with  = q[(r – r+) – (r – r+)], with the only 
replacement q  qm. Since we know the resulting electric field all too well (see, e.g., Eq. (1.7) for E  
D/0), we may immediately write a similar expression for the field H: 
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 The resulting magnetic field H(r) exerts on another “magnetic charge” q’m, located at some point 
r’, the force F = q’mH(r’).64 Hence if two ends of different needles are separated by an intermediate 
distance R  (A1/2 << R << l, see Fig. 19b), we may neglect one term in Eq. (138), and get the following 
“magnetic Coulomb law” for the interaction of the nearest ends: 

             .
4 3

0

mm

R

q'q R
F


      (5.139) 

The “only” (but conceptually, crucial!) difference between this interaction and that of the electric point 
charges is that the two “magnetic charges” (quasi-monopoles) of a magnetic needle cannot be fully 
separated. For example, if we break a needle in the middle in an attempt to bring its two ends further 
apart, two new “point charges” appear – see Fig. 19b. 

63 Note that the constant coefficient in the definition of qm, and hence in Eqs. (138)-(139), is the matter of 
convention. The above choice makes the free-space Maxwell equations D =  and B = m (where  and m  
are the volumic densities of the electric and magnetic charges) pleasantly symmetric. 
64 This expression is the magnetic analog of the basic equation F = q’eE(r’) for the electric charges. 

Fig. 5.19. (a) “Magnetic charges” at the ends of a thin permanent-magnet needle and (b) the result of its 
breaking into two parts (schematically). 
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 There are several solid-state systems where more flexible structures, similar in their 
magnetostatics to the needles, may be implemented. First of all, certain (“type-II”) superconductors may 
carry so-called Abrikosov vortices – flexible tubes with field-suppressed superconductivity inside, each 
carrying one quantum 0 = /e  210-15 Wb of the magnetic flux. Ending on superconductor’s 
surfaces, these tubes let their magnetic field lines spread into the surrounding free space, essentially 
forming magnetic monopole analogs – of course, with equal and opposite “magnetic charges” qm on 
each end of the tube – just as Fig. 19a shows. Such flux tubes are not only flexible but also stretchable, 
resulting in several peculiar effects – see Sec. 6.4 for more detail. Another recently found example of 
such paired quasi-monopoles is spin chains in the so-called spin ices – crystals with paramagnetic ions 
arranged into a specific (pyrochlore) lattice – such as dysprosium titanate Dy2Ti2O7.65 Let me emphasize 
again that any reference to magnetic monopoles in such systems should not be taken literally.  

 In order to complete this section (and this chapter), let me briefly discuss the magnetic field 
energy U, for the simplest case of systems with linear magnetic materials. In this case, we still may use 
Eq. (55), but if we want to operate only with macroscopic fields, and hence only stand-alone currents, 
we should repeat the manipulations that have led us to Eq. (57), using j not from Eq. (35), but from Eq. 
(107). As a result, instead of Eq. (57) we get 
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This result is evidently similar to Eq. (3.73) of electrostatics.  

As a simple but important example of its application, let us again consider a long solenoid (Fig. 
6a), but now filled with a linear magnetic material with permeability . Using the macroscopic Ampère 
law (116), just as we used Eq. (37) for the derivation of Eq. (40), we get  

                InH  ,     and hence InB  ,    (5.141) 

where n  N/l, just as in Eq. (40), is the winding density, i.e. the number of wire turns per unit length. 
(At  = 0, we immediately return to that old result.) Now we may plug Eq. (141) into Eq. (140) to 
calculate the magnetic energy stored in the solenoid: 

     
 

22

22 lAnI
lA

H
uVU


 ,     (5.142) 

and then use Eq. (72) to calculate its self-inductance:66 

               lAn
I

U
L 2

2 2/
      (5.143) 

 We see that L  V, so filling a solenoid with a high- material may allow making it more 
compact while preserving the same value of inductance. In addition, as the discussion of Fig. 15 has 
shown, such filling reduces the fringe fields near the solenoid's ends, which may be detrimental for some 
applications, especially in physical experiments striving for high measurement precision. 

65 See, e.g., L. Jaubert and P. Holdworth, J. Phys. – Cond. Matt. 23, 164222 (2011), and references therein. 
66 Admittedly, we could get the same result simpler, just by arguing that since the magnetic material fills the 
whole volume of a substantial magnetic field in this system, the filling simply increases the vector B at all points, 
and hence its flux , and hence L  /I by the factor /0 in comparison with the free-space value (75). 

Magnetic field  
energy: 
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 However, we still need to explore the issue of magnetic energy beyond Eq. (140), not only to get 
a general expression for it in materials with an arbitrary dependence B(H), but also to finally prove Eq. 
(54) and explore its relation with Eq. (53). I will do this at the beginning of the next chapter.  

 

5.7. Exercise problems 
 
 5.1. DC current I flows around a thin wire loop bent into the form of a plane equilateral triangle 
with side a. Calculate the magnetic field in the center of the loop. 
 
 5.2. A circular wire loop, carrying a fixed dc current, is placed inside a 
similar but larger loop, carrying a fixed current in the same direction – see the 
figure on the right. Use semi-quantitative arguments to analyze the 
mechanical stability of the coaxial and coplanar position of the inner loop 
with respect to its possible angular, axial, and lateral displacements relative to 
the outer loop. 
 
 5.3. Two planar, parallel, long, thin conducting strips of width w, 
separated by distance d, carry equal but oppositely directed currents I – see the 
figure on the right. Calculate the magnetic field in the plane located in the 
middle between the strips, assuming that the flowing currents are uniformly 
distributed across the strip widths. 
 

5.4. For the system studied in the previous problem, but now only in the limit  d << w, calculate: 

 (i) the distribution of the magnetic field in space, 
 (ii) the vector potential of the field, 
 (iii) the magnetic force (per unit length) exerted on each strip, and 
 (iv) the magnetic energy and self-inductance of the loop formed by the strips (per unit length). 
 
 

 5.5. Calculate the magnetic field distribution near the center of the system of 
two similar, plane, round, coaxial wire coils, carrying equal but oppositely directed 
currents – see the figure on the right. 
 
 

 5.6. The two-coil-system considered in the previous problem now carries 
equal and similarly directed currents – see the figure on the right.67 Calculate what 
should be the ratio d/R for the second derivative 2Bz/z2 to equal zero at z = 0. 

67 This Helmholtz coils system, producing a highly uniform field near its center, is broadly used in physical 
experiment. 
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 5.7. DC current of a constant density j flows along a round cylindrical wire of 
radius R, with a round cylindrical cavity of radius r cut in it. The cavity’s axis is 
parallel to that of the wire but offset from it by a distance d < R – r (see the figure on 
the right). Calculate the magnetic field inside the cavity. 

 
 
 5.8. Calculate the magnetic field’s distribution along the axis of a straight 
solenoid (see Fig. 6a, partly reproduced on the right) of a finite length l, and a 
round cross-section of radius R. Assume that the solenoid has many (N >> 1, l/R) 
wire turns, uniformly distributed along its length. 
 
 5.9. A thin round disk of radius R, carrying an electric charge of a constant areal density , 
rotates about its axis with a constant angular velocity . Calculate: 

 (i) the magnetic field on the disk’s axis, 
 (ii) the magnetic moment of the disk,  

and relate these results. 
 
 5.10. A thin spherical shell of radius R, with charge Q uniformly distributed over its surface, 
rotates about its diameter with a constant angular velocity . Calculate the distribution of the magnetic 
field everywhere in space. 
 
 5.11. A sphere of radius R, made of an insulating material with a uniform electric charge density 
, rotates about its diameter with a constant angular velocity . Calculate the magnetic field distribution 
inside the sphere and outside it. 
 
 5.12. A conducting sphere with no total electric charge is rotated about its diameter with a 
constant angular velocity , in a uniform constant external magnetic field B directed along the rotation 
axis. Assuming that the sphere’s contribution to the magnetic field is negligibly small, calculate the 
stationary distribution of the electric charge density inside the sphere and on its surface, and the 
electrostatic potential both inside and outside the sphere. Quantify the above assumption. 
 
 5.13.* The simplest version of the famous homopolar (or “unipolar”) 
motor is a thin round conducting disk, placed into a uniform magnetic field 
normal to its plane, with dc current passed between the disk’s center and a 
sliding electrode (“brush”) on its rim – see the figure on the right. 

 (i) Express the torque rotating the disk via its radius R, the magnetic 
field B, and the current I. 
 (ii) If the disk is allowed to rotate about its axis, and the motor is 
driven by a battery with e.m.f. V, calculate its stationary angular velocity , neglecting friction and the 
electric circuit’s resistance. 
 (iii) Now assuming that the current’s path (battery + wires + contacts + disk itself) has a non-
zero resistance R, derive and solve the equation for the time evolution of , and analyze the solution. 
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 5.14. The reader is hopefully familiar with the classical Hall effect in the usual rectangular Hall 
bar geometry – see the left panel of the figure below. However, the effect takes a different form in the 
so-called Corbino disk – see the right panel of the figure below. (Dark shading shows electrodes, with 
no appreciable resistance.) Analyze the effect in both geometries, assuming that in both cases, the 
conductors are thin and planar, have a constant Ohmic conductivity  and charge carrier density n, and 
that the applied magnetic field B is uniform and normal to conductors’ planes. 
 
 
 
 
 
 
 
  
 5.15. A wire with a round cross-section of radius a has been bent into a round loop of radius R 
>> a. Prove the formula for its self-inductance, which was mentioned at the end of Sec. 5.3 of the 
lecture notes: L = 0R ln(cR/a), with c ~ 1. 

 
 5.16. Prove that: 

 (i) the self-inductance L of a current loop cannot be negative, and 
 (ii)any inductance coefficient Lkk’, defined by Eq. (60), cannot be larger than (LkkLk’k’)

1/2. 
 
 5.17. Calculate the mutual inductance of two similar thin-wire 
square-shaped loops offset by distance h in the direction normal to their 
planes – see the figure on the right. 
 
 5.18.* Estimate the values of magnetic susceptibility due to  

 (i) orbital diamagnetism, and 
 (ii) spin paramagnetism, 

for a medium with negligible interactions between the induced molecular dipoles. Compare the results.   

 Hints: For Task (i), you may use the classical model described by Eq. (114) – see Fig. 13. For 
Task (ii), assume the ordering of spontaneous magnetic dipoles m0, with a fixed magnitude m0 of the 
order of the Bohr magneton B, similar to the one sketched for electric dipoles in Fig. 3.7a. 
 
 5.19.* Use the classical picture of the orbital (“Larmor”) diamagnetism, discussed in Sec. 5, to 
calculate its (small) contribution B(0) to the magnetic field B felt by an atomic nucleus, treating the 
electrons of the atom as a spherically symmetric cloud with an electric charge density (r). Express the 
result via the value (0) of the electrostatic potential of the electron cloud, and use this expression for a 
crude numerical estimate of the ratio B(0)/B for the hydrogen atom. 
 
 5.20. Calculate the self-inductance of a toroidal solenoid 
with a round cross-section of radius r ~ R, with N >> 1, R/r wire 
turns uniformly distributed along the perimeter, and filled with a 
linear magnetic material of permeability .  R0

r
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 5.21. A long, straight, thin wire carrying current I runs parallel to 
the plane boundary between two uniform, linear magnetic media – see 
the figure on the right. Calculate the magnetic field everywhere in the 
system, and the force (per unit length) exerted on the wire.  

 
  5.22. Solve the magnetic shielding problem similar to that discussed in Sec. 5.6 of the lecture 
notes, but for a spherical rather than cylindrical shell, with the same central cross-section as shown in 
Fig. 16. Compare the efficiency of those two shields, for the same shell’s permeability , and the same 
b/a ratio. 
  
 5.23. Calculate the magnetic field’s distribution around a spherical permanent magnet with 
uniform magnetization M0 = const.  
 
 5.24. A limited volume V is filled with a magnetic material with field-independent magnetization 
M(r). Write explicit expressions for the magnetic field induced by the magnetization and its potential, 
and recast these expressions into the forms that are more convenient when M(r) = M0 = const 
throughout the volume. 
 
 5.25. Use the results of the previous problem to calculate the 
distribution of the magnetic field H along the axis of a straight 
permanent magnet of length 2l and a round cross-section of radius 
R, with a uniform magnetization M0 parallel to the axis – see the 
figure on the right. 
 
 5.26. A flat end of a long straight permanent magnet, similar to that considered in the previous 
problem but with an arbitrary cross-section of area A, is stuck to a flat surface of a large sample of a 
linear magnetic material with a very high permeability  >> 0. Calculate the normally directed force 
needed to detach them. 
 
 5.27. A permanent magnet with a uniform magnetization M0 has the form of a spherical shell 
with an internal radius R1 and an external radius R2 > R1. Calculate the magnetic field inside the shell. 
 
 5.28. A very broad film of thickness 2t is permanently magnetized normally to its plane, with a 
periodic checkerboard pattern, with the square of area aa: 

    





 a

y

a

x
MyxMyxMztz


coscossgn,with  ,, 0nM . 

Calculate the magnetic field’s distribution in space. 
 
 5.29.* Based on the discussion of the quadrupole electrostatic lens in Sec. 2.4, suggest the 
permanent-magnet systems that may similarly focus particles moving close to the system’s axis, for the 
cases when each particle carries: 

 (i) an electric charge, 
 (ii) no net electric charge, but a spontaneous magnetic dipole moment m of a certain orientation. 
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Chapter 6. Electromagnetism 

This chapter discusses two major effects that arise when electric and magnetic fields change over time: 
the “electromagnetic induction” of an additional electric field by changing the magnetic field, and the 
reciprocal effect of the “displacement currents”– actually, the induction of an additional magnetic field 
by changing electric field. These two phenomena, which make time-dependent electric and magnetic 
fields inseparable (hence the term “electromagnetism”1), are reflected in the full system of Maxwell 
equations, valid for an arbitrary electromagnetic process. On the way toward this system, I will make a 
brief detour to review the electrodynamics of superconductivity, which (besides its own significance), 
provides a perfect platform for discussion of the important general issue of gauge invariance. 

 

6.1. Electromagnetic induction 

 As Eqs. (5.36) show, in static situations (/t = 0) the Maxwell equations describing the electric 
and magnetic fields are independent – more exactly, coupled only implicitly, via the continuity equation 
(4.5) relating their right-hand sides  and j. In dynamics, when the fields change in time, the situation is 
different.  

Historically, the first discovered explicit coupling between the electric and magnetic fields was 
the effect of electromagnetic induction. Although this effect was discovered independently by Joseph 
Henry, it was a brilliant series of experiments by Michael Faraday, carried out mostly in 1831, that 
resulted in the first general formulation of the induction law. The summary of Faraday’s numerous 
experiments has turned out to be very simple: if the magnetic flux defined by Eq. (5.65), 

        
S

n rdB 2Φ ,     (6.1) 

1 It was coined by H. Ørsted in 1820 in the context of his experiments – see the previous chapter. 

through a surface S limited by a closed contour C, changes in time by whatever reason (e.g., either due 
to a change of the magnetic field B (as in Fig.1), or the contour’s motion, or its deformation, or any 
combination of the above), it induces an additional, vortex-like electric field Eind directed along the 
contour – see Fig. 1.  

 

 

 

 

 

 
  
 The exact distribution of Eind in space depends on the system’s details, but its integral along the 
contour C, called the inductive electromotive force (e.m.f.), obeys a very simple Faraday induction law:  

Fig. 6.1. Two simplest ways to observe the Faraday electromagnetic induction. 
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dt

d
d

C

Φ
ind   rEindV .     (6.2) 

(In the Gaussian units, the right-hand side of this formula has an additional coefficient of 1/c.) 

 It is straightforward (and hence left for the reader’s exercise) to show that this e.m.f. may be 
measured, for example, either by inserting a voltmeter into a conducting loop following the contour C or 
by measuring the small current I = Vind/R it induces in a thin wire with a sufficiently large Ohmic 
resistance R,2 whose shape follows that contour – see Fig. 1. (Actually, these methods are not entirely 
different, because a typical voltmeter measures voltage by the small Ohmic current it drives through the 
pre-calibrated high internal resistance of the device.) In the context of the latter approach, the minus 
sign in Eq. (2) may be described by the following Lenz rule: the magnetic field of the induced current I 
provides a partial compensation of the change of the original flux (t) with time.3 

 In order to recast Eq. (2) in a differential form, more convenient in many cases, let us apply to 
the contour integral in it the Stokes theorem, which was repeatedly used in Chapter 5. The result is 

           
S

n rd 2
ind indEV .     (6.3) 

Now combining Eqs. (1)-(3), for a contour C whose shape does not change in time (so that the 
integration along it is interchangeable with the time derivative), we get 

        02 











S n

rd
t

B
Eind .    (6.4) 

 Since the induced electric field is an addition to the gradient field (1.33) created by electric 
charges, for the net field we may write E = Eind – . However, since the curl of any gradient field is 
zero,4 () = 0, Eq. (4) remains valid even for the net field E. Since this equation should be correct 
for any closed area S, we may conclude that 

                 0




t

B
E      (6.5) 

at any point. This is the final (time-dependent) form of this Maxwell equation. Superficially, it may look 
that Eq. (5) is less general than Eq. (2); for example, it does not describe any electric field, and hence 
any e.m.f. in a moving loop, if the field B is constant in time, even if the magnetic flux (1) through the 
loop does change in time. However, this is not true; in Chapter 9 we will see that in the reference frame 
moving with the loop, the e.m.f. does appear.5 

2 Such induced current is sometimes called the eddy current, though most often this term is reserved for the 
distributed currents induced by changing magnetic fields in bulk conductors – see Sec. 3 below. 
3 Let me also hope that the reader is familiar with the paradox arising at attempts to measure Vind with a voltmeter 
without its insertion into the wire loop; if not, I would highly recommend them to solve the offered Problem 2. 
4 See, e.g., MA Eq. (11.1). 
5 I have to admit that from the beginning of the course, I was carefully sweeping under the rug a very important 
question: in what exactly reference frame(s) all the equations of electrodynamics are valid? I promise to discuss 
this issue in detail later in the course (in Chapter 9), and for now would like to get away with a very short answer: 
all the formulas discussed so far are valid in any inertial reference frame, as defined in classical mechanics – see, 
e.g., CM Sec. 1.3; however, the fields E and B have to be measured in the same frame. 
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 Now let us reformulate Eq. (5) in terms of the vector potential A. Since the induction effect does 
not alter the fundamental relation   B = 0, we still may represent the magnetic field as prescribed by 
Eq. (5.27), i.e. as B =  × A. Plugging this expression into Eq. (5), and changing the order of the 
temporal and spatial differentiation, we get 

               0











t

A
E .     (6.6) 

Hence we can use the same argumentation as in Sec. 1.3 (there applied to the vector E alone) to 
represent the expression in the parentheses as –, so we get 

               AB
A

E 



  ,
t

.    (6.7) 

 It is very tempting to interpret the first term of the right-hand side of the expression for E as the 
one describing the electromagnetic induction alone, and the second term as representing a purely 
electrostatic field induced by electric charges. However, the separation of these two terms is, to a certain 
extent, conditional. Indeed, let us consider the gauge transformation already mentioned in Sec. 5.2, 

        AA ,     (6.8) 

that, as we already know, does not change the magnetic field. According to Eq. (7), to keep the full 
electric field intact (gauge-invariant) as well, the scalar electric potential has to be transformed 
simultaneously, as 

        
t




 ,      (6.9) 

leaving the choice of an addition to  restricted only by the Laplace equation – since the full  should 
satisfy the Poisson equation (1.41) with a gauge-invariant right-hand side. We will return to the 
discussion of the gauge invariance in Sec. 4. 

 

6.2. Magnetic energy revisited 

 Now we are sufficiently equipped to revisit the issue of magnetic energy, in particular, to finally 
prove Eqs. (5.57) and (5.140), and discuss the dichotomy of the signs in Eqs. (5.53) and (5.54). For that, 
let us consider a sufficiently slow and small magnetic field variation B. If we want to neglect the 
kinetic energy of the system of electric currents under consideration, as well as the wave radiation 
effects, we need to prevent its significant acceleration by the arising induction field Eind.  Let us suppose 
that we do this by virtual balancing of this field by an external electric field Eext  = –Eind. According to 
Eq. (4.38), the work of that field6 on the stand-alone currents of the system during a small time interval 
t, and hence the change of the potential energy of the system, is 

        
VV

rdδtrdδt UU 3
ind

3
ext  that  so, EjEj  ,   (6.10) 

6 As a reminder, the magnetic component of the Lorentz force (5.10), vB, is always perpendicular to the particle 
velocity v, so the magnetic field B itself cannot perform any work on moving charges, i.e. on currents. 

Fields via 
potentials 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 6                 Page 4 of 38 

where the integral is over the volume of the system. Now expressing the current density j from the 
macroscopic Maxwell equation (5.107), j =   H, and then applying the vector algebra identity7  

         HEEHEH  indindind  ,   (6.11) 

we get 
        

VV

rdδtrdδtU 33 HEEH  .   (6.12) 

 According to the divergence theorem, the second integral in the right-hand of this equality is 
equal to the flux of the so-called Poynting vector S  E  H through the surface limiting the considered 
volume V. Later in the course we will see that this flux represents, in particular, the power of 
electromagnetic radiation through the surface. If such radiation is negligible (as it always is if the field 
variation is sufficiently slow), the surface may be selected sufficiently far, so that the flux of S vanishes. 
In this case, we may express   E from the Faraday induction law (5) to get 

           











VV

rdrd
t

B
δtU 33 BHH  .    (6.13) 

Just as in the electrostatics (see Eqs. (1.65) and (3.73), and their discussion), this relation may be 
interpreted as the variation of the magnetic field energy U of  the system, and represented in the form 

          BHr δurduU
V

   with  ,3 .    (6.14) 

This is a keystone result; let us discuss it in some detail.  

 First of all, for a system filled with a linear and isotropic magnetic material, we may use Eq. (14) 
together with Eq. (5.110): B = H. Integrating the result over the variation of the field from 0 to a 
certain final value B, we get Eq. (5.140) – so important that it deserves rewriting again:  

      
2

with  ,
2

3 B
urduU

V

  r .    (6.15) 

In the simplest case of free space (no magnetics at all, so j above is the complete current density), we 
may take  = 0, and reduce Eq. (15) to Eq. (5.57). Now performing backward the transformations that 
took us, in Sec. 5.3, to derive that relation from Eq. (5.54), we finally have the latter formula proved – as 
was promised in the last chapter. 

 It is very important, however, to understand the limitations of Eq. (15). For example, let us try to 
apply it to a very simple problem, which was already analyzed in Sec. 5.6 (see Fig. 5.15): a very long 
cylindrical sample of a linear magnetic material placed into a fixed external field Hext parallel to the 
sample’s length. It is evident that in this simple geometry, the field H and hence the field B = H have 
to be uniform inside the sample, besides negligible regions near its ends, so Eq. (15) is reduced to 

        V
B

U
2

2

 ,      (6.16) 

7 See, e.g., MA Eq. (11.7) with f = Eind and g = H. 

Magnetic 
energy’s 
variation 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 6                 Page 5 of 38 

where V = Al is the cylinder’s volume. Now if we try to calculate the static (equilibrium) value of the 
field from the minimum of this potential energy, we get evident nonsense: B = 0 (WRONG!).8 

 The situation may be readily rectified by using the notion of the Gibbs potential energy, just as it 
was done for the electric field in Sec. 3.5 (and implicitly in the end of Sec. 1.3). According to Eq. (14), 
in magnetostatics, the Cartesian components of the field H(r) play the role of the generalized forces, 
while those of the field B(r), of the generalized coordinates (per unit volume).9 As the result, the Gibbs 
potential energy, whose minimum corresponds to the stable equilibrium of the system under the effect of 
a fixed generalized force (in our current case, of the fixed external field Hext), is 
    

               rBrHrrr   extG
3

GG with  , uurduU
V

,   (6.17) 

– the expression parallel to Eq. (3.78). For a system with linear magnetics, we may use, for the energy 
density u(r), our result (15), getting the following Gibbs energy’s density: 

        const
2

1

2

1
)( 2

extextG  HBBHBBr 


u ,   (6.18) 

where “const” means a term independent of the field B inside the sample. For our simple cylindrical 
system, with its uniform fields, Eqs. (17)-(18) gives the following full Gibbs energy of the sample: 

               
 

const
2

2
extint

G 


 VU

HB

,    (6.19) 

whose minimum immediately gives the correct stationary value Bint = Hext, i.e. Hint  Bint/ = Hext, 
which was already obtained in Sec. 5.6 in a different way, from the boundary condition (5.117). 

 Now notice that with this result on hand, Eq. (18) may be rewritten in a different form: 

              
 22

1
)(

2

G

B
u  B

B
BBr ,    (6.20) 

similar to Eq. (15) for u(r), but with an opposite sign. This sign dichotomy explains that of Eqs. (5.53) 
and Eq. (5.54); indeed, as was already noted in Sec. 5.3, the former of these expressions gives the 
potential energy whose minimum corresponds to the equilibrium of a system with fixed currents. (In our 
current example, these are the external stand-alone currents inducing the field Hext.) So, the energy Uj 
given by Eq. (5.53) is essentially the Gibbs energy UG defined by Eqs. (17) and (for the equilibrium 
state of linear magnetic media) by Eq. (20), while Eq. (5.54) is just another form of Eq. (15) – as was 
explicitly shown in Sec. 5.3.10 

8 This erroneous result cannot be corrected by just adding the energy of the field outside the cylinder because in 
the limit A  0, this field is not affected by the internal field B.   
9 Note an aspect in that the analogy with electrostatics is not quite complete. Indeed, according to Eq. (3.76), in 
electrostatics, the role of a generalized coordinate is played by the “would-be” field D, and that of the generalized 
force, by the actual (if macroscopic) electric field E. This difference may be traced back to the fact that the 
electric field E may perform work on a moving charged particle, while the magnetic field cannot. However, this 
difference does not affect the full analogy of the expressions (3.73) and (15) for the field energy density in linear 
media. 
10 As was already noted in Sec. 5.4, one more example of the energy Uj (i.e. UG) is given by Eq. (5.100). 
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  Let me complete this section by stating that the difference between the energies U and UG is not 
properly emphasized (or even left obscure) in some textbooks, so the reader is advised to get additional 
clarity by solving a few additional simple problems – for example, by spelling out these energies for a 
long straight solenoid (Fig. 5.6a), and then using the results to calculate the pressure exerted by the 
magnetic field on the solenoid’s walls (windings) and the longitudinal forces exerted on its ends. 

 

6.3. Quasistatic approximation and skin effect 

 Perhaps the most surprising experimental fact concerning the time-dependent electromagnetic 
phenomena is that unless they are so fast that one more new effect of the displacement currents (to be 
discussed in Sec. 7 below) becomes noticeable, all formulas of electrostatics and magnetostatics remain 
valid, with the only exception: the generalization of Eq. (3.36) to Eq. (5), describing the Faraday 
induction. As a result, the system of macroscopic Maxwell equations (5.109) is generalized to 

              
.0 ,

,,0
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
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

BD

jH
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


t     (6.21) 

(As it follows from the discussions in chapters 3 and 5, the corresponding system of microscopic 
Maxwell equations for the genuine, “microscopic” fields E and B may be obtained from Eq. (21) by the 
formal substitutions D = 0E and H = B/0, and the replacement of the stand-alone charge and current 
densities  and j with their full densities.11) These equations, whose range of validity will be quantified 
in Sec. 7, define the so-called quasistatic approximation of electromagnetism and are sufficient for an 
adequate description of a broad range of physical effects. 

In order to form a complete system of equations, Eqs. (21) should be augmented by constituent 
equations describing the medium under consideration. For a linear isotropic material, they may be taken 
in the simplest (and simultaneously, most common) linear and isotropic forms already discussed in 
Chapters 4 and 5: 
            HBEj   , .     (6.22) 

If the conductor is uniform, i.e. the coefficients   and  are constant inside it, the whole system of Eqs. 
(21)-(22) may be reduced to just one simple equation. Indeed, a sequential substitution of these 
equations into each other, using a well-known vector-algebra identity12 in the middle, yields: 
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 (6.23) 

 Thus we have arrived, without any further assumptions, at a rather simple partial differential 
equation. Let us use it for an analysis of the so-called skin effect, the phenomenon of an Ohmic 
conductor’s self-shielding from the alternating (ac) magnetic field. In its simplest geometry (Fig. 2a), an 

11 Obviously, in free space, the last replacement is unnecessary, because all charges and currents may be treated as 
“stand-alone” ones. 
12 See, e.g., MA Eq. (11.3). 
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external source (which, at this point, does not need to be specified) produces, near a plane surface of a 
bulk conductor, a spatially-uniform ac magnetic field H(0)(t) parallel to the surface.13  

 

 

 

 

 

 

  

  
  

Selecting the coordinate system as shown in Fig. 2a, we may express this condition as 

                
yx tH nH )(0

0 .     (6.24) 

The translational symmetry of our simple problem within the surface plane [y, z] implies that inside the 
conductor, /y = /z = 0 as well, and H = H(x, t)ny even at x  0, so Eq. (23) for the conductor’s 
interior is reduced to a differential equation for just one scalar function H(x, t) = B(x, t)/: 

               0for  ,
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This equation may be further simplified by noticing that due to its linearity, we may use the linear 
superposition principle for the time dependence of the field,14 via expanding it, as well as the external 
field (24), into the Fourier series: 
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    (6.26) 

and arguing that if we know the solution for each frequency component of the series, the whole field 
may be found through the straightforward summation (26) of these solutions.  

 For each single-frequency component, Eq. (25) is immediately reduced to an ordinary 
differential equation for the complex amplitude H(x):15 

13 Due to the simple linear relation B = H between the fields B and H, it does not matter too much which of 
them is used for the solution of this problem, with a slight preference for H, due to the simplicity of Eq. (5.117) – 
the only boundary condition relevant for this simple geometry. 
14 Another way to exploit the linearity of Eq. (6.25) is to use the spatial-temporal Green’s function approach to 
explore the dependence of its solutions on various initial conditions. Unfortunately, because of a lack of time, I 
have to leave an analysis of this opportunity for the reader’s exercise. 
15 Let me hope that the reader is not intimidated by the (very convenient) use of such complex variables for 
describing real fields; their imaginary parts always disappear at the final summation (26). For example, if the 

Fig. 6.2. (a) The skin effect in 
the simplest, planar geometry, 
and (b) two Ampère contours, 
C1 and C2, for deriving the 
“macroscopic” (C1) and the 
“coarse-grain” (C2) boundary 
conditions for H. 
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            
 H
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d
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2

21
 .     (6.27) 

From the theory of linear ordinary differential equations, we know that Eq. (27) has the following 
general solution: 

        
xx

eHeHxH 
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 )( ,    (6.28) 

where the constants  are the roots of the characteristic equation that may be obtained by the 
substitution of any of these two exponents into the initial differential equation. For our particular case, 
the characteristic equation following from Eq. (27) is simply 

         



2

 i       (6.29) 

and its roots are, obviously, 

               2/12/1
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 .    (6.30) 

 For our problem, the field cannot grow exponentially at x  +, so only one of the coefficients, 
namely the H– corresponding to the decaying exponent, with Re – < 0, may be different from zero, i.e. 
H(x) = H(0)exp{–x}. To find the constant factor H(0), we can integrate the macroscopic Maxwell 
equation   H = j along a pre-surface contour – say, the contour C1 shown in Fig. 2b. The right-hand 
side’s integral is negligible because the stand-alone current density j does not include the “genuinely-
surface” currents responsible for the magnetic permeability  – see Fig. 5.12. As a result, we get  the 
boundary condition similar to Eq. (5.117) for the stationary magnetic field: H  = const at x = 0, giving 
us 

             00 0  i.e.,,0  HHtHtH  ,    (6.31) 

so the final solution of our boundary problem may be represented as 
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where the constant s, with the dimension of length, is called the skin depth: 
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 This solution describes the skin effect: the penetration of the ac magnetic field, and the eddy 
currents j, into a conductor only to a finite depth of the order of s. Let me give a few numerical 
examples of this depth: for copper at room temperature, s   1 cm at the usual ac power distribution 
frequency of 60 Hz, and is of the order of just 1 m at a few GHz, i.e. at typical frequencies of cell 
phone signals and kitchen microwave magnetrons. On the other hand, for lightly salted water, s is close 
to 250 m at just 1 Hz (with significant implications for radio communications with submarines), and of 

external field is purely sinusoidal, with the actual (positive) frequency , each sum in Eq. (26) has just two terms, 
with complex amplitudes H and H-  = H*, so their sum is always real. (For a more detailed discussion of this 
issue, see, e.g., CM Sec. 5.1.) 

Skin  
depth 
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the order of 1 cm at a few GHz  (explaining, in particular, the nonuniform heating of a soup bowl in a 
microwave oven).16  

 Let me hope that the equality chain (23) makes the physics of this effect very clear: the external 
electric field E, which is Faraday-induced by an external ac magnetic field, drives the eddy currents j, 
which in turn induce their own magnetic field that eventually (at x ~ s) compensates the external one. 
Let us quantify these E and j. Since we have used, in particular, relations j =   H =  × B/, and E = 
j/, and spatial differentiation of an exponent yields a similar exponent, the electric field and current 
density have the same spatial dependence as the magnetic field, i.e. penetrate the conductor only by 
distances of the order of s(). Their vectors are directed normally to B, while still being parallel to the 
conductor’s surface:17 

                zz xHxxHx nEnj )(,)(  


 
  .   (6.34) 

 We may use these expressions, in particular,  to calculate the time-averaged power density (4.39) 
of the energy dissipation, for the important case of a sinusoidal (“monochromatic”) field H(x, t) = H(x) 
cos(t + ), and hence sinusoidal eddy currents: j(x, t) = j(x) cos(t + ’): 
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Now the (elementary) integration of this expression along the x-axis (through all the skin depth), using 
the exponential law (6.32), gives us the following average power of the energy loss per unit area: 
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We will extensively use this expression in the next chapter to calculate the energy losses in microwave 
waveguides and resonators with conducting (practically, metallic) walls, and for now let me note only 
that according to Eqs. (33) and (36), for a fixed magnetic field amplitude, the losses grow with 
frequency as 1/2. 

One more important remark concerning Eqs. (34): integrating the first of them over x, with the 
help of Eq. (32), we may see that the linear density J of the surface currents (measured in A/m), is 
simply and fundamentally related to the applied magnetic field: 

      
zHdxx njJ 0

0

  


.     (6.37) 

Since this relation does not have any frequency-dependent factors, we may sum it up for all frequency 
components, and get a universal relation  

                           nHnHnnnJ  tttHtHt xxyz
0000 ,  (6.38a) 

16 Let me hope that the reader’s physical intuition makes it evident that the skin effect remains conceptually the 
same for samples of any shape, besides possibly some quantitative details of the field distribution. 
17 The loop (vortex) character of the induced current lines, responsible for the term “eddy”, is not very apparent in 
the 1D geometry explored above, with the near-surface currents (Fig. 2b) looping only implicitly, at z  .  
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(where n = –nx is the outer normal to the surface – see Fig. 2b) or, in a different form, 

                  ),(tt JnH       (6.38b) 

where H is the full change of the field through the skin layer. This simple coarse-grain relation 
(independent of the choice of coordinate axes), is also independent of the used constituent relations (22), 
and is by no means occasional. Indeed, it may be readily obtained from the macroscopic Ampère law 
(5.116), by applying it to a contour drawn around a fragment of the surface, extending under it 
substantially deeper than the skin depth – see the contour C2 in Fig. 2b. Hence, Eq. (38) is valid 
regardless of the exact law of the field penetration.  

For the skin effect, this fundamental relationship between the linear current density and the 
external magnetic field implies that the skin effect’s implementation does not necessarily require a 
dedicated ac magnetic field source. For example, the effect takes place in any wire that carries an ac 
current, leading to a current’s concentration in a surface sheet of thickness ~s. (Of course, the 
quantitative analysis of this problem in a wire with an arbitrary cross-section may be technically 
complicated, because it requires solving Eq. (23) for the corresponding 2D geometry; even for the round 
cross-section, the solution involves the Bessel functions.) In this case, the ac magnetic field outside the 
conductor, which still obeys Eq. (38), may be better interpreted as the effect, rather than the cause, of 
the ac current flow. 

 Finally, please mind the limited validity of all the above results. First, for the quasistatic 
approximation to be valid, the field frequency  should not be too high, so the displacement current 
effects are negligible. (Again, this condition will be quantified in  Sec. 7 below; it will show that for 
metals, the condition is violated only at extremely high frequencies above ~1018 s-1.) A more practical 
upper limit on  is that the skin depth s should stay much larger than the mean free path l of charge 
carriers,18 because beyond this point, the constituent relation between the vectors j(r) and E(r) becomes 
essentially non-local. Both theory and experiment show that at s below l, the skin effect persists, but 
acquires a frequency dependence slightly different from Eq. (33): s  –1/3 rather than –1/2. 
Historically, this anomalous skin effect has been very useful for the measurements of the Fermi surfaces 
of metals.19 

  

6.4. Electrodynamics of superconductivity, and the gauge invariance 

 The effect of superconductivity20 takes place (in certain materials only, mostly metals) when 
temperature T is reduced below a certain critical temperature Tc specific for each material. For most 
metallic superconductors, Tc is of the order of typically a few kelvins, though several compounds (the 
so-called high-temperature superconductors) with Tc above 100 K have been found since 1987. The 
most notable property of superconductors is the absence, at T < Tc, of measurable resistance to (not very 
high) dc currents. However, the electromagnetic properties of superconductors cannot be described by 
just taking   =  in our previous results. Indeed, for this case, Eq. (33) would give s = 0, i.e., no ac 

18 A discussion of the mean free path may be found, for example, in SM Chapter 6. In very clean metals at very 
low temperatures, s may approach l at frequencies as low as  ~1 GHz, but at room temperature, the crossover 
between the normal to the anomalous skin effect takes place only at ~ 100 GHz. 
19 See, e.g., A. Abrikosov, Introduction to the Theory of Normal Metals, Academic Press, 1972. 
20 Discovered experimentally in 1911 by Heike Kamerlingh Onnes. 
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magnetic field penetration at all. Experiment shows something substantially different: weak magnetic 
fields do penetrate into superconductors by a material-specific distance L ~ 10-7-10-6 m, the so-called 
London’s penetration depth,21  which is virtually frequency-independent until the skin depth s, of the 
same material in its “normal” state, i.e. the absence of superconductivity, becomes less than L. (This 
crossover happens typically at frequencies  ~ 1013-1014 s-1.) The smallness of L on the human scale 
means that the magnetic field is pushed out from macroscopic samples at their transition into the 
superconducting state. 

 This Meissner-Ochsenfeld effect, discovered experimentally in 1933,22 may be partly understood 
using the following classical reasoning. Our discussion of the Ohm law in Sec. 4.2 implied that the 
current’s (and hence the electric field’s) frequency   is either zero or sufficiently low. In the classical 
Drude reasoning, this is acceptable while  << 1, where  is the effective carrier scattering time 
participating in Eqs. (4.12)-(4.13). If this condition is not satisfied, we should take into account the 
charge carrier inertia; moreover, in the opposite limit  >> 1, we may neglect the scattering at all. 
Classically, we can describe the charge carriers in such a “perfect conductor” as particles with a non-
zero mass m, which are accelerated by the electric field following the 2nd Newton law (4.11), 

       EFv qm  ,     (6.39) 

so the current density j = qnv that they create, changes in time as 
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In terms of the Fourier amplitudes of the functions j(t) and E(t), this means 
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Comparing this formula with the relation j = E implied in the last section, we see that we can use all 
its results with the following replacement: 

         



m

nq
i

2

 .      (6.42)  

This change replaces the characteristic equation (29) with  
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i.e. replaces the skin effect with the field penetration by the following frequency-independent depth: 
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Superficially, this means that the field decay into the superconductor does not depend on frequency: 

21 Named so to acknowledge the pioneering theoretical work of brothers Fritz and Heinz London – see below. 
22 It is hardly fair to shorten this name to just the “Meissner effect” as it is frequently done, because of the 
reportedly crucial contribution by Robert Ochsenfeld, then a Walther Meissner’s student, to the discovery. 
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          /),0(),( xetHtxH  ,     (6.45) 

thus explaining the Meissner-Ochsenfeld effect.  

 However, there are two problems with this result. First, for the parameters typical for good 
metals (q = –e, n ~ 1029 m-3, m ~ me,   0), Eq. (44) gives   ~ 10-8 m, one or two orders of magnitude 
lower than the experimental values of L. Experiment also shows that the penetration depth diverges at T 
 Tc, which is not predicted by Eq. (44).  

 The second,  much more fundamental problem with Eq. (44) is that it has been derived for   
>> 1. Even if we assume that somehow there is no scattering at all, i.e.   = , at   0 both parts of the 
characteristic equation (43) vanish, and we cannot make any conclusion about . This is not just a 
mathematical artifact we could ignore. For example, let us place a non-magnetic metal into a static 
external magnetic field at T > Tc. The field would completely penetrate the sample. Now let us cool it. 
As soon as the temperature is decreased below Tc, the above calculations would become valid, 
forbidding the penetration into the superconductor of any change of the field, so the initial field would 
be “frozen” inside the sample. The Meissner-Ochsenfeld experiments have shown something completely 
different: as T is lowered below Tc, the initial field is being expelled out of the sample.  

 The resolution of these contradictions is provided by quantum mechanics. As was explained in 
1957 in a seminal work by J. Bardeen, L. Cooper, and J. Schrieffer (commonly referred to as the BCS 
theory), superconductivity is due to the correlated motion of electron pairs, with opposite spins and 
nearly opposite momenta. Such Cooper pairs, each with the electric charge q = –2e and zero spin, may 
form only in a narrow energy layer near the Fermi surface, of a certain thickness (T).  This parameter 
(T), which may be also interpreted as the binding energy of the pair, tends to zero at T  Tc, while at T 
<< Tc it has a virtually constant value (0)  3.5 kBTc, of the order of a few meV for most 
superconductors. This fact readily explains the relatively low spatial density of the Cooper pairs: np ~ 
n(T)/F ~ 1026 m-3. With the correction n  np, Eq. (44) for the penetration depth becomes 
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This result diverges at T  Tc, and generally fits the experimental data reasonably well, at least for the 
so-called “clean” superconductors with the mean free path l = vF (where vF ~ (2mF)1/2 is the r.m.s. 
velocity of electrons on the Fermi surface) much longer than the Cooper pair size  – see below. 

 The smallness of the coupling energy (T) is also a key factor in the explanation of the 
Meissner-Ochsenfeld effect. Because of Heisenberg’s quantum uncertainty relation rp ~ , the spatial 
extension of the Cooper-pair’s wavefunction (the so-called coherence length of the superconductor) is 
relatively large:   ~ r ~ /p ~ vF/(T) ~ 10-6 m. As a result, np3 >> 1, meaning that the 
wavefunctions of the pairs are strongly overlapped in space. Due to their integer spin, Cooper pairs 
behave like bosons, which means in particular that at low temperatures they exhibit the so-called Bose-
Einstein condensation onto the same ground energy level g.23 This means that the quantum frequency  

23 A quantitative discussion of the Bose-Einstein condensation of bosons may be found in SM Sec. 3.4, though 
the full theory of superconductivity is more complicated because it has to describe the condensation taking place 
simultaneously with the formation of effective bosons (Cooper pairs) from fermions (single electrons). For a 
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= g/ of the time evolution of each pair’s wavefunction  = exp{–it} is exactly the same and that 
the phases  of the wavefunctions, defined by the relation 

           ie ,      (6.47) 

coincide, so the electric current is carried not by individual Cooper pairs but rather by their Bose-
Einstein condensate described by a single wavefunction (47). Due to this coherence, the quantum effects 
(which are, in the usual Fermi-gases of single electrons, masked by the statistical spread of their 
energies, and hence of their phases), become very explicit – “macroscopic”. 

 To illustrate this, let us write the well-known quantum-mechanical formula for the probability 
current density of a free, non-relativistic particle,24 
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where c.c. means the complex conjugate of the previous expression. Now let me borrow one result that 
will be proved later in this course (in Sec. 9.7) when we discuss the analytical mechanics of a charged 
particle moving in an electromagnetic field. Namely, to account for the magnetic field effects, the 
particle’s kinetic momentum p  mv (where v   dr/dt is the particle’s velocity) has to be distinguished 
from its canonical momentum,25 
        ApP q .      (6.49) 

where A is the field’s vector potential defined by Eq. (5.27). In contrast with the Cartesian components 
pj = mvj of the kinetic momentum p, the canonical momentum’s components are the generalized 
momenta corresponding to the Cartesian components rj of the radius-vector r, considered as generalized 
coordinates of the particle: Pj = L /vj, where L  is the particle’s Lagrangian function. According to the 
general rules of transfer from classical to quantum mechanics,26 it is the vector P whose operator (in the 
coordinate representation) equals –i, so the operator of the kinetic momentum p = P – qA is –i + 
qA. Hence, to account for the magnetic field27 effects, we should make the following replacement, 

            Aqii    ,     (6.50) 

in all quantum-mechanical relations. In particular, Eq. (48) has to be generalized as 

             c.c.
2

1
   Aj qi

mw  .    (6.51) 

This expression becomes more transparent if we take the wavefunction in form (47); then 

detailed, but still very readable coverage of the physics of superconductors, I can recommend the reader the 
monograph by M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. 
24 See, e.g., QM Sec. 1.4, in particular Eq. (1.47). 
25 I am sorry to use traditional notations p and P for the momenta – the same symbols which were used for the 
electric dipole moment and polarization in Chapter 3. I hope there will be no confusion because the latter notions 
are not used in this section. 
26 See, e.g., CM Sec. 10.1, in particular Eq. (10.26). 
27 The account of the electric field is easier, because the related energy q of the particle may be directly included 
in the potential energy operator. 
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This relation means, in particular, that in order to keep jw gauge-invariant, the transformation (8)-(9) has 
to be accompanied by a simultaneous transformation of the wavefunction’s phase: 

      


q
 .      (6.53) 

It is fascinating that the quantum-mechanical wavefunction (or more exactly, its phase) is not gauge-
invariant, meaning that you may change it in your mind – at your free will! Again, this does not change 
any observable (such as jw or the probability density *), i.e. any experimental results. 

 Now for the electric current density of the whole superconducting condensate, Eq. (52) yields 
the following constitutive relation: 

            





  Ajj



 q

m

qn
qnw  2p

p ,    (6.54) 

The formula shows that this supercurrent may be induced by the dc magnetic field alone and does not 
require any electric field. Indeed, for the simple 1D geometry shown in Fig. 2a, j(r) = j(x)nz, A(r) = A(x) 
nz, and /z = 0, so the Coulomb gauge condition (5.48) is satisfied for any choice of the gauge function 
(x). For the sake of simplicity we can choose this function to provide (r)  const,28 so 

         AAj
2
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p
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1




m

nq
.     (6.55) 

where L is given by Eq. (46), and the field is assumed to be small and hence not affecting the 
probability 2 (here normalized to 1 in the absence of the field). This is the so-called London equation, 
proposed (in a different form) by F. and H. London in 1935 for the Meissner-Ochsenfeld effect’s 
explanation. Combining it with Eq. (5.44), generalized for a linear magnetic medium by the replacement 
0  , we get 

         AA
2
L

2 1


 ,      (6.56) 

For our 1D geometry, this simple differential equation, similar to Eq. (23), has an exponential solution 
similar to Eq. (32): 
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which shows that the magnetic field and the supercurrent penetrate into a superconductor only by 
London’s penetration depth L, regardless of frequency.29 By the way, integrating the last result through 
the penetration layer, and using the vector potential’s definition, B =   A (for our geometry, giving 

28 This is the so-called London gauge; for our simple geometry, it is also the Coulomb gauge (5.48). 
29 Since at T > 0, not all electrons in a superconductor form Cooper pairs, at any frequency   0 the unpaired 
electrons provide energy-dissipating Ohmic currents, which are not described by Eq. (54). These losses become 
very substantial when the frequency  becomes so high that the skin-effect length s of the material becomes less 
than L. For typical metallic superconductors, this crossover takes place at frequencies of a few hundred GHz, so 
even for microwaves, Eq. (57) still gives a fairly accurate description of the field penetration. 

Supercurrent  
density 
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B(x) = dA(x)/dx = –LA(x)) we may readily verify that the linear density J of the surface supercurrent 
still satisfies the universal coarse-grain relation (38).  

 This universality should bring to our attention the following common feature of the skin effect 
(in “normal” conductors) and the Meissner-Ochsenfeld effect (in superconductors): if the linear size of a 
bulk sample is much larger than, respectively, s or L, than B = 0 in the dominating part of its interior. 
According to Eq. (5.110), a formal description of such conductors (valid only on a coarse-grain scale 
much larger than either s or L), may be achieved by formally treating the sample as an ideal 
diamagnet, with  = 0. In particular, we can use this description and Eq. (5.124) to immediately obtain 
the magnetic field’s distribution outside of a bulk sphere: 

             Rr
r

R
rHm 








 for  ,cos

2
with  ,

2

3

0m00  HB .  (6.58) 

 Figure 3 shows the corresponding surfaces of equal potential m. It is evident that the magnetic 
field lines (which are normal to the equipotential surfaces) bend to become parallel to the surface near it.  

   

 

 

 

 

 

 

 

 

 This pattern also helps to answer the question that might arise at making the assumption (24): 
what happens to bulk conductors placed into a normal ac magnetic field – and to superconductors in a 
normal dc magnetic field as well? The answer is: the field is deformed outside of the conductor to 
sustain the following coarse-grain boundary condition:30 

        0surfacenB ,      (6.59) 

which follows from Eq. (5.118) and the coarse-grain requirement Binside = 0.  

 This answer should be taken with reservations. For normal conductors, it is only valid at 
sufficiently high frequencies where the skin depth (33) is relatively small: s << a, where a is the scale 
of the conductor’s linear size – for a sphere, a ~ R. In superconductors, this simple picture requires not 
only that s << a, but also that magnetic field is relatively low because strong fields do penetrate 

30 Sometimes this boundary condition, as well as the (compatible) Eq. (38), are called “macroscopic”. However, 
this term may lead to confusion with the genuine macroscopic boundary conditions (5.117)-(5.118), which also 
ignore the atomic-scale microstructure of the “effective currents” jef = M, but (as was shown earlier in this 
section) still allow explicit, detailed accounts of the skin-current (34) and supercurrent (55) distributions. 

Fig. 6.3. Equipotential surfaces 
m  = const around a conducting 
sphere of radius R >> s (or L), 
placed into a uniform magnetic 
field, calculated within the 
coarse-grain (ideal-diamagnet) 
approximation  = 0.  

0H

Coarse- 
grain  

boundary 
condition 
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superconductors, destroying superconductivity (either completely or partly), and as a result violating the 
Meissner-Ochsenfeld effect – see the next section. 

 

6.5. Electrodynamics of macroscopic quantum phenomena31 

 Despite the superficial similarity of the skin effect and the Meissner-Ochsenfeld effect, the 
electrodynamics of superconductors is much richer. For example, let us use Eq. (54) to describe the 
fascinating effect of magnetic flux quantization. Consider a closed ring/loop (not necessarily a round 
one) made of a superconducting “wire” with a cross-section much larger than L

2 (Fig. 4a). 

 

 

 

 

 

  

  

 

 
 

From the last section’s discussion, we know that deep inside the wire the supercurrent is 
exponentially small. Integrating Eq. (54) along any closed contour C that does not approach the surface 
closer than a few L at any point (see the dashed line in Fig. 4), so with j = 0 at all its points, we get 

        0 
C C

d
q

d rAr


 .     (6.60) 

The first integral, i.e. the difference of  in the initial and final points, has to be equal to either zero or 
an integer number of 2 because the change    + 2n does not change the Cooper pair’s 
condensate’s wavefunction: 

                    ini ee' 2 .    (6.61) 

On the other hand, according to Eq. (5.65), the second integral in Eq. (60) is just the magnetic flux  
through the contour.32 As a result, we get a wonderful result: 

31 The material of this section is not covered in most E&M textbooks, and will not be used in later sections of this 
course. Thus the “only” loss due to the reader’s skipping this section would be the lack of familiarity with one of 
the most fascinating fields of physics. Note also that we already have virtually all formal tools necessary for its 
discussion, so reading this section should not require much effort.  
32 Due to the Meissner-Ochsenfeld effect, the exact path of the contour is not important, and we may discuss  
just as the magnetic flux through the ring. 

Fig. 6.4. (a) A closed, flux-quantizing superconducting ring, (b) a ring with a narrow slit, 
and (c) a Superconducting QUantum Interference Device (SQUID). 
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

,   (6.62) 

saying that the magnetic flux inside any superconducting loop can only take values multiple of the flux 
quantum 0. This effect, predicted in 1950 by the same Fritz London (who expected q to be equal to the 
electron charge –e), was observed experimentally in 1961,33 but with q = 2e – so 0  2.0710-15 Wb. 
Historically, this observation gave decisive support to the BCS theory of superconductivity (implying 
Cooper pairs with charge q = –2e) that had been put forward just four years earlier.  

 Note the truly macroscopic character of this quantum effect: it has been repeatedly observed in 
human-scale superconducting loops, and from what is known about superconductors, there is no doubt 
that if we had made a giant superconducting wire loop extending, say, over the Earth’s equator, the 
magnetic flux through it would still be quantized – though with a very large flux quanta number n. This 
means that the quantum coherence of Bose-Einstein condensates may extend over, using H. Casimir’s 
famous expression, “miles of dirty lead wire”. (Lead is a typical superconductor, with Tc  7.2 K, and 
indeed retains its superconductivity even being highly contaminated by impurities.) 

 Moreover, hollow rings are not entirely necessary for flux quantization. In 1957, A. Abrikosov 
explained the counter-intuitive high-field behavior of superconductors with L > 2, known 
experimentally as their mixed (or “Shubnikov”) phase since the 1930s. He showed that a sufficiently 
high magnetic field may penetrate such superconductors in the form of self-formed magnetic field 
“threads” (or “tubes”) surrounded by vortex-shaped supercurrents – the so-called Abrikosov vortices. In 
the simplest case, the core of such a vortex is a straight line, on which the superconductivity is 
completely suppressed ( = 0), surrounded by circular, axially-symmetric, persistent supercurrents 
j(), where  is the distance from the vortex axis – see Fig. 5a. At the axis, the current vanishes, and 
with the growth of , it first rises and then falls (with j() = 0), reaching its maximum at  ~ , while 
the magnetic field B(), directed along the vortex axis, is largest at  = 0, and drops monotonically at 
distances of the order of L (Fig. 5b).  

 

 

 

 

 

 

 The total flux of the field equals exactly one flux quantum 0, given by Eq. (62). 
Correspondingly, the wavefunction’s phase   performs just one 2 revolution along any contour 
drawn around the vortex’s axis, so  = n/, where n is the azimuthal unit vector.34 This topological 
feature of the wavefunction’s phase is sometimes called fluxoid quantization – to distinguish it from 

33 Independently and virtually simultaneously by two groups: B. Deaver and W. Fairbank, and R. Doll and M. 
Näbauer; their reports were published back-to-back in the same issue of the Physical Review Letters. 
34 The last (perhaps, evident) expression for  follows from MA Eq. (10.2) with f =  + const. 
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Fig. 6.5. The Abrikosov vortex: 
(a) a 3D structure’s sketch, and 
(b) the main variables as 
functions of the distance  
from the axis (schematically). 
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magnetic flux quantization, which is valid only for relatively large contours, not approaching the axis by 
distances ~L.   

 A quantitative analysis of Abrikosov vortices requires, besides the equations we have discussed, 
one more constituent relation that would describe the suppression of the number of Cooper pairs 
(quantified by 2) by the magnetic field – or rather by the field-induced supercurrent. In his original 
work, Abrikosov used for this purpose the famous Ginzburg-Landau equation,35 which is quantitatively 
valid only at T  Tc. The equation may be conveniently represented in either of the following two forms: 

        22
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222 1*, 
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ibaqi

m
 ,      (6.63) 

where a and b are certain temperature-dependent coefficients, with a  0 at T  Tc. The first of these 
forms clearly shows that the Ginzburg-Landau equation (as well as the similar Gross-Pitaevskii equation 
describing electrically-neutral Bose-Einstein condensates) belongs to a broader class of nonlinear 
Schrödinger equations, differing from the usual Schrödinger equation, which is linear in , only by the 
additional nonlinear terms. The equivalent, second form of Eq. (63) is more convenient for applications 
and shows more clearly that if the superconductor’s condensate density, proportional to 2, is 
suppressed only locally, it self-restores to its unperturbed value (with 2 = 1) at the distances of the 
order of the coherence length   /(2ma)1/2. 

 This fact enables a simple quantitative analysis of the Abrikosov vortex in the most important 
limit  << L. Indeed, as Fig. 5 shows, in this case.  2 = 1 at most distances ( ~ L) where the field 
and current are distributed, so these distributions may be readily calculated without any further 
involvement of Eq. (63), just from Eq. (54) with  = n/, and the Maxwell equations (21) for the 
magnetic field, giving   B =  j, and   B = 0. Indeed, combining these equations just as this was 
done at the derivation of Eq. (23), for the only Cartesian component of the vector B(r) = B()nz (where 
the z-axis is directed along the vortex’ symmetry axis), we get a simple equation 

           at  ,20
22

L ρ



q

BB ,   (6.64) 

which coincides with Eq. (56) at all regular points   0. Spelling out the Laplace operator for our 
current case of axial symmetry,36 we get an ordinary differential equation, 
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Comparing this equation with Eq. (2.155) with  = 0, and taking into account that we need the solution 
decreasing at   , making any contribution proportional to the function I0 unacceptable, we get 

35 This equation was derived by Vitaly Lazarevich Ginzburg and Lev Davidovich Landau from phenomenological 
arguments in 1950, i.e. before the advent of the “microscopic” BSC theory, and may be used for simple analyses 
of a broad range of nonlinear effects in superconductors. The Ginzburg-Landau and Gross-Pitaevskii equations 
will be further discussed in SM Sec. 4.3.  
36 See, e.g., MA Eq. (10.3) with / = /z = 0. 
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– see the plot of this Bessel function on the right panel of Fig. 2.22  (black line). The constant C should 
be calculated by fitting the 2D delta function on the right-hand side of Eq. (64), i.e. by requiring 
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The last, dimensionless integral equals 1,37 so finally 
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 So the magnetic field of the vortex drops exponentially at distances  much larger than L, and 
diverges at    0 – see, e.g., the second of Eqs. (2.157). However, this divergence is very slow 
(logarithmic), and, as was repeatedly discussed in this series, is avoided by the account of virtually any 
other factor. In our current case, this factor is the decrease of   2 to zero at  ~  (see Fig. 5), not taken 
into account in Eq. (68). As a result, we may estimate the field on the axis of the vortex as 
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the exact (and much more involved) solution of the problem confirms this estimate with a minor 
correction: ln(L/)  ln(L/) – 0.28, i.e.   1.3. 

 The current density distribution may be now calculated from the Maxwell equation   B = j, 
giving j = j()n, with38  
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where the same identity (2.158), with Jn  Kn and n = 1, was used. Now looking at Eqs. (2.157) and 
(2.158), with n = 1, we see that the supercurrent’s density is exponentially low at  >> L (thus outlining 
the vortex’ periphery), and is proportional to 1/ within the broad range  <<  << L. This rise of the 
current at   0 (which could be readily predicted directly from Eq. (54) with  = n/, and the A-
term negligible at  << L) is quenched at  ~  by a rapid drop of the factor 2 in the same Eq. (54), 
i.e. by the suppression of the superconductivity near the axis (by the same supercurrent!) – see Fig. 5 
again. 

 This structure of the Abrikosov vortex may be used to calculate, in a straightforward way, its 
energy per unit length (i.e. its linear tension) 

37 This fact follows, for example, from the integration of both sides of Eq. (2.143) (which is valid for any Bessel 
functions, including Kn) with n = 1, from 0 to , and then using the asymptotic values given by Eqs. (2.157)-
(2.158): K1() = 0, and K1()  1/ at   0. 
38 See, e.g., MA Eq. (10.5), with f = f = 0, and fz = B(). 
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and hence the so-called “first critical” value Hc1 of the external magnetic field,39 at which the vortex 
formation becomes possible (in a long cylindrical sample parallel to the field): 
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Let me leave the proof of these two formulas for the reader’s exercise. 

 The flux quantization and the Abrikosov vortices discussed above are just two of several 
macroscopic quantum effects in superconductivity. Let me discuss just one more, but perhaps the most 
interesting of such effects. Let us consider a superconducting ring/loop interrupted with a very narrow 
slit (Fig. 4b). Integrating Eq. (54) along any current-free path from point 1 to point 2 (see, e.g., dashed 
line in Fig. 4b), we get 
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Using the flux quantum definition (62), this result may be rewritten as 
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where   is called the Josephson phase difference. Note that in contrast to each of the phases 1,2, their 
difference   is gauge-invariant: Eq. (74) directly relates it to the gauge-invariant magnetic flux .  

Can this  be measured? Yes, for example, using the Josephson effect.40 Let us consider two (for 
the argument simplicity, similar) superconductors, connected with some sort of weak link, for example, 
a small tunnel junction, or a point contact, or a narrow thin-film bridge, through which a weak Cooper-
pair supercurrent can flow. (Such a system of two weakly coupled superconductors is called a Josephson 
junction.) Let us think about what this supercurrent I may be a function of. For that, reverse thinking is 
helpful: let us imagine that we change the current; what parameter of the superconducting condensate 
can it affect? If the current is very weak, it cannot perturb the superconducting condensate’s density, 
proportional to 2; hence it may only change the Cooper condensate phases 1,2. However, according 
to Eq. (53), the phases are not gauge-invariant, while the current should be. Hence the current may 
affect (or, if you like, may be affected by) only the phase difference   defined by Eq. (74). Moreover, 
just has already been argued during the flux quantization discussion, a change of any of 1,2 (and hence 
of ) by 2 or any of its multiples should not change the current. Also, if the wavefunction is the same 
in both superconductors ( = 0), the supercurrent should vanish due to the system’s symmetry. Hence 
the function I() should satisfy the following conditions: 

39 This term is used to distinguish Hc1 from the higher “second critical field” Hc2, at which the Abrikosov vortices 
are pressed to each other so tightly (to distances d ~ ) that they merge, and the remains of superconductivity 
vanish:   0. Unfortunately, I do not have time/space to discuss these effects; the interested reader may be 
referred, for example, to Chapter 5 of M. Tinkham’s monograph cited above. 
40 It was predicted in 1961 by Brian David Josephson (then a PhD student!) and observed experimentally by 
several groups soon after that. 
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      I(0) =0,  I( + 2) = I().    (6.75) 

With these conditions on hand, we should not be terribly surprised by the following Josephson’s result 
that for the weak link provided by tunneling,41 

                  sin)( cII  ,     (6.76) 

where constant Ic, which depends on the weak link’s strength and temperature, is called the critical 
current. Actually, Eqs. (54) and (63) enable not only a straightforward calculation of this relation but 
even obtaining a simple expression of the critical current Ic via the link’s normal-sate resistance – the 
task left for the (creative :-) reader’s exercise. 

 Now let us see what happens if a Josephson junction is placed into the gap in a superconductor 
loop – see Fig. 4c. In this case, we may combine Eqs. (74) and (76), getting 

             











0

c 2sin II .     (6.77) 

This effect of a periodic dependence of the current on the magnetic flux is called macroscopic quantum 
interference,42 while the system shown in Fig. 4c, the superconducting quantum interference device – 
SQUID (with all letters capitalized, please :-). The low value of the magnetic flux quantum 0, and 
hence the high sensitivity of   to external magnetic fields, allows using such SQUIDs as ultrasensitive 
magnetometers. Indeed, for a superconducting ring of area ~1 cm2, one period of the change of the 
supercurrent (77) is produced by a magnetic field change of the order of 10-11 T (10-7 Gs), while 
sensitive electronics allows measuring a tiny fraction of this period – limited by thermal noise at a level 
of the order of a few fT. Such sensitivity allows measurements, for example, of the miniscule magnetic 
fields induced outside of the body by the beating human heart, and even by brain activity.43    

 An important aspect of quantum interference is the so-called Aharonov-Bohm (AB) effect –
which actually takes place for single quantum particles as well.44 Let the magnetic field lines be limited 
to the central, hollow part of the SQUID loop so that no appreciable magnetic field ever touches the ring 
itself. (This may be done experimentally with very good accuracy, for example using high- magnetic 
cores – see their discussion in Sec. 5.6.) As predicted by Eq. (77), and confirmed by several careful 
experiments carried out in the mid-1960s,45 this restriction does not matter – the interference is observed 

41 For some other types of weak links, the function I() may deviate from the sinusoidal form Eq. (76) rather 
considerably, while still satisfying the general conditions (75). 
42 The name is due to a deep analogy between this phenomenon and the interference between two coherent waves, 
to be discussed in detail in Sec. 8.4. 
43 Other practical uses of SQUIDs include MRI signal detectors, high-sensitive measurements of magnetic 
properties of materials, and weak field detection in a broad variety of physical experiments – see, e.g., J. Clarke 
and A. Braginski (eds.), The SQUID Handbook, vol. II, Wiley, 2006. For a comparison of these devices with 
other sensitive magnetometers see, e.g., the review collection by A. Grosz et al. (eds.), High Sensitivity 
Magnetometers, Springer, 2017. 
44 For a more detailed discussion of the AB effect see, e.g., QM Sec. 3.2. 
45 Similar experiments have been carried out with single (unpaired) electrons – moving either ballistically, in 
vacuum, or in “normal” (non-superconducting) conducting rings. In the last case, the effect is much harder to 
observe than in SQUIDs: the ring size has to be very small, and temperature very low, to avoid the so-called 
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anyway. This means that not only the magnetic field B but also the vector potential A represents 
physical reality, albeit in a quite peculiar way – remember the gauge transformation (5.46), which you 
may carry out in your head, without changing any physical reality? (Fortunately, this transformation 
does not change the contour integral participating in Eq. (5.65), and hence the magnetic flux , and 
hence the interference pattern.) 

 Actually, the magnetic flux quantization (62) and the macroscopic quantum interference (77) are 
not completely different effects, but just two manifestations of the interrelated macroscopic quantum 
phenomena. To show that, one should note that if the critical current Ic (or rather its product by the 
loop’s self-inductance L) is high enough, the flux  in the SQUID loop is due not only to the external 
magnetic field flux ext but also has a self-field component – cf. Eq. (5.68):46 

               
S

n rdBLI 2
extextext )(Φ  where,ΦΦ .   (6.78) 

Now the relation between  and ext may be readily found by solving this equation together with Eq. 
(77). Figure 6 shows this relation for several values of the dimensionless parameter   2LIc/0.  

  

 

 

 

 

 

 

 

 

 

 
 
These plots show that if the critical current (and/or the inductance) is low,   << 1, the self-field 

effects are negligible, and the total flux follows the external field (i.e., ext) faithfully. However, at  > 
1, the function (ext) becomes hysteretic, and at  >> 1, its stable (positive-slope) branches are nearly 
flat, with the total flux values corresponding to Eq. (62). Thus, a superconducting ring closed with a 
high-Ic Josephson junction exhibits a nearly-perfect flux quantization.  

The self-field effects described by Eq. (78) create certain technical problems for SQUID 
magnetometry, but they are the basis for one more useful application of these devices: ultrafast 

dephasing effects due to unavoidable interactions of the electrons with their environment – see, e.g., QM Chapter 
7.
46 The sign before LI would be positive, as in Eq. (5.70), if I was the current flowing into the inductance. 
However, in order to keep the sign in Eq. (76) intact, I should mean the current flowing into the Josephson 
junction, i.e. from the inductance, thus changing the sign of the LI term in Eq. (78). 
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Fig. 6.6. The function (ext) for SQUIDs 
with various values of the normalized LIc 

product. Dashed arrows show the flux 
leaps as the external field is changed. (The 
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computing. Indeed, Fig. 6 shows that at the values of  modestly above 1 (e.g.,    3), and within a 
certain range of applied field, the SQUID has two stable flux states, which differ by   0 and may 
be used for coding binary 0 and 1. For practical superconductors (like Nb), the time of switching 
between these states (see dashed arrows in Fig. 4) is of the order of a picosecond, while the energy 
dissipated at such event may be as low as ~10-19 J. (This bound is determined not by device’s physics, 
by the fundamental requirement for the energy barrier between the two states to be much higher than the 
thermal fluctuation energy scale kBT, ensuring a sufficiently long information retention time.) While the 
picosecond switching speed may be also achieved with some semiconductor devices, the power 
consumption of the SQUID-based digital devices may be 5 to 6  orders of magnitude lower, enabling 
large-scale digital integrated circuits with 100-GHz-scale clock frequencies. Unfortunately, the range of 
practical applications of these Rapid Single-Flux-Quantum (RSFQ) digital circuits is still very narrow, 
due to the inconvenience of their deep refrigeration to temperatures below Tc.47 

Since we have already got the basic relations (74) and (76) describing the macroscopic quantum 
phenomena in superconductivity, let me mention in brief two other prominent members of this group, 
called the dc and ac Josephson effects. Differentiating Eq. (74) over time, and using the Faraday 
induction law (2), we get48 

        V
e

dt

d



2



.      (6.79) 

This famous Josephson phase-to-voltage relation should be valid regardless of the way how the voltage 
V has been created,49 so let us apply Eqs. (76) and (79) to the simplest circuit with a non-
superconducting source of dc voltage – see Fig. 7.  

  

 

 

 

 

 

If the current’s magnitude is below the critical value, Eq. (76) allows phase  to have the time-
independent value 

            cc
c

1  if,sin II -I
I

I
  ,    (6.80) 

and hence, according to Eq. (79), a vanishing voltage drop across the junction: V = 0. This dc Josephson 
effect is not quite surprising – indeed, we have postulated from the very beginning that the Josephson 
junction may pass a certain supercurrent. Much more fascinating is the so-called ac Josephson effect that 
occurs if the voltage across the junction has a non-zero average (dc) component V0. For simplicity, let us 

47 For more on that technology, see, e.g., the review paper by P. Bunyk et al., Int. J. High Speed Electron. Syst. 
11, 257 (2001), and references therein. 
48 Since the induced e.m.f. Vind cannot drop on the superconducting path between the Josephson junction 
electrodes 1 and 2 (see Fig. 4c), it should be equal to (-V), where V is the voltage across the junction. 
49 Indeed, it may be also obtained from simple Schrödinger-equation-based arguments – see, e.g., QM Sec. 1.6. 

Fig. 6.7. DC-voltage-biased  
Josephson junction. 
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assume that this is the only voltage component: V(t) = V0 = const;50 then Eq. (79) may be easily 
integrated to give  = Jt + 0, where  

            0J

2
V

e


 .      (6.81) 

This result, plugged into Eq. (76), shows that the supercurrent oscillates, 

               0Jc sin   tII ,     (6.82) 

with the so-called Josephson frequency J (81) proportional to the applied dc voltage. For practicable 
voltages (above the typical noise level), the frequency fJ = J/2  corresponds to the GHz or even THz 
ranges, because the proportionality coefficient in Eq. (81) is very high: fJ/V0 = e/  483 MHz/V.51 

 An important experimental fact is the universality of this coefficient. For example, in the mid-
1980s, a Stony Brook group led by J. Lukens proved that this factor is material-independent with a 
relative accuracy of at least 10-15. Very few experiments, especially in solid-state physics, have ever 
reached such precision.  This fundamental nature of the Josephson voltage-to-frequency relation (81) 
allows an important application of the ac Josephson effect in metrology. Namely, phase-locking52 the 
Josephson oscillations with an external microwave signal from an atomic frequency standard, one can 
get a more precise dc voltage than from any other source. In NIST and other metrological institutions 
around the globe, this effect is used for the calibration of simpler “secondary” voltage standards that can 
operate at room temperature. 

 

6.6. Inductors, transformers, and ac Kirchhoff laws 

 Let a wire coil (meaning either a single loop illustrated in Fig. 5.4b or a series of such loops, 
such as one of the solenoids shown in Fig. 5.6) have a self-inductance L much larger than that of the 
wires connecting it to other components of our system: ac voltage sources, voltmeters, etc. (Since, 
according to Eq. (5.75), L scales as the square of the number N of wire turns, this condition is easier to 
satisfy at N >> 1.) Then in a quasistatic system consisting of such lumped induction coils, external 
wires, and other lumped circuit elements such as resistors, capacitances, etc., we may neglect the 
electromagnetic induction effects everywhere outside the coil, so the electric field in those external 
regions is potential. Then the voltage V between the coil’s terminals may be defined, just as in 
electrostatics, as the difference of values of   between the terminals, i.e. as the integral 

     rE dV       (6.83) 

between the coil terminals along any path outside the coil. This voltage has to be balanced by the 
induction e.m.f. (2) in the coil, so if the Ohmic resistance of the coil is negligible, we may write 

50 In experiment, this condition is hard to implement, due to the relatively high inductances of the current leads 
providing the dc voltage supply. However, this technical complication does not affect the main conclusion of the 
simple analysis described here. 
51 This 1962 prediction (by the same B. Josephson) was confirmed experimentally – in 1963 indirectly, by phase-
locking of the oscillations (82) with an external microwave signal, and in 1967  explicitly, by the direct detection 
of the emitted microwave radiation. 
52 For a discussion of this very important (and general) effect, see, e.g., CM Sec. 5.4. 
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dt
d

V


 ,      (6.84) 

where  is the magnetic flux in the coil.53  If the flux is due to the current I in the same coil only (i.e. if 
it is magnetically uncoupled from other coils), we may use Eq. (5.70) to get the well-known relation 

          
dt

dI
LV  ,      (6.85) 

where compliance with the Lenz sign rule is achieved by selecting the relations between the assumed 
voltage polarity and the current direction as shown in Fig. 8a. 

 

 

 

 

 
  
 If similar conditions are satisfied for two magnetically coupled coils (Fig. 8b), then, in Eq. (84),  
we need to use Eqs. (5.69) instead, getting  
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11 ,  .   (6.86) 

Such systems of inductively coupled coils have numerous applications in electrical engineering and 
physical experiment. Perhaps the most important of them is the ac transformer, in which the coils share 
a common soft-ferromagnetic core of the toroidal (“doughnut”) topology – see Fig. 8c.54 As we already 
know from the discussion in Sec. 5.6, such cores, with  >> 0, “try” to absorb all magnetic field lines, 
so the magnetic flux (t) in the core is nearly the same in each of its cross-sections. With this, Eq. (84) 
yields 

     ,, 2211 dt

d
NV

dt

d
NV





     (6.87) 

so the voltage ratio is completely determined by the ratio N1/N2 of the number of wire turns.  

 Now we may generalize, to the ac current case, the Kirchhoff laws already discussed in Sec. 4.1 
– see Fig. 4.3 reproduced in Fig. 9a below. Let not only inductances but also capacitances and 
resistances of the wires be negligible in comparison with those of the lumped (compact) circuit 
elements, whose list now would include not only resistors and current sources (as in the dc case), but 
also the induction coils (including magnetically coupled ones) and capacitors – see Fig. 9b.  In the 
quasistatic approximation, the current flowing in each wire is conserved, so the “node rule”, i.e. the 1st 
Kirchhoff law (4.7a),  

53 If the resistance is substantial, it may be represented by a separate lumped circuit element (resistor) connected 
in series with the coil. 
54 The first practically acceptable form of this device, called the Stanley transformer, was invented in 1886. In it, 
multi-turn windings could be easily mounted onto a toroidal ferromagnetic (at that time, silicon-steel-plate) core.  

Fig. 6.8. Some lumped ac circuit 
elements: (a) an induction coil, 
(b) two inductively coupled 
coils, and (c) an ac transformer. 

I

V





L 1L 2L

M
)(t

1N 2N

(a)    (b)         (c) 

Voltage  
drop on  

inductance  
coil 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 6                 Page 26 of 38 

           0
j

jI .      (6.88a) 

remains valid. Also, if the electromagnetic induction effect is restricted to the interior of lumped 
induction coils as discussed above, the voltage drops Vk across each circuit element may be still 
represented, just as in dc circuits, with differences between the adjacent node potentials. As a result,  the 
“loop rule”, i.e. 2nd Kirchhoff law (4.7b), 
          0

k
kV ,      (6.88b) 

is also valid. Now, in contrast to the dc case, Eqs. (88) may be the (ordinary) differential equations. 
However, if all circuit elements are linear (as in the examples presented in Fig. 9b), these equations may 
be readily reduced to linear algebraic equations, using the Fourier expansion. (In the common case of 
sinusoidal ac sources, the final stage of the Fourier series summation is unnecessary.) 

 

 

 

 

 

 

 

 
  My teaching experience shows that the potential readers of these notes are well familiar with the 
application of Eqs. (88) to such problems from their undergraduate studies, so I will save time/space by 
skipping discussions of even the simplest examples of such circuits, such as LC, LR, RC, and LRC  loops 
and periodic structures.55 However, since such problems are very important for practice, my sincere 
advice to the reader is to carry out a self-test by solving a few problems of this type, provided in Sec. 9 
below, and if they cause any difficulty, pursue some remedial reading. 

 

6.7. Displacement currents 

 Electromagnetic induction is not the only new effect arising in non-stationary electrodynamics. 
Indeed, though Eqs. (21) are adequate for the description of quasistatic phenomena, a deeper analysis 
shows that one of these equations, namely   H = j, cannot be exact. To see that, let us take the 
divergence of both sides: 
                 jH   .     (6.89) 

But, as the divergence of any curl,56 the left-hand side should equal zero. Hence we get 

55 Curiously enough, these effects include wave propagation in periodic LC circuits, even within the quasistatic 
approximation! However, the speed 1/(LC)1/2 of these waves in lumped circuits is much lower than the speed 
1/()1/2 of electromagnetic waves in the surrounding medium – see Sec. 8 below. 
56 Again, see MA Eq. (11.2) – if you need it. 

Fig. 6.9. (a) A typical quasistatic ac circuit obeying the 
Kirchhoff laws, and (b) the simplest lumped circuit 
elements. 
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           0 j .      (6.90) 

This is fine in statics, but in dynamics, this equation forbids any charge accumulation, because 
according to the continuity relation (4.5),  

        
t





j .      (6.91) 

 This discrepancy had been recognized by James Clerk Maxwell who suggested, in the 1860s, a 
way out of this contradiction. If we generalize the equation for   H by adding to the term j (that 
describes the density of real electric currents) the so-called displacement current density term,  

          
t




D
jd ,      (6.92) 

(which of course vanishes in statics), then the equation takes the form 

         
t




D
jjjH d .     (6.93) 

In this case, due to the equation (3.22),   D = ,  the divergence of the right-hand side equals zero due 
to the continuity equation (92), and the discrepancy is removed. This incredible theoretical feat,57 
confirmed by the 1886 experiments carried out by Heinrich Hertz (see below) was perhaps the main 
triumph of theoretical physics of the 19th century. 

 Maxwell’s displacement current concept, expressed by Eq. (93), is so important that it is 
worthwhile to have one more look at its derivation using a particular model shown in Fig. 10.58  

 

 

 

 

 

 

 

 Neglecting the fringe field effects, we may use Eq. (4.1) to describe the relationship between the 
current I flowing through the wires and the electric charge Q of the capacitor:59  

           I
dt

dQ
 .      (6.94) 

57 It looks deceivingly simple now – after the fact, and with the current mathematical tools (especially the del 
operator), which are much superior to those that were available to J. Maxwell. 
58 No physicist should be ashamed of doing this. For example, J. Maxwell’s main book, A Treatise of Electricity 
and Magnetism, is full of drawings of plane capacitors, inductance coils, and voltmeters. More generally, the 
whole history of science teaches us that snobbery regarding particular examples and practical systems is a 
virtually certain path toward producing nothing of either practical value or fundamental importance. 
59 This is of course just the integral form of the continuity equation (91). 
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Now let us consider a closed contour C drawn around the wire. (Solid points in Fig. 10 show the places 
where the contour intercepts the plane of the drawing.) This contour may be seen as the line limiting 
either surface S1 (crossed by the wire) or surface S2 (avoiding such crossing by passing through the 
capacitor’s gap). Applying the macroscopic Ampère law (5.116) to the former surface, we get 

            
C S

Irdjd n

1

2rH ,     (6.95) 

while for the latter surface the same law gives a different result, 

            
C S

rdjd n 0

2

2rH ,  [WRONG!]  (6.96) 

for the same integral. This is just an integral-form manifestation of the discrepancy outlined above, but it 
shows clearly how serious the problem is (or rather it was – before Maxwell). 

  Now let us see how the introduction of the displacement currents saves the day, considering for 
the sake of simplicity a plane capacitor of area A, with a small and constant electrode spacing. In this 
case, as we already know, the field inside it is uniform, with D = , so the total capacitor’s charge Q = 
A = AD, and the current (94) may be represented as 

              
dt

dD
A

dt

dQ
I  .     (6.97) 

So, instead of the wrong Eq. (96), the Ampère law modified following Eq. (93), gives 
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i.e. the Ampère integral becomes independent of the choice of the surface limited by the contour C – as 
it has to be. 

 

6.8. Finally, the full Maxwell equation system 

. This is a very special moment in this course: with the displacement currents in, i.e. with the 
replacement of Eq. (5.107) with Eq. (93), we have finally arrived at the full set of macroscopic Maxwell 
equations for time-dependent fields,60 

          ,,0 j
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     (6.99a) 

      ,0 ,  BD        (6.99b) 

whose validity has been confirmed by an enormous body of experimental data. Indeed, despite 
numerous efforts, no other corrections (e.g., additional terms) to the Maxwell equations have been ever 
found, and these equations are still considered exact within the range of their validity, i.e. while the 
electric and magnetic fields may be considered classically. Moreover, even in quantum theory, these 

60 This vector form of the Maxwell equations, magnificent in its symmetry and simplicity, was developed in 
1884-85 by Oliver  Heaviside, with substantial contributions by H. Lorentz. (The original Maxwell’s result circa 
1864 looked like a system of 20 equations for Cartesian components of the vector and scalar potentials.)  
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equations are believed to be strictly valid as relations between the Heisenberg operators of the electric 
and magnetic fields.61 (Note that the microscopic Maxwell equations for the genuine fields E and B may 
be formally obtained from Eqs. (99) by the substitutions D = 0E and H = B/0, and the simultaneous 
replacement of the stand-alone charge and current densities on their right-hand sides with the full ones.) 

 Perhaps the most striking feature of these equations is that, even in the absence of stand-alone 
charges and currents inside the region of our interest, when the equations become fully homogeneous,  

              ,,
tt 








D

H
B

E               (6.100a) 

              ,0,0  BD                (6.100b) 

they still describe something very non-trivial: electromagnetic waves, including light. The physics of the 
waves may be clearly seen from Eqs. (100a): according to the first of them, the change of the magnetic 
field in time creates a vortex-like (divergence-free) electric field. On the other hand, the second of Eqs. 
(100a) describes how the changing electric field, in turn, creates a vortex-like magnetic field. So-
coupled electric and magnetic fields may propagate as waves – even very far from their sources. 

 We will carry out a detailed quantitative analysis of the waves in the next chapter, and here I will 
only use this notion to make good on the promise given in Sec. 3, namely to establish the condition of 
validity of the quasistatic approximation (21). For simplicity, let us consider an electromagnetic wave 
with a time period T, velocity v, and hence the wavelength62  = vT  in a linear medium with D = E, B = 

H. Then the magnitude of the left-hand side of the first of Eqs. (100a) is of the order of E/ = E/vT, 

while that of its right-hand side may be estimated as B/T  ~ H/T. Using similar estimates for the second 
of Eqs. (100a), we arrive at the following two requirements:63 
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      (6.101) 

To ensure the compatibility of these two relations, the wave’s speed should satisfy the estimate 
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reduced to v ~ 1/(00)
1/2  c in free space, while the ratio of the electric and magnetic field amplitudes 

should be of the following order: 
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(In the next chapter we will see that for plane electromagnetic waves, these results are exact.) 

 Now, let a system of a linear size ~a carry currents producing a certain magnetic field H. Then, 
according to Eqs. (100a), their magnetic field Faraday-induces the electric field of magnitude E ~ 
Ha/T,  whose displacement currents, in turn, produce an additional magnetic field with magnitude 

61 See, e.g., QM Chapter 9. 
62 Let me hope the reader knows that the relation  = vT  is universal and valid for waves of any nature – see, e.g., 
CM Chapter 6. (In the case of substantial dispersion, v means the phase velocity.) 
63 The fact that T  has canceled, shows that these estimates are valid for waves of any frequency.   
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Hence, the displacement current effects are negligible for a system of size a << .64  

 In particular, the quasistatic picture of the skin effect, discussed in Sec. 3, is valid while the skin  
depth (33) remains much smaller than the corresponding wavelength, 
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The wavelength decreases with the frequency as 1/, i.e. faster than s  1/1/2, so they become 
comparable at the crossover frequency 

                
0

r 



  ,      (6.106) 

which is nothing else than the reciprocal charge relaxation time (4.10). As was discussed in Sec. 4.2, for 
good metals this frequency is extremely high (about 1018 s-1), so the validity of Eq. (33) is typically 
limited by the anomalous skin effect (which was briefly discussed in Sec. 3), rather than the wave 
effects. 

 Before going after the analysis of the full Maxwell equations for particular situations (that will 
be the main goal of the next chapters of this course), let us have a look at the energy balance they yield 
for a certain volume V, which may include both some charged particles and the electromagnetic field. 
Since, according to Eq. (5.10), the magnetic field performs no work on charged particles even if they 
move, the total power P  being transferred from the field to the particles inside the volume is due to the 
electric field alone – see Eq. (4.38): 

            Ej   ppP with  ,3

V

rd ,    (6.107) 

Expressing j from the corresponding Maxwell equation of the system (99), we get 
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Let us pause here for a second, and transform the divergence of EH, using the well-known vector 
algebra identity:65 
               HEEHHE   .    (6.109) 

The last term on the right-hand side of this equality is exactly the first term in the square brackets of Eq. 
(108), so we may rewrite that formula as 
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64 Let me emphasize that if this condition is not fulfilled, the lumped-circuit representation of the system (see Fig. 
9 and its discussion) is typically inadequate – besides some special cases, to be discussed in the next chapter. 
65 See, e.g., MA Eq. (11.7) with f = E and g = H. 
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However, according to the Maxwell equation for   E, this curl is equal to –B/t, so the second term 
in the square brackets of Eq. (110) equals –HB/t and, according to Eq. (14), is just the (minus) time 
derivative of the magnetic energy per unit volume. Similarly, according to Eq. (3.76), the third term 
under the integral is the (minus) time derivative of the electric energy per unit volume. Finally, we can 
use the divergence theorem to transform the integral of the first term in the square brackets to a 2D 
integral over the surface S limiting the volume V. As a result, we get the so-called Poynting theorem66 
for the power balance in the system: 

     023 
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t
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p .    (6.111) 

Here u is the density of the total (electric plus magnetic) energy of the electromagnetic field, with 

             BHDE  u                (6.112) 

– just the sum of the expressions given by Eqs. (3.76) and (14). For the particular case of an isotropic, 
linear, and dispersion-free medium, with D(t) = E(t), B(t) = H(t), Eq. (112) yields 
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.              (6.113) 

 Another key notion participating in Eq. (111) is the Poynting vector, defined as67 

         HES  .      (6.114) 

The first integral in Eq. (111) is evidently the net change of the energy of the system (particles + field) 
per unit time, so the second (surface) integral has to be the power flowing out from the system through 
the surface. As a result, it is tempting to interpret the Poynting vector S locally, as the power flow 
density at the given point. In many cases, such a local interpretation of vector S is legitimate; however, 
in other cases, it may lead to wrong conclusions. Indeed, let us consider the simple system shown in Fig. 
11: a charged plane capacitor placed into a static and uniform external magnetic field, so that the electric 
and magnetic fields are mutually perpendicular.  

  

 

 

 

 In this static situation, with no charges moving, both p and /t are equal to zero, and there 
should be no power flow in the system. However, Eq. (114) shows that the Poynting vector is not equal 

66 It is named after John Henry Poynting for his work published in 1884, though this fact was independently 
discovered by O. Heaviside in 1885 in a simpler form, while a similar result for the intensity of mechanical elastic 
waves had been obtained earlier (in 1874) by Nikolay Alekseevich Umov – see, e.g., CM Sec. 7.7. 
67 Actually, an addition to S of the curl of an arbitrary vector function f(r, t) does not change Eq. (111).  Indeed, 
we may use the divergence theorem to transform the corresponding change of the surface integral in Eq. (111) to a 
volume integral of scalar function (f) that equals zero at any point – see, e.g., MA Eq. (11.2). 
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Fig. 6.11. The Poynting vector paradox. 
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to zero inside the capacitor, being directed as the red arrows in Fig. 11 show. From the point of view of 
the only unambiguous corollary of the Maxwell equations, Eq. (111), there is no contradiction here, 
because the fluxes of the vector S through the side boundaries of the volume shaded in Fig. 11 are equal 
and opposite (and they are zero for other faces of this rectilinear volume), so the total flux of the 
Poynting vector through the volume boundary equals zero, as it should. It is, however, useful to recall 
this example each time before giving a local interpretation of the vector S. 

 The paradox illustrated in Fig. 11 is closely related to the radiation recoil effects, due to the 
electromagnetic field’s momentum – more exactly, it linear momentum. Indeed, acting as at the 
Poynting theorem derivation, it is straightforward to use the microscopic Maxwell equations68 to prove 
that, neglecting the boundary effects, the vector sum of the mechanical linear momentum of the particles 
in an arbitrary volume, and the integral of the following vector, 

             
2c

S
g  ,      (6.115) 

over the same volume, is conserved, enabling an interpretation of g as the density of the linear 
momentum of the electromagnetic field. (It will be more convenient for me to prove this relation, and 
discuss the related issues, in Sec. 9.8, using the 4-vector formalism of special relativity.) Due to this 
conservation, if some static fields coupled to mechanical bodies are suddenly decoupled from them and 
are allowed to propagate in space, i.e. to change their local integral of g, they give the bodies an equal 
and opposite impulse of force. 

 Finally, to complete our initial discussion of the Maxwell equations,69 let us rewrite them in terms of 
potentials A and , because this is more convenient for the solution of some (though not all!) problems. 
Even when dealing with the system (99) of the more general Maxwell equations than discussed before, 
Eqs. (7) are still used for the definition of the potentials. It is straightforward to verify that with these 
definitions, the two homogeneous Maxwell equations (99b) are satisfied automatically. Plugging Eqs. 
(7) into the inhomogeneous equations (99a), and considering, for simplicity, a linear, uniform medium 
with frequency-independent  and , we get 
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 This is a more complex result than what we would like to get. However, let us select a special 
gauge, which is frequently called (especially for the free space case, when v = c) the Lorenz gauge 
condition70 

              ,0
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
t

A      (6.117) 

68 The situation with the macroscopic Maxwell equations is more complex, and is still a subject of some lingering 
discussions (usually called the Abraham-Minkowski controversy, despite contributions by many other scientists 
including A. Einstein), because of the ambiguity of the momentum’s division between its field and particle 
components – see, e.g., the review paper by R. Pfeiffer et al., Rev. Mod. Phys. 79, 1197 (2007). 
69 We will return to their general discussion (in particular, to the analytical mechanics of the electromagnetic 
field, and its stress tensor) in Sec. 9.8, after we get equipped with the special relativity theory. 
70 This condition, named after Ludwig Lorenz, should not be confused with the so-called Lorentz invariance 
condition of relativity, due to Hendrik Lorentz, to be discussed in Sec. 9.4. (Note the last names’ spelling.) 
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which is a natural generalization of the Coulomb gauge (5.48) to time-dependent phenomena. With this 
condition, Eqs. (107) are reduced to a simpler, beautifully symmetric form: 
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   (6.118) 

where v2  1/. Note that these equations are essentially a set of 4 similar equations for 4 scalar 
functions (namely,  and three Cartesian components of A) and thus clearly invite the 4-component 
vector formalism of the relativity theory; it will be discussed in Chapter 9.71 

 If  and A depend on just one spatial coordinate, say z, then in a region without field sources:  
= 0, j = 0,  Eqs. (118) are reduced to the following 1D wave equations 
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It is well known72 that these equations describe waves, with arbitrary waveforms (including sinusoidal 
waves of any frequency), propagating with the same speed v in either of the z-axis directions.  
According to the definitions of the constants 0 and 0, in free space, v is just the speed of light: 
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Historically, the experimental observation of relatively low-frequency (GHz-scale) electromagnetic 
waves, with their speed equal to that of light, was the decisive proof (actually, a real triumph!) of the 
Maxwell theory and his prediction of such waves.73 This was first accomplished in 1886 by Heinrich 
Rudolf Hertz, using the electronic circuits and antennas he had invented for this purpose.  

 Before proceeding to the detailed analysis of these waves in the following chapters, let me 
mention that the invariance of Eqs. (119) with respect to the wave propagation direction is not 
occasional; it is just a manifestation of one more general property of the Maxwell equations (99), called 
the Lorentz reciprocity. We have already met its simplest example, for time-independent electrostatic 
fields, in one of the problems of Chapter 1. In a much more general case when two monochromatic 
electromagnetic fields of the same frequency, with complex amplitudes, say, {E1(r), H1(r)} and {E2(r), 

71 Here I have to mention in passing the so-called Hertz vector potentials e and m (whose introduction may be 
traced back at least to the 1904 work by E. Whittaker). They may be defined by the following relations:  

em
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which make the Lorentz gauge condition (117) automatically satisfied. These potentials are especially convenient 
for the solution of problems in which the electromagnetic field is induced by sources characterized by field-
independent electric and magnetic polarizations P and M – rather than by field-independent charge and current 
densities  and j. Indeed, it is straightforward to check that both e and m satisfy the equations similar to Eqs. 
(118), but with their right-hand sides equal to, respectively, –P and –M. Unfortunately, I would not have 
time/space to discuss such problems and have to refer interested readers elsewhere – for example, to a classical 
text by J. Stratton, Electromagnetic Theory, Adams Press, 2008. 
72 See, e.g., CM Secs. 6.3-6.4 and 7.7-7.8. 
73 By that time, the speed of light (estimated very reasonably by Ole Rømer as early as 1676) has been 
experimentally measured, by Hippolyte Fizeau and then Léon Foucault, with an accuracy better than 1%. 
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H2(r)} are induced, separately, by stand-alone currents with complex amplitudes j1(r) and j2(r) of their 
densities. Then it may be proved74 that if the medium is linear and either isotropic or even anisotropic 
but with symmetric tensors jj’ and jj’, then for any volume V limited by a closed surface S, 

                      rdrd
S

n
V

2
1221

3
1221   HEHEEjEj .   (6.121) 

 This property implies, in particular, that the waves propagate similarly in two reciprocal 
directions even in situations much more general than the 1D case described by Eqs. (119). For some 
important practical applications (e.g., for low-noise amplifiers and detectors) such reciprocity is rather 
inconvenient. Fortunately, Eq. (121) may be violated in anisotropic media with asymmetric tensors jj’ 

and/or jj’. The simplest case of such an anisotropy, the Faraday rotation of the wave polarization in 
plasma, will be discussed in the next chapter. 

 

6.9. Exercise problems 

6.1. Prove that the electromagnetic induction e.m.f. Vind in a conducting loop may be measured 
as shown on two panels of Fig. 1: 

 (i) by measuring the current I = Vind/R induced in the loop closed with an Ohmic resistor R, or 
 (ii) using a voltmeter inserted into the loop. 
 
 6.2. The flux  of the magnetic field that pierces a resistive ring 
is being changed in time, while the field outside of the ring is negligibly 
low. A voltmeter is connected to a part of the ring, as shown in the 
figure on the right. What would the voltmeter show? 
  

 6.3. A weak constant magnetic field B is applied to an axially-symmetric permanent magnet with 
the dipole magnetic moment m directed along its axis, rapidly rotating about the same axis, with an 
angular momentum L. Calculate the electric field resulting from the magnetic field’s application, and 
formulate the conditions of your result’s validity. 
 
 6.4. The similarity of Eq. (5.53) obtained in Sec. 5.3 without any use of the Faraday induction 
law, and Eq. (5.54) proved in Sec. 2 of this chapter using it, implies that the law may be derived from 
magnetostatics. Prove that this is indeed true for a particular case of a current loop being slowly 
deformed in a fixed magnetic field B(r). 
 
 6.5. Could Problem 5.2 (i.e. the semi-quantitative analysis of the 
mechanical stability of the system shown in the figure on the right) be solved 
using potential energy arguments? 
  

74 It will be more convenient for me to give this proof (or rather offer it for the reader’s exercise :-) in the next 
chapter, after we have discussed the Fourier expansion of the fields in linear media. 
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 6.6. Use energy arguments to calculate the pressure exerted by the magnetic field B inside a long 
uniform solenoid of length l, and a cross-section of area A << l2, with N >> l/A1/2 >> 1 turns, on its 
“walls” (windings), and the forces exerted by the field on the solenoid’s ends, for two cases: 

 (i) the current  through the solenoid is fixed by an external source, and 
 (ii) after the initial current setting, the ends of the solenoid’s wire, with negligible resistance, are 
connected, so that it continues to carry a non-zero current.  

 Compare the results, and give a physical interpretation of the direction of these forces. 
 
 6.7. The electromagnetic railgun is a 
projectile launch system consisting of two 
long parallel conducting rails and a sliding 
conducting projectile shorting the current I 
fed into the system by a powerful source – 
see panel (a) in the figure on the right. 
Calculate the force exerted on the projectile, 
using two approaches: 

 (i) by a direct calculation, assuming that the cross-section of the system has the simple shape 
shown on panel (b) of the figure above, with t << w, l, and 
 (ii) by using the energy balance (for simplicity, neglecting the Ohmic resistances in the system), 

and compare the results. 
 
6.8. A uniform, static magnetic field B is applied along the axis of a 

long thin pipe of a radius R and wall thickness  << R, made of a material 
with Ohmic conductivity . A sphere of mass M and radius R’ << R, made 
of a linear magnetic material with permeability  >> 0, is launched, with 
an initial velocity v0, to fly ballistically along the pipe’s axis – see the 
figure on the right. Use the quasistatic approximation to calculate the 
distance the sphere would pass before it stops. Formulate the conditions of validity of your result.  
 
 6.9.  A planar thin-wire loop with inductance L, resistance R, and area A is launched to fly 
ballistically from field-free space into a region where the magnetic field B is constant. Calculate the 
final change of the kinetic energy of the loop, assuming that the time of its entry into the field region is 
much shorter than the relaxation time constant L/R and that the loop cannot rotate.  
 
 6.10. AC current of frequency  is being passed through a long uniform wire with a round cross-
section of a radius R comparable with the skin depth s. In the quasistatic approximation, find the 
current’s distribution across the cross-section, and analyze it in the limits R << s and  s << R. Calculate 
the effective ac resistance of the wire (per unit length) in these two limits. 
 
 6.11. A long round cylinder of radius R, made of a uniform conductor with an Ohmic 
conductivity  and magnetic permeability , is placed into a uniform ac magnetic field Hext(t) = 
H0cost directed along its symmetry axis. Calculate the spatial distribution of the magnetic field’s 
amplitude and, in particular, its value on the cylinder’s axis. Spell out the last result in the limits of 
relatively small and large R. 
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 6.12.* Define and calculate an appropriate spatial-temporal Green’s function for Eq. (25), and 
then use this function to analyze the dynamics of propagation of the external magnetic field that is 
suddenly turned on at t = 0 and then kept constant: 
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,0at  ,
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0 tH

t
txH  

into an Ohmic conductor occupying the semi-space x > 0 – see Fig. 2. 

 Hint: Try to use a function proportional to exp{–(x–x’)2/2(x)2}, with a suitable time 
dependence of the parameter x and a properly selected pre-exponential factor. 
 
 6.13. Solve the previous problem using the variable separation method, and compare the results. 
 

 6.14.  Calculate the average force exerted by ac current I(t) of 
amplitude I0, flowing in a planar round coil of radius R, on a conducting 
sphere with a much smaller radius R’ (which is still much larger than the 
skin depth s at the ac current’s frequency), located on the loop’s axis, at 
distance z from its center – see the figure on the right. 
 

 6.15. A small planar wire loop carrying current I is located relatively 
far from a planar surface of a superconductor. Within the coarse-grain (ideal-diamagnetic) description of 
the Meissner-Ochsenfeld effect, calculate: 

 (i) the energy of the loop-superconductor interaction, 
 (ii) the force and torque acting on the loop, and 
   (iii) the distribution of supercurrents on the superconductor surface. 
 
 6.16.  A straight uniform magnet of length 2l, cross-section area A 
<< l2, and mass m, with a permanent longitudinal magnetization M0, is 
placed over a horizontal surface of a superconductor – see the figure on the 
right. Within the ideal-diamagnet description of superconductivity, find the 
stable equilibrium position of the magnet. 
 
 6.17. A plane superconducting wire loop of area A and 
inductance L may turn, without static friction, about a horizontal axis 0 
(in the figure on the right, normal to the plane of the drawing) passing 
through its center of mass. Initially, the loop had been horizontal (with 
 = 0) and carried supercurrent I0 in such a direction that its magnetic 
dipole vector had been directed down. Then a uniform magnetic field B, 
directed vertically up, was applied. Using the ideal-diamagnet description of the Meissner-Ochsenfeld 
effect, find all possible equilibrium positions of the loop, analyze their stability, and give a physical 
interpretation of the results. 
 
 6.18. Use the London equation to analyze the penetration of a uniform external magnetic field 
into a thin (t ~ L) planar superconducting film whose plane is parallel to the field.  
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 6.19. Use the London equation to calculate the distribution of supercurrent density j inside a long 
straight superconducting wire with a circular cross-section of radius R ~ L, carrying current I.  
  
 6.20. Use the London equation to calculate the 
inductance (per unit length) of a long uniform superconducting 
strip placed close to the surface of a similar superconductor – 
see the figure on the right, which shows the structure’s cross-
section. 
 
 6.21. Calculate the inductance (per unit length) of a superconducting 
cable with the round cross-section shown in the figure on the right, in the 
following limits: 

  (i) L << a, b, c – b, and 
 (ii) a << L << b, c – b. 
 
 6.22. Use the London equation to analyze the magnetic field shielding by a superconducting thin 
film of thickness t << L, by calculating the penetration of the field induced by current I in a thin wire 
that runs parallel to a wide planar thin film, at a distance d >> t from it, into the space behind the film. 
 
 6.23. Assuming that the magnetic monopole does exist and has a magnetic charge qm, calculate 
the change I of current in a superconducting loop due to a passage of a single monopole through its 
area. Evaluate I for a monopole with the charge conjectured by P. Dirac, qm = nq0  n(2/e) with an 
integer n, and compare the result with the magnetic flux quantum 0 (62). Review your result for a 
similar passage of a single quasi-monopole magnetic charge formed at one of the ends of a permanent-
magnet needle – see, e.g., Fig. 19 and the accompanying discussion.  

 Hint: To simplify calculations, you may consider the monopole’s passage along the symmetry 
axis of a round ring of radius R, made of a superconducting wire with a cross-section’s area A satisfying 
the conditions  L

2 << A << R2. 
 
 6.24. Use the Ginzburg-Landau equations (54) and (63) to calculate the largest (“critical”) value 
of supercurrent in a uniform superconducting wire with a cross-section area much smaller than L

2. 
 
 6.25. Use the discussion of a long straight Abrikosov vortex, in the limit  << L, in Sec. 5 to 
prove Eqs. (71)-(72) for its energy per unit length and the first critical field. 
 
 6.26.* Use the Ginzburg-Landau equations (54) and (63) to prove the Josephson relation (76) for 
a small superconducting weak link, and express its critical current Ic via the Ohmic resistance Rn of the 
same weak link in its normal state. 
 
 6.27. Use Eqs. (76) and (79) to calculate the coupling energy of a Josephson junction and the full 
potential energy of the SQUID shown in Fig. 4c. 
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 6.28. Analyze the possibility of wave propagation in a long 
uniform chain of lumped inductances and capacitances – see the figure 
on the right. 

 Hint: Readers without prior experience in electromagnetic 
wave analysis may like to use a substantial analogy between this effect and mechanical waves in a 1D 
chain of elastically coupled particles.75 
 
 6.29. A sinusoidal e.m.f. of amplitude V0 and frequency  
is applied to an end of a long chain of similar lumped resistors 
and capacitors, shown in the figure on the right. Calculate the 
law of decay of the ac voltage amplitude along the chain. 

 
6.30. As was discussed in Sec. 7, the displacement current concept allows one to extend the 

Ampère law to time-dependent processes as  
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We also have seen that this generalization makes the integral H  dr over an external contour, such as 
the one shown in Fig. 10, independent of the choice of the surface S limited by the 
contour. However, it may look like the situation is different for a contour drawn 
inside a capacitor – see the figure on the right. Indeed, if the contour’s size is 
much larger than the capacitor’s thickness, the magnetic field H created by the 
linear current I on the contour’s line is virtually the same as that of a continuous 
wire, and hence the integral H  dr along the contour apparently does not depend 
on its area, while the magnetic flux Dnd

2r does, so the equation displayed above 
seems invalid. (The current IS piercing this contour evidently equals zero.) Resolve this paradox, for 
simplicity considering an axially-symmetric system. 
 
 6.31. A straight, uniform, long wire with a circular cross-section of radius R, made of an Ohmic 
conductor with conductivity , carries dc current I. Calculate the flux of the Poynting vector through its 
surface, and compare it with the Joule rate of energy dissipation. 
 

75 See, e.g., CM Sec. 6.3. 
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Chapter 7. Electromagnetic Wave Propagation 

This (rather extensive) chapter focuses on the most important effect that follows from the time-
dependent Maxwell equations, namely the electromagnetic waves, at this stage avoiding the issue of 
their origin, i.e. of the wave radiation process – which will be the subject of Chapters 8 and 10. We will 
start from the simplest, plane waves in uniform and isotropic media, and then proceed to a discussion of 
nonuniform systems, bringing up such effects as reflection and refraction. Then we will discuss the so-
called guided waves, propagating along various transmission lines – such as cables, waveguides, and 
optical fibers. Finally, the end of the chapter is devoted to final-length fragments of such lines, serving 
as resonant cavities, and to the effects of energy dissipation in transmission lines and cavities. 

 

7.1. Plane waves 

 Let us start by considering a spatial region that does not contain field sources ( = 0, j = 0), and 
is filled with a uniform, isotropic, linear medium, which therefore obeys Eqs. (3.46) and (5.110): 

            HBED   , .     (7.1) 

Moreover, let us assume for a while that these constitutive equations hold for all frequencies of interest. 
(Of course, these relations are exactly valid for the very important particular case of free space, where 
we may formally use the macroscopic Maxwell equations (6.100), but with  = 0 and  = 0.) As was 
already shown in Sec. 6.8, in this case, the Lorenz gauge condition (6.117) allows the Maxwell 
equations to be recast into the wave equations (6.118) for the scalar and vector potentials. However, for 
most purposes, it is more convenient to use the homogeneous Maxwell equations (6.100) for the electric 
and magnetic fields – which are independent of the gauge choice. After an elementary elimination of D 
and B using Eqs. (1),1 these equations take a simple, very symmetric form: 

        ,0




t

H
E      ,0





t

E
H      (7.2a) 

       ,0E       .0H      (7.2b) 

Now, let us act by the operator  on each of Eqs. (2a), i.e. take their curl, and then use the vector 
algebra identity (5.31). The appearing terms E and H vanish due to Eqs. (2b), so the first terms of 
Eqs. (2a) turn into the Laplace operators of these vectors (with the minus sign). Now swapping, in the 
second terms, the operators /t and , and using Eqs. (2a) again, we  get fully similar wave equations 
for the electric and magnetic fields:2 

1 Though in a medium, B rather than H is the actual macroscopic magnetic field, mathematically it is a bit more 
convenient (just as it was in Sec. 6.2) to use the vector pair {E, H} in the following discussion, because at sharp 
media boundaries, it is H that obeys the boundary condition (5.117) similar to that for E – cf. Eq. (3.37). 
2 The two vector equations (3) are of course just a shorthand for six similar equations for three Cartesian 
components of E and H. 
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where the parameter v is defined as  

          

12 v .      (7.4) 

with v2 = 1/00  c2 in free space – see Eq. (6.120) again.  

 These equations allow, in particular, solutions of the following type;  

                ),( vtzfHE       (7.5) 

where z is the Cartesian coordinate along a certain (arbitrary) direction n, and f is an arbitrary function 
of one argument. Note that this solution, first of all, describes a traveling wave – meaning a certain field 
pattern moving, without deformation, along the z-axis, with the constant velocity v. Second, according 
to Eq. (5), both E and H have the same values at all points of each plane perpendicular to the direction n 
 nz of the wave propagation; hence the second name – plane wave. 

 According to Eqs. (2), the independence of the wave equations (3) for vectors E and H does not 
mean that their plane-wave solutions are independent. Indeed, plugging any solution of the type (5) into 
Eqs. (2a), we get  

              nHE
En

H 


 Z
Z

  i.e., ,    (7.6) 

where  

               
2/1











H

E
Z .     (7.7) 

 The vector relationship (6) means, first of all, that at any point of space and at any time instant, 
the vectors E and H are perpendicular not only to the propagation vector n (such waves are called 
transverse) but also to each other –– see Fig. 1.  

 

 

 

 

 
  

 Second, this equality does not depend on the function f, meaning that the electric and magnetic 
fields increase and decrease simultaneously. Finally, the field magnitudes are related by the constant Z 
called the wave impedance of the medium. Very soon we will see that this impedance plays a pivotal 
role in many problems, in particular at the wave reflection from the interface between two media. Since 
the dimensionality of E, in SI units, is V/m, and that of H is A/m,  Eq. (7) shows that Z has the 
dimensionality of V/A, i.e. ohms ().3 In particular, in free space, 

3 In the Gaussian units, E and H have a similar dimensionality (in particular, in a free-space wave, E = H), making 
the (very useful) notion of the wave impedance less manifestly exposed – so in some older physics textbooks it is 
not mentioned at all! 

E
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H0 Fig. 7.1. Field vectors in a plane electromagnetic 
wave propagating along direction n. 
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 Next, plugging Eq. (6) into Eqs. (6.113) and (6.114), we get:  

      22 HEu   ,     (7.9a) 

       ,2
2

ZH
Z

E
nnHES       (7.9b) 

so, according to Eqs. (4) and (7), the wave’s energy and power densities are universally related as                        

           uvnS  .      (7.9c) 

 In view of the Poynting vector paradox discussed in Sec. 6.8 (see Fig. 6.11), one may wonder 
whether the last equality may be interpreted as the actual density of power flow. In contrast to the static 
situation shown in Fig. 6.11, which limits the electric and magnetic fields to the vicinity of their sources, 
waves may travel far from them. As a result, they can form wave packets of a finite length in free space 
– see Fig. 2. 

 

 

 

 

 

 

 

 

 Let us apply the Poynting theorem (6.111) to the cylinder shown with dashed lines in Fig. 2, with 
one lid inside the wave packet, and another lid in the region already passed by the wave. Then, 
according to Eq. (6.111), the rate of change of the full field energy E inside the volume is dE /dt = –SA 
(where A is the lid area), so S may be indeed interpreted as the power flow (per unit area) from the 
volume. Making a reasonable assumption that the finite length of a sufficiently long wave packet does 
not affect the physics inside it, we may indeed interpret the S given by Eqs. (9b-c) as the power flow 
density inside a plane electromagnetic wave. 

 As we will see later in this chapter, the free-space value Z0 of the wave impedance, given by Eq. 
(8), establishes the scale of Z of virtually all wave transmission lines, so we may use it, together with 
Eq. (9), to get a better feeling of how much different are the electric and magnetic field amplitudes in the 
waves – on the scale of typical electrostatics and magnetostatics experiments. For example, according to 
Eqs. (9), a wave of a modest intensity S = 1 W/m2 (this is what we get from a usual electric bulb a few 
meters away from it) has E ~ (SZ0)

1/2 ~ 20 V/m, quite comparable with the dc field created by a standard 
AA battery right outside it. On the other hand, the wave’s magnetic field H = (S/Z0)

1/2  0.05 A/m. For 
this particular case, the relation following from Eqs. (1), (4), and (7),   

n

Fig. 7.2. Interpreting the Poynting 
vector in a plane electromagnetic 
wave. (Horizontal lines show 
equal-field planes.)  

0S

0S

packet wave

V

Wave’s  
energy 

Wave 
impedance 

of free 
space 

Wave’s  
power 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 7                 Page 4 of 70 

 
 

v

E
E

E

Z

E
HB  2/1

2/1/



 ,   (7.10) 

gives B = 0H = E/c ~ 710-8T, i.e. a magnetic field a thousand times lower than the Earth’s field, and 
about 7 orders of magnitude lower than the field of a typical permanent magnet. This huge difference 
may be interpreted as follows: the scale B ~ E/c of magnetic fields in the waves is “normal” for 
electromagnetism, while the permanent magnet fields are abnormally high because they are due to the 
ferromagnetic alignment of electron spins, essentially relativistic objects – see the discussion in Sec. 5.5. 

 The fact that Eq. (5) is valid for an arbitrary function f  means, in the standard terminology, that a 
medium with frequency-independent  and   supports the propagation of plane waves without either 
decay (attenuation) or waveform deformation (dispersion). However, for any real medium but pure 
vacuum, this approximation is valid only within limited frequency intervals. We will discuss the effects 
of attenuation and dispersion in the next section and will see that all our prior formulas remain valid 
even for an arbitrary linear media, provided that we limit them to single-frequency (i.e. sinusoidal, 
frequently called monochromatic) waves. Such waves may be most conveniently represented as4 

           
 

,Re 



  tkzieff 

      (7.11) 

where f is the complex amplitude of the wave, and k is its wave number (the magnitude of the wave 
vector k  nk), sometimes called the spatial frequency. The last term is justified by the fact, evident 
from Eq. (11), that k is related to the wavelength  exactly as the usual (“temporal”) frequency  is 
related to the time period T: 

           .
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,
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




k      (7.12) 

In the dispersion-free case (5), the compatibility of that relation with Eq. (11) requires the argument (kz 
– t)  k[z – (/k)t] to be proportional to (z – vt), so /k = v, i.e.  

                 2/1
v

k ,     (7.13) 

so in that particular case, the dispersion relation (k) is linear.  

 Now note that Eq. (6) does not mean that the vectors E and H retain their direction in space. 
(The wave in which they do, is called linearly polarized.5) Indeed, nothing in the Maxwell equations 
prevents, for example, a joint rotation of this vector pair around the fixed vector n, while still keeping all 
these three vectors perpendicular to each other at any instant – see Fig. 1. However, an arbitrary rotation 
law or even an arbitrary constant frequency of such rotation would violate the single-frequency 
(monochromatic) character of the elementary sinusoidal wave (11). To understand what is the most 
general type of polarization the wave may have without violating that condition, let us represent two 

4 As we have already seen in the previous chapter (see also CM Sec. 5.1), such complex-exponential 
representation of sinusoidally changing variables is more convenient for mathematical manipulation than by using 
sine and cosine functions, especially because in all linear relations, the operator Re may be omitted (implied) until 
the very end of the calculation. Note, however, that this is not valid for the quadratic forms such as Eqs. (9). 
5 The possibility of different polarizations of electromagnetic waves was discovered (for light) in 1699 by Rasmus 
Bartholin, a.k.a. Erasmus Bartholinus. 
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Cartesian components of one of these vectors (say, E) along any two fixed axes x and y, perpendicular to 
each other and the z-axis (i.e. to the vector n), in the same form as used in Eq. (11): 

       
   
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






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 ReRe , .   (7.14) 

To keep the wave monochromatic, the complex amplitudes E x and E y have to be constant in time; 
however,  they may have different magnitudes and an arbitrary phase shift between them. 

 In the simplest case when the arguments of these complex amplitudes are equal, 

                


ieEE yxyx ,,  .     (7.15) 

the real field components have the same phase: 

             ),cos(),cos(    tkzEEtkzEE yyxx    (7.16) 

so their ratio is constant in time – see Fig. 3a. This means that the wave is linearly polarized, with the 
polarization plane defined by the relation  

              xy EE  /tan  .     (7.17) 

 

 

 

 

 

 

 

 

  
 

 Another simple case is when the moduli of the complex amplitudes E x and E y are equal, but 
their phases are shifted by +/2 or –/2: 

                     .,
2/
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 ii eEEeEE yx     (7.18) 

In this case 
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This means that on the wave’s plane (normal to n), the end of the vector E moves, with the wave’s 
frequency , either clockwise or counterclockwise around a circle – see Fig. 3b:  

       )()(   tt  .     (7.20) 

0
xExE

yE



(a)        (b)     (c) 

0
E

)(t

E

0
xE

yE

)(t

Fig. 7.3. Time evolution of the instantaneous electric field vector in monochromatic waves with: 
(a) a linear polarization,  (b) a circular polarization, and (c) an elliptical polarization. 
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 Such waves are called circularly polarized. In the dominant convention, the wave is called right-
polarized (RP) if it is described by the lower sign in Eqs. (18)-(20), i.e. if the vector  of the angular 
frequency of the field vector’s rotation coincides with the wave propagation’s direction n, and left-
polarized (LP) in the opposite case. These particular solutions of the Maxwell equations are very 
convenient for quantum electrodynamics, because single electromagnetic field quanta with a certain 
(positive or negative) spin direction may be considered elementary excitations of the corresponding 
circularly polarized wave.6 (This fact does not exclude, from the quantization scheme, waves of other 
polarizations, because any monochromatic wave may be presented as a linear combination of two 
opposite circularly polarized waves – just as Eqs. (14) represent it as a linear combination of two 
linearly polarized waves.) 

    Finally, in the general case of arbitrary complex amplitudes E x and E y, the field vector’s end 
moves along an ellipse (Fig. 3c); such a wave is called elliptically polarized. The elongation 
(“eccentricity”) and orientation of the ellipse are completely described by one complex number, the ratio 
Ex/Ey, i.e. by two real numbers – for example, E x/E y and   = arg(E x/E y).7 

 

7.2. Attenuation and dispersion 

 Let me start the discussion of the dispersion and attenuation effects by considering a particular 
case of the time evolution of the electric polarization P(t) of a dilute, non-polar medium, with negligible 
interaction between its elementary dipoles p(t). As was discussed in Sec. 3.3, in this case, the local 
electric field acting on each elementary dipole, may be taken equal to the macroscopic field E(t). Then, 
the dipole moment p(t) may be caused not only by the values of the field E at the same moment of time 
(t), but also by those at the earlier moments t’ < t. Due to the linear superposition principle, the 
macroscopic polarization P(t) = np(t) should be a sum (practically, an integral) of the values of E(t’) at 
all moments t’  t, weighed by some function of t and t’: 8 

          



t

dt't'tGt'EtP ),()()( .     (7.21) 

6 This issue is closely related to that of the wave’s angular momentum; it will be more convenient for me to 
discuss it later in this chapter (in Sec. 7). 
7 Note that the same information may be expressed via four so-called Stokes parameters s0, s1, s2, and s3, which 
are popular in practical optics, because they may be used for the description of not only completely coherent 
waves that were discussed here but also of party coherent or even fully incoherent waves – including the natural 
light emitted by thermal sources such as our Sun. (In contrast to the coherent waves (14), whose complex 
amplitudes are deterministic numbers, the amplitudes of incoherent waves should be treated as random variables.) 
For more on the Stokes parameters, as well as many other optics topics I will not have time to cover, I can 
recommend the classical text by M. Born et al., Principles of Optics, 7th ed., Cambridge U. Press, 1999. 
8 In an isotropic media, the vectors E, P, and hence D = 0E + P, are all parallel, and for notation simplicity, I will 
drop the vector sign in the following formulas of this section. I am also assuming that P at any point r is only 
dependent on the electric field at the same point, and hence drop the factor exp{ikz},  the same for all variables. 
This last assumption is valid if the wavelength  is much larger than the elementary dipole’s size a. In most 
systems of interest, the scale of a is atomic (~10-10m), so this approximation is valid up to extremely high 
frequencies,  ~ c/a ~ 1018 s-1, corresponding to hard X-rays. 
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 The condition t’  t, which is implied by this relation, expresses a keystone principle of all 
science, the causal relation between a cause (in our case, the electric field E(t’) applied to each dipole) 
and its effect (the polarization P(t) it creates). The function G(t, t’) is called the temporal Green’s 
function for the electric polarization.9 To reveal its physical sense, let us consider the case when the 
applied field E(t) is a very short pulse at the moment t0 < t, which may be well approximated with 
Dirac’s delta function: 
      )()( t"ttE   .     (7.22) 

Then Eq. (21) yields just P(t) = G(t, t”), so the Green’s function G(t, t’) is just the polarization at 
moment t, created by a unit -functional pulse of the applied field at moment t’ (Fig. 4). 

  

  

 

 

 

 

 What are the general properties of the temporal Green’s function? First, for systems without 
infinite internal “memory”, G should tend to zero at t – t’  , although the type of this approach (e.g., 
whether the function G oscillates approaching zero, as in Fig. 4, or not) depends on the medium’s 
properties. Second, if the parameters of the medium do not change in time, the polarization response to 
an electric field pulse should be dependent not on its absolute timing, but only on the time difference   
 t – t’ between the pulse and observation instants, when Eq. (21) is reduced to 
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For a sinusoidal waveform, E(t) = Re [Ee-it], this equation yields 
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The expression in the last parentheses is of course nothing else than the complex amplitude P of the 
polarization. This means that though even if the static linear relation (3.43), P = e0E, is invalid for an 
arbitrary time-dependent process, we may still keep its Fourier analog, 
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for each sinusoidal component of the process, using it as the definition of the frequency-dependent 
electric susceptibility e(). Similarly, the frequency-dependent electric permittivity may be defined 
using the Fourier analog of Eq. (3.46):  

9 The idea of these functions is very similar to that of the spatial Green’s functions (see Sec. 2.10), but with a new 
twist, due to the causality principle. A discussion of the temporal Green’s functions in application to classical 
mechanics (which to some extent overlaps with our current discussion) may be found in CM Sec. 5.1. 

)(

)(

tP

tE

),()( t'tGtP 

tt'
0

)()( t'ttE  

Fig. 7.4. An example of the temporal 
Green’s function for the electric 
polarization (schematically). 
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          ED  .      (7.26a) 

Then, according to Eq. (3.47), the complex permittivity is related to the temporal Green’s function by 
the usual Fourier transform: 
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This relation shows that the function () may be complex,  
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and that its real part ’() is always an even function of frequency, while the imaginary part ”() is an 
odd function of . Note that though the particular causal relationship (21) between P(t) and E(t) is 
conditioned by the elementary dipole independence, the frequency-dependent complex electric 
permittivity () may be introduced, in a similar way, if any two linear combinations of these variables 
are related by a similar formula.  

 Absolutely similar arguments show that magnetic properties of a linear, isotropic medium may 
be characterized by a frequency-dependent, complex permeability (). Now rewriting Eqs. (1) for the 
complex amplitudes of the fields at a particular frequency, we may readily repeat all calculations of Sec. 
1, and verify that all its results are valid for monochromatic waves even for a dispersive (but necessarily 
linear!) medium. In particular, Eqs. (7) and (13) now become 
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so the wave impedance and the wave number may be both complex functions of frequency.10 

 This fact has important consequences for electromagnetic wave propagation. First, plugging the 
representation of the complex wave number as the sum of its real and imaginary parts, k()  k’() + 
ik”(), into Eq. (11): 
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we see that k”() describes the rate of wave attenuation in the medium at frequency .11 Second, if the 
waveform is not sinusoidal (and hence should be represented as a sum of several/many sinusoidal 
components), the frequency dependence of k’() provides for wave dispersion, i.e. the waveform 
deformation at the propagation, because the propagation velocity (4) of component waves is now 
different.12  

10 The first unambiguous observations of dispersion (for the case of light refraction) were described by Sir Isaac 
Newton in his Optics (1704) – even though this genius has never recognized the wave nature of light! 
11 It may be tempting to attribute this effect to wave absorption, i.e. the dissipation of the wave’s energy, but we 
will see very soon that wave attenuation may be due to different effects as well. 
12 The reader is probably familiar with the most noticeable effect of the dispersion: the difference between the 
group velocity vgr  d/dk’ giving the speed of the envelope of a wave packet with a narrow frequency spectrum, 
and the phase velocity vph  /k’ of the component waves. The second-order dispersion effect, proportional to 
d2/d2k’, leads to the deformation (gradual broadening) of the envelope itself. Following tradition, these effects 

Complex 
electric 
permittivity 

Complex 
 Z and k 
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 As an example of such a dispersive medium, let us consider a simple but very representative 
Lorentz oscillator model.13 In dilute atomic or molecular systems (e.g., gases), electrons respond to the 
external electric field especially strongly when its frequency  is close to certain frequencies j 
corresponding to the spectrum of quantum interstate transitions of a single atom/molecule. A 
phenomenological description of this behavior may be obtained from a classical model of several 
externally driven harmonic oscillators, generally with non-zero damping. For a single oscillator, driven 
by the electric field’s force F(t) = qE(t), we can write the 2nd Newton law as 

          )(2 2
00 tqExxxm    ,    (7.30) 

where 0 is the own frequency of the oscillator, and 0  is its damping coefficient. For the electric field 
of a monochromatic wave, E(t) = Re [Eexp{–it}], we may look for a particular, forced-oscillation 
solution of this equation in a similar form x(t) = Re [xexp{–it}].14 Plugging this solution into Eq. (30), 
we readily find the complex amplitude of these oscillations: 

         0
22

0 2 


 i

E

m

q
x


 .     (7.31) 

Using this result to calculate the complex amplitude of the dipole moment as p = qx, and then the 
electric polarization P = np of a dilute medium with n independent oscillators for unit volume, for its 
frequency-dependent permittivity (26) we get
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This result may be readily generalized to the case when the system has several types of 
oscillators with different masses and frequencies: 
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where fj  nj/n is the fraction of oscillators with frequency j, so the sum of all fj equals 1. Figure 5 
shows a typical behavior of the real and imaginary parts of the complex dielectric constant, described by 
Eq. (33), as functions of frequency. The oscillator resonances’ effect is clearly visible, and dominates 
the media response at   j, especially in the case of low damping, j << j. Note that in the low-
damping limit, the imaginary part of the dielectric constant ”, and hence the wave attenuation k”, are 
negligibly small at all frequencies besides small vicinities of j, where the derivative d’()/d is 

are discussed in more detail in the quantum-mechanics part of this series (QM Sec. 2.2), because they are a crucial 
factor of Schrödinger’s wave mechanics. (See also a brief discussion in CM Sec. 6.3.) 
13 This example is focused on the frequency dependence of  rather than , because electromagnetic waves 
interact with “usual” media via their electric field much more than via the magnetic field. Indeed, according to Eq. 
(7),  the magnetic field of the wave is of the order of E/c, so the magnetic component of the Lorentz force (5.10), 
acting on a non-relativistic particle, Fm ~ quB ~ (u/c)qE, is much smaller than that of its electric component, Fe = 
qE, and may be neglected. However, as will be discussed in Sec. 6, forgetting about the possible dispersion of 
() may result in missing some remarkable opportunities for manipulating the waves. 
14 If this point and Eq. (30) are not absolutely clear, please see CM Sec. 5.1 for a more detailed discussion. 
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negative.15 Thus, for a system of weakly-damped oscillators, Eq. (33) may be well approximated by a 
sum of singularities (“poles”): 
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 This result is especially important because according to quantum mechanics,16 Eq. (34) (with all 
mj equal) is also valid for a set of non-interacting, similar quantum systems (whose dynamics may be 
completely different from that of a harmonic oscillator!), provided that j are replaced with frequencies 
of possible quantum interstate transitions, and coefficients fj are replaced with the so-called oscillator 
strengths of the transitions – which obey the same sum rule, j fj = 1. 

 At   0, the imaginary part of the complex permittivity (33) also vanishes (for any j), while 
its real part approaches its electrostatic (“dc”) value 

       
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Note that according to Eq. (30), the denominator of the fraction in Eq. (35) is just the effective spring 
constant j = mjj

2 of the jth oscillator, so the oscillator masses mj as such are actually (and quite 
naturally) not involved in the static dielectric response.  

 In the opposite limit of very high frequencies,  >> j, j, the permittivity also becomes real and 
may be represented as 
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15 In optics, such behavior is called anomalous dispersion.  

16 See, e.g., QM Chapters 5-6. 

Fig. 7.5. Typical frequency 
dependence of the real and imaginary 
parts of the complex electric 
permittivity, according to the 
generalized Lorentz oscillator model. 
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This result is very important because it is also valid at all frequencies if all j and j vanish, for example 
for gases of free charged particles, in particular for plasmas – ionized atomic gases, provided that the 
ion collision effects are negligible. (This is why the parameter p defined by Eq. (36) is called the 
plasma frequency.) Typically, the plasma as a whole is neutral, i.e. the density n of positive atomic ions 
is equal to that of the free electrons. Since the ratio nj/mj for electrons is much higher than that for ions, 
the general formula (36) for the plasma frequency is usually well approximated by the following simple 
expression: 

         .
e0

2
2
p m

ne


        (7.37) 

 This expression has a simple physical sense: the effective spring constant ef  mep
2 = ne2/0 

describes the Coulomb force that appears when the electron subsystem of the plasma is shifted, as a 
whole, from its positive-ion subsystem, thus violating the electroneutrality.17 Hence, there is no surprise 
that the function () given by Eq. (36) vanishes at  = p: at this resonance frequency, the polarization 
electric field E may oscillate, i.e. have a non-zero amplitude E = D/(), even in the absence of 
external forces induced by external (stand-alone) charges, i.e. in the absence of the field D these charges 
induce – see Eq. (3.32). 

 The behavior of electromagnetic waves in a medium that obeys Eq. (36), is very remarkable. If 
the wave frequency  is above p, the dielectric constant () and hence the wave number (28) are 
positive and real, and waves propagate without attenuation, following the dispersion relation, 

              2/12
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k ,    (7.38)  

whose plot is shown in Fig. 6. 

 

 

 

 

 

 

 

  

 

 At   p the wave number k tends to zero. Beyond that point (i.e. at  < p), we still can use 
Eq. (38), but it is instrumental to rewrite it in the mathematically equivalent form 

17 Indeed, let us consider such a small shift x, perpendicular to the plane surface of a broad, plane slab filled with 
plasma. The uncompensated ion charges, with equal and opposite surface densities  = enx, that appear at the 
slab surfaces, create inside it, according to Eq. (2.3), a uniform electric field with Ex = enx/0. This field exerts 
the force  –eEx = –(ne2/0)x  –efx on each electron, pulling it back to its equilibrium position. 

Fig. 7.6. The plasma dispersion law (solid 
line) in comparison with the linear dispersion 
in the free space (dashed line). 0 1 2 3
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At  < p, the so-defined parameter  is real, and Eq. (29) shows that the electromagnetic field 
exponentially decreases with distance: 
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 Does this mean that the wave is being absorbed in the plasma? Answering this question is a good 
pretext to calculate the time average of the Poynting vector S = EH of a monochromatic 
electromagnetic wave in an arbitrary dispersive (but still linear and isotropic) medium. First, let us spell 
out the real fields’ time dependences: 
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Now, a straightforward calculation yields18 
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 Let us apply this important general formula to our simple model of plasma at  < p. In this 
case, the magnetic permeability equals μ0, i.e. μ() = μ0 is positive and real, while () is real and 
negative, so 1/Z() = [()/ μ()]1/2 is purely imaginary, and the average Poynting vector (42) vanishes. 
This means that the energy, on average, does not flow along the z-axis. So, the waves with  < p are 
not absorbed in plasma. (Indeed, the Lorentz model with j = 0 does not describe any energy dissipation 
mechanism.) Instead, as we will see in the next section, the waves are rather reflected from the plasma’s 
boundary, more exactly from its surface layer of a thickness ~. 

 Note also that in the limit  << p, Eq. (39) yields 
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But this is just a particular case (for q = e, m = me, and  = 0) of Eq. (6.44) that was derived in Sec. 6.4 
for the depth of the magnetic field’s penetration into a lossless (collision-free) conductor in the 
quasistatic approximation. This fact shows again that, as was already discussed in Sec. 6.7, this 

18 For an arbitrary plane wave, the total average power flow may be calculated as an integral of Eq. (42) over all 
frequencies. By the way, combining this integral and the Poynting theorem (6.111), is it straightforward to prove 
the following interesting expression for the average electromagnetic energy density of a narrow ( << ) wave 
packet propagating in an arbitrary dispersive (but linear and isotropic) medium:  
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approximation (in which the displacement currents are neglected) gives an adequate description of the 
time-dependent phenomena at  << p, i.e. at   << c/ = 1/k = /2.19 

  There are two most important examples of natural plasmas. For the Earth’s ionosphere, i.e. the 
upper part of its atmosphere, which is almost completely ionized by the ultra-violet and X-ray 
components of the Sun’s radiation, the maximum value of n, reached about 300 km over the Earth’s 
surface, is between 1010 and 1012 m-3 (depending on the time of the day and the Sun’s activity phase), so 
the maximum plasma frequency (37) is between 1 and 10 MHz. This is much higher than the particles’ 
typical reciprocal collision time -1, so Eq. (38) gives a good description of wave dispersion in this 
plasma. The effect of reflection of electromagnetic waves with  < p from the ionosphere enables long-
range (over-the-globe) radio communications and broadcasting at the so-called short waves, with cyclic 
frequencies of the order of 10 MHz:20 they may propagate in the flat channel formed by the Earth’s 
surface and the ionosphere, being reflected repeatedly by these parallel “walls”. Unfortunately, due to 
the random variations of the Sun’s activity, and hence of p, this natural radio communication channel is 
not too reliable, and in our age of transworld optical-fiber cables (see Sec. 7 below), its practical 
importance has diminished. 

 Another important example of plasmas is free electrons in metals and other conductors. For a 
typical metal, n is of the order of 1023 cm-3  1029 m-3, so Eq. (37) yields p ~ 1016 s-1. This value of p 
is somewhat higher than the mid-optical frequencies ( ~ 31015 s-1), explaining why planar, clean 
metallic surfaces, such as the aluminum and silver films used in mirrors, are so shiny: at these 
frequencies, their complex permittivity () is almost exactly real and negative, leading to light 
reflection, with very little absorption.  

 The simple model (36), which neglects electron scattering, becomes inadequate at lower 
frequencies,  ~ 1. A good phenomenological way of extending the model to the account of scattering 
is to take, in Eq. (33), the lowest frequency j equal zero (to describe the free electrons), while keeping 
the damping coefficient 0 of this mode larger than zero, to account for the energy dissipation due to 
their scattering. Then Eq. (33) is reduced to  
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where the response opt() at high (in practice, optical) frequencies is still given by Eq. (33), but now 
with j > 0. The result (44) allows for a simple interpretation. To show that, let us incorporate into our 
calculations the Ohmic conduction of the medium, generalizing Eq. (4.7) as j = ()E to account for 
the possible frequency dependence of the Ohmic conductivity. Plugging this relation into the Fourier 
image of the relevant macroscopic Maxwell equation, H = j – iD  j – i()E, we get 

             EH i .    (7.45) 

19 One more convenience of the simple model of a collision-free plasma, which has led us to Eq. (36), is that it 
may be readily generalized to the case of an additional strong dc magnetic field B0 (much higher than that of the 
wave) applied in the direction n of wave propagation. It is straightforward (and hence left for the reader) to show 
that such plasma exhibits the Faraday effect of the polarization plane’s rotation, and hence gives an example of an 
anisotropic media that violates the Lorentz reciprocity relation (6.121). 
20 These frequencies are an order of magnitude lower than those used for TV and FM-radio broadcasting. 
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This relation shows that for a monochromatic wave, the addition of the Ohmic current density j to the 
displacement current density is equivalent to the addition of () to –i(), i.e. to the following 
change of the ac electric permittivity:21 
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Now the comparison of Eqs. (44) and (46) shows that they coincide if we take 
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where the dc conductivity (0) is described by the Drude formula (4.13), and the phenomenologically 
introduced coefficient 0 is associated with 1/2. Eq. (47), which is frequently called the generalized (or 
“ac”, or “rf”) Drude formula,22 gives a very reasonable (semi-quantitative) description of the ac 
conductivity of many metals almost up to optical frequencies.  

 Now returning to our discussion of the generalized Lorentz model (33), we see that the 
frequency dependences of the real (’) and imaginary (”) parts of the complex permittivity it yields are 
not quite independent. For example, let us have one more look at the resonance peaks in Fig. 5.  Each 
time the real part drops with frequency, d’/d < 0, its imaginary part ” has a positive peak. Ralph 
Kronig (in 1926) and Hendrik (“Hans”) Kramers (in 1927) independently showed that this is not an 
occasional coincidence pertinent only to this particular model. Moreover, the full knowledge of the 
function ’() enables the calculation of the function ”(), and vice versa.  The mathematical reason 
for this fact is that both these functions are always related to a single real function G() – see Eqs. (27). 

 To derive these relations, let us consider Eq. (26b) on the complex frequency plane,     ’ 
+ i”:  
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For all stable physical systems, G() has to be finite for all important values of the real integration 
variable (  > 0),  and tend to zero at   0 and   . (Indeed, according to Eq. (23), a non-zero G(0) 
would mean an instantaneous response of the medium to the external force, while G()  0 would mean 
that it has an infinitely long memory.) Because of that, and thanks to the factor e–”, the expression 
under the integral in Eq. (48) tends to zero at        in all upper half-plane (”  0). As a result, we 
may claim that the complex function f () given by this relation, is analytical in that half-plane. This fact 
allows us to apply to it the general Cauchy integral formula23 
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21 Alternatively, according to Eq. (45), it is possible (and in the field of infrared spectroscopy, conventional) to 
attribute the ac response of a medium, at all frequencies, to its effective complex conductivity: ef ()  () – 
i()  –ief (). 
22 It may be also derived from the Boltzmann kinetic equation in the so-called relaxation-time approximation 
(RTA) – see, e.g., SM Sec. 6.2. 
23 See, e.g., MA Eq. (15.2). 
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where   ’ + i” is also a complex variable. Let us take the integration contour C of the form shown 
in Fig. 7, with the radius R of the larger semicircle tending to infinity, and the radius r  of the smaller 
semicircle (around the singular point  = ) tending to zero. Due to the exponential decay of f() at 
  , the contribution to the right-hand side of  Eq. (49) from the larger semicircle vanishes,24 while 
the contribution from the small semicircle, where  =   + rexp{i}, with –      0, is  
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 As a result, for our contour C, Eq. (49) yields 
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where   ’ on the real axis (where ” = 0). Such an integral, excluding a symmetric infinitesimal 
vicinity of a pole singularity, is called the principal value of the (formally, diverging) integral from – 
to +, and is denoted by the letter P before it.25 Using this notation, subtracting f()/2 from both parts of 
Eq. (51), and multiplying them by 2, we get  
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Now plugging into this complex equality the polarization-related difference f()  () – 0 in the form 
[’() – 0] + i[”()], and requiring both real and imaginary components of the two sides of Eq. (52) to 
be equal separately, we get the famous Kramers-Kronig dispersion relations 
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We may use the already mentioned fact that ’() is always an even function, while ”() an odd 
function of frequency, to rewrite these relations in the following equivalent form,  

24Strictly speaking, this also requires f() to decrease faster than -1 at the real axis (at ” = 0), but due to the 
inertia of charged particles, this requirement is fulfilled for all realistic models of dispersion – see, e.g., Eq. (36). 
25 I am typesetting this symbol in a Roman (upright) font, to avoid any possibility of confusion with the medium’s 
polarization. 

Fig. 7.7. Deriving the Kramers-
Kronig dispersion relations. 
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which is more convenient for most applications, because it involves only physical (positive) frequencies. 

 Though the Kramers-Kronig relations are “global” in frequency, in certain cases they allow an 
approximate calculation of dispersion from experimental data for absorption, collected even within a 
limited (“local”) frequency range. Most importantly, if a medium has a sharp absorption peak at some 
frequency j, we may describe it as 

            offunction smooth  more a )()(  jc" ,   (7.55) 

and the first of Eqs. (54) immediately gives 
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thus predicting the anomalous dispersion near such a point. This calculation shows that such behavior 
observed in the Lorentz oscillator model (see Fig. 5) is by no means occasional or model-specific. 

 Let me emphasize again that the Kramers-Kronig relations (53)-(54) are much more general than 
the Lorentz model (33), and require only a causal linear relation (21) between the polarization P(t) with 
the electric field E(t’).26 Hence, these relations are also valid for the complex functions relating Fourier 
images of any cause/effect-related pair of variables. In particular, at a measurement of any linear 
response r(t) of any experimental sample to any external field f(t’), whatever the nature of this response 
and physics behind it, we may be confident that there is a causal relationship between the variables r and 
f, so the corresponding complex function ()  r/f does obey the Kramers-Kronig relations. 
However, it is still important to remember that a linear relationship between the Fourier amplitudes of 
two variables does not necessarily imply a causal relationship between them.27  

 

7.3. Reflection 

 The most important new effect arising in nonuniform media is wave reflection. Let us start its 
discussion from the simplest case of a plane electromagnetic wave that is normally incident on a sharp 
interface between two uniform, linear, isotropic media.  

Moreover, let us first consider an even simpler sub-case when one of the two media (say, that 
located at z > 0, see Fig. 8) cannot sustain any electric field at all – as implied, in particular, by the 
macroscopic model of a perfect conductor – see Eq. (2.1): 

26 Actually, in mathematics, the relations even somewhat more general than Eqs. (53) and valid for an arbitrary 
analytic function of complex argument (the Sokhotski-Plemelj theorem) have been known at least from 1868. 
27 For example, the function ()  E/ P, in the Lorentz oscillator model, does not obey the Kramers-Kronig 
relations. This is evident not only physically, from the fact that E(t) is not a causal function of P(t), but even 
mathematically. Indeed, Green’s function describing a causal relationship has to tend to zero at small time delays 
   t – t’, so its Fourier image has to tend to zero at    . This is certainly true for the function f() given by 
Eq. (32), but not for the reciprocal function ()  1/f()  (2 – 0

2) – 2i, which diverges at large 
frequencies. 

Dispersion 
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          .00 zE       (7.57)  

This condition is evidently incompatible with the single traveling wave (5). However, this solution may 
be readily generalized using the fact that the dispersion-free 1D wave equation, 
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supports waves propagating, with the same speed, in any of two opposite directions. As a result, the 
following linear superposition of two such waves,  

               )()(0 vtzfvtzfE z  ,    (7.59) 

satisfies both the equation and the boundary condition (57), for an arbitrary function f. The second term 
on the right-hand side of Eq. (59) may be interpreted as a result of total reflection of the incident wave 
(described by its first term) – in this particular case, with the change of the electric field’s sign. This 
means, in particular, that within the macroscopic model, a conductor acts as a perfect mirror. By the 
way, since the vector n of the reflected wave is opposite to that of the incident one (see the arrows in 
Fig. 8), Eq. (6) shows that the magnetic field of the wave does not change its sign at the reflection: 
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 The blue lines in Fig. 8 show the resulting pattern (59) for the simplest, monochromatic wave: 
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Depending on convenience in a particular context, this pattern may be legitimately represented and 
interpreted either as the linear superposition (61a) of two traveling waves or as a single standing wave: 
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in which the electric and magnetic field oscillate with the phase shifts by /2 both in time and space: 

 

Fig. 7.8. A snapshot of the electric field at the 
reflection of a sinusoidal wave from a perfect 
conductor: a realistic pattern (red lines) and its 
macroscopic, ideal-mirror approximation (blue 
lines). Dashed lines show the snapshots after a 
half-period time delay (t = ). 
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As a result of this shift, the time average of the Poynting vector’s magnitude, 
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equals zero, showing that at the total reflection, there is no average power flow. (This is natural because 
the perfect mirror can neither transmit the wave nor absorb it.) However, Eq. (63) shows that the 
standing wave features local oscillations of energy, transferring it periodically between the 
concentrations of the electric and magnetic fields, separated by the distance z = /2k = /4. 

 In the case of the sinusoidal waves, the reflection effects may be readily explored even for the 
more general case of dispersive and/or lossy (but still linear) media in which () and (), and hence 
the wave vector k() and the wave impedance Z(), defined by Eqs. (28), are certain complex functions 
of frequency. The “only” new factor we have to account for is that in this case, the reflection may not be 
total, so inside the second medium we have to use the traveling-wave solution as well. This factor may 
be taken care of by looking for the solution to our boundary problem in the form 
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and hence, according to Eq. (6), 
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(The indices + and – correspond to the media located at z > 0 and z < 0, respectively.)  Please note the 
following important features of Eqs. (64)-(65): 

 (i) They satisfy the Maxwell equations in both media. (Historically, the fact that at z > 0, these 
solutions do not include any components proportional to exp{ik–z}, looked surprising and was called the 
wave extinction paradox.) 

 (ii) Due to the problem’s linearity, we could (and did :-) take the complex amplitudes of the 
reflected and transmitted wave proportional to that (E) of the incident wave, while scaling them with 
dimensionless, generally complex coefficients R and T. As a comparison of Eqs. (64)-(65) with Eqs. 
(61)-(62) shows, the total reflection from an ideal mirror corresponds to R = –1 and T = 0. 

 (iii) Since in our current problem, the incident wave arrives from one side only (from z = –), 
there is no need to include a term proportional to exp{–ik+z} into Eqs. (64)-(65) – even though this term 
is also a legitimate solution of our wave equation. However, we would need to add such a term if the 
medium at z > 0 had been nonuniform (e.g., had at least one more interface or any other inhomogeneity), 
because the wave reflected from that additional inhomogeneity would be incident on our interface 
(located at z = 0) from the right.   

 (iv) Eqs. (64)-(65) may be used even for the description of the cases when waves cannot 
propagate to z  0, for example, a conductor or a plasma with p > . Indeed, the exponential drop of 
the field amplitude at z > 0 in such cases is automatically described by the imaginary part of the wave 
number k+ – see Eq. (29).  

Wave’s 
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  In order to calculate the coefficients R and T, we need to use boundary conditions at z = 0. Since 
in our current case of the normal incidence, the reflection does not change the transverse character of the 
partial waves, both vectors E and H remain tangential to the interface plane (in our notation, z = 0). 
Reviewing the arguments that have led us, in statics, to the boundary conditions (3.37) and (5.117) for 
these components, we see that they remain valid for the time-dependent situation as well,28 so for our 
current case of normal incidence, we may write:  

                     0000 ,   zzzz HHEE .    (7.66) 

Plugging Eqs. (64)-(65) into these conditions, we readily get two equations for the coefficients R and T: 
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Solving this simple system of linear equations, we get29  

              















ZZ

Z
T

ZZ

ZZ
R

2
, .    (7.68) 

 These formulas are very important, and much more general than one might think because they 
are applicable for virtually any 1D waves – electromagnetic or not, provided that the impedance Z is 
defined properly.30 Since in the general case the wave impedances Z defined by Eq. (28) with the 
corresponding indices, are complex functions of frequency, Eqs. (68) show that R and T may have 
imaginary parts as well. This fact has important consequences at z < 0, where the reflected wave, 
proportional to R, combines (“interferes”) with the incident wave. Indeed, with R = R ei  (where    
arg R  is a real phase shift), the expression in the parentheses in the first of Eqs. (64) becomes  
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 (7.69) 

This means that the field may be represented as a sum of a traveling wave and a standing wave, with an 
amplitude proportional to  R , shifted by the distance – toward the interface, relative to the ideal-mirror 
pattern (61b) – see Fig. 8. This effect is frequently used for the experimental measurements of an 
unknown impedance Z+ of some medium, provided than Z – is known – most often, it is the free space, 
where Z– = Z0. For that, a small antenna (the probe), not disturbing the fields’ distribution too much, is 
placed into the wave field,  and the amplitude of the ac voltage induced in it by the wave is measured 
with a detector (e.g., a semiconductor diode with a nearly-quadratic I-V curve), as a function of z (Fig. 

28 For example, the first of Eqs. (66) may be obtained by integrating the full (time-dependent) Maxwell equation 
E + B/t = 0 over a narrow and long rectangular contour with dimensions l and d (d << l) stretched along the 
interface. At the application of the Stokes theorem to this integral, the first term gives El, while the contribution 
of the second term is proportional to the product ld, so its contribution at d/l  0 is negligible. The proof of the 
second boundary condition is similar – as was already discussed in Sec. 6.2. 
29 Please note that only the media impedances (rather than their wave velocities) are important for reflection in 
this case! Unfortunately, this fact is not clearly emphasized in some textbooks that discuss only the case  = 0, 
when Z = (0/)1/2 and v = 1/(0)1/2 are proportional to each other. 
30 See, e.g., the discussion of elastic waves of mechanical deformations in CM Secs. 6.3, 6.4, 7.7, and 7.8.  
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9). From the results of such a measurement, it is straightforward to find both R  and -, and hence 
restore the complex R, and then use Eq. (68) to calculate both the modulus and the argument of Z+. 
(Before computers became ubiquitous, a specially lined paper called the Smith chart, had been 
frequently used for performing this recalculation graphically; even nowadays, it is still used for result 
presentation.) 

  

 

 

 

 

Now let us discuss what these results give for waves incident from the free space (Z–() = Z0 = 
const, k– = k0 = /c) onto the surfaces of two particular important media. 

 (i) For a collision-free plasma (with negligible magnetization) we may use Eq. (36) with () = 
0, to represent the impedance (28) in either of two equivalent forms: 
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The first of these forms is more convenient in the case  > p, when the wave vector k+ and the wave 
impedance Z+ of the plasma are real, so a part of the incident wave does propagate into it. Plugging this 
expression into the latter of Eqs. (68), we see that T is real as well: 
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Note that according to this formula, and somewhat counter-intuitively, T > 1 for any frequency (above 
p), inviting the question: how can the transmitted wave be more intensive than the incident one that has 
induced it? To answer this question, we need to compare the powers (rather than the electric field 
amplitudes) of these two waves, i.e. their average Poynting vectors (42): 
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The ratio of these two values31 is always below 1 (and tends to zero at   p), so only a fraction of the 
incident wave power may be transmitted. Hence the result T > 1 may be interpreted as follows: an 
interface between two media may be an impedance transformer: it can never transmit more power than 
the incident wave provides, i.e. can only decrease the product S = EH, but since the ratio Z = E/H 
changes at the interface, the amplitude of one of the fields may increase at the transmission. 

 Now let us proceed to case  < p when the waves cannot propagate in the plasma. In this case, 
the second of the expressions (70) is more convenient, because it immediately shows that Z+ is purely 

31 This ratio is sometimes also called the “wave transmission coefficient”, but to avoid its confusion with the T 
defined by Eq. (64), it is better to call it the power transmission coefficient.  
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Fig. 7.9. Measurement of the complex 
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imaginary, while Z- = Z0 is purely real. This means that (Z+ – Z-)  = (Z+ + Z-)*, i.e. according to the first of 
Eqs. (68),  R  = 1, so the reflection is total, i.e. no incident power (on average) is transferred into the 
plasma – as was already discussed in Sec. 2. However, the complex R has a finite argument, 
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and hence provides a finite spatial shift (69) of the standing wave toward the plasma surface: 
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 On the other hand, we already know from Eq. (40) that the solution at z > 0 is exponential, with 
the decay length   described by Eq. (39). Calculating, from the coefficient T, the exact coefficient 
before this exponent, it is straightforward to verify that the electric and magnetic fields are indeed 
continuous at the interface, completing the pattern shown with red lines in Fig. 8. This wave penetration 
into a fully reflecting material may be experimentally observed, for example, by thinning its sample. 
Even without solving this problem exactly, it is evident that if the sample’s thickness d becomes 
comparable to , a part of the exponential “tail” of the field reaches its second interface, and induces a 
propagating wave. This is a classical-electromagnetic analog of the quantum-mechanical tunneling 
through a potential barrier.32 

 Note that at low frequencies, both – and  tend to the same frequency-independent value, 
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which is just the field penetration depth (6.44) calculated for a perfect conductor model (assuming m = 
me and  = 0) in the quasistatic limit. This is natural, because the condition  << p may be recast as 0 
 2c/ >> 2c/p  2, i.e. as the quasistatic approximation’s validity condition. 

 (ii) Now let us consider electromagnetic wave’s reflection from an Ohmic, non-magnetic 
conductor. In the simplest low-frequency limit, when  is much less than 1, the conductor may be 
described by a frequency-independent conductivity . 33 According to Eq. (46), in this case we can take 
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With this substitution, Eqs. (68) immediately give us all the results of interest. In particular, in the most 
important quasistatic limit when s  (2/0)1/2 << 0  2c/, i.e. / >> 0 ~ opt, the conductor’ 
impedance is low:   
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   (7.77) 

32 See, e.g., QM Sec. 2.3. 
33In a typical metal,  ~ 10-13s, so this approximation works well up to  ~ 1013 s-1, i.e. up to the far-infrared 
frequencies. 
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This impedance is complex, and hence some fraction f of the incident wave is absorbed by the 
conductor. The fraction may be found as the ratio of the dissipated power (either calculated, as was done 
above, from Eqs. (68), or just taken from Eq. (6.36), with the magnetic field amplitude  H  = 2 E /Z0 
– see Eq. (62)) to the incident wave’s power given by the first of Eqs. (72). The result, 
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is used for crude estimates of the energy dissipation in metallic-wall waveguides and resonators. It 
shows that to keep the energy losses low, the characteristic size of such systems (which gives a scale of 
the free-space wavelengths 0 at which they are used) should be much larger than s. A more detailed 
theory of these structures, and of the energy loss in them, will be discussed later in this chapter. 

 

7.4. Refraction 

 Now let us consider the effects arising at a plane interface between two uniform media when the 
wave’s incidence angle   (Fig. 10) is arbitrary rather than equal to zero as in our previous analysis, for 
the simplest case of fully transparent media, with real () and (). (For the sake of notation 
simplicity, in most formulas below, the argument of these functions will be dropped, i.e. just implied.) 

 

 

 

 

 

 

 

  

 In contrast with the case of normal incidence, here the wave vectors k–, k’–, and k+ of the three 
components (incident, reflected, and transmitted) waves may have different directions. (Such change of 
the transmitted wave’s direction is called refraction.) Hence let us start our analysis by writing a general 
expression for a single plane, monochromatic wave for the case when its wave vector k has all three 
Cartesian components, rather than one. An evident generalization of Eq. (11) for this case is 
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 This expression enables a ready analysis of “kinematic” relations, which are independent of the 
media impedances. Indeed, it is sufficient to notice that to satisfy any linear, homogeneous boundary 
conditions at the interface (z = 0), all partial plane waves must have the same temporal and spatial 
dependence on this plane. Hence if we select the x-z plane so that the vector k– lies in it, then (k–)y = 0, 
and k+ and k’– cannot have any y-component either, i.e. all three wave vectors lie in the same plane – 

Fig. 7.10. Plane wave’s reflection, transmission, and 
refraction at a plane interface. The plane of the drawing is 
selected to contain all three wave vectors: k+, k-, and k’-. 
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that is selected as the plane of the drawing in Fig. 10. Moreover, because of the same reason, their x-
components should be equal: 

      rk'kk ' sinsinsin    .    (7.80) 

From here we immediately get two well-known laws: of reflection 

             ' ,      (7.81) 
and of refraction:34 

                    

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k

kr

sin

sin
.      (7.82) 

In this form, the laws are valid for plane waves of any nature. In optics, the Snell law (82) is frequently 
represented in the form  

         



n

nr

sin

sin
,      (7.83) 

where n is the index of refraction (also called the “refractive index”) of the corresponding medium, 
defined as its wave number normalized to that of the free space (at the particular wave’s frequency): 
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 Perhaps the most famous corollary of the Snell law is that if a wave propagates from a medium 
with a higher index of refraction to that with a lower one (i.e. if n- > n+ in Fig. 10), for example from 
water to air, there is always a certain critical value c of the incidence angle, 
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at which the refraction angle r (see Fig. 10 again) reaches /2. At a larger , i.e. within the range c <   
< /2, the boundary conditions (80) cannot be satisfied by a refracted wave with a real wave vector, so 
the wave experiences the so-called total internal reflection. This effect is very important for practice 
because it means that dielectric surfaces may be used as optical mirrors, in particular in optical fibers – 
to be discussed in more detail in Sec. 7 below. This is very fortunate for telecommunication technology 
because light’s reflection from metals is rather imperfect. Indeed, according to Eq. (78), in the optical 
range (0 ~ 0.5 m, i.e.  ~ 1015 s-1), even the best conductors (with  ~ 6108 S/m and hence the 
normal skin depth s ~ 1.5 nm) provide power loss of at least a few percent at each reflection. 

 Note, however, that even within the range c <  < /2, the field at z > 0 is not identically equal 
to zero: it penetrates into the lower-n media by a distance of the order of 0, exponentially decaying 
inside it, just as it does at the normal incidence – see Fig. 8. However, at   0 the penetrating field still 
propagates, with the wave number (80), along the interface. Such a field, exponentially dropping in one 
direction but still propagating as a wave in another direction, is commonly called the evanescent wave. 

34 The latter relation is traditionally called the Snell law, after a 17th-century astronomer Willebrord Snellius, but 
it has been traced all the way back to a circa 984 work by Abu Saad al-Ala ibn Sahl. (Claudius Ptolemy who 
performed pioneering experiments on light refraction in the 2nd century AD, was just one step from this result.) 
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 One more remark: just as at the normal incidence, the field’s penetration into another medium 
causes a phase shift of the reflected wave – see, e.g., Eq. (69) and its discussion. A new feature of this 
phase shift, arising at   0, is that it also has a component parallel to the interface – the so-called Goos-
Hänchen effect. In geometric optics, this effect leads to an image shift (relative to its position in a 
perfect mirror) with components both normal and parallel to the interface.  

 Now let us carry out an analysis of “dynamic” relations that determine amplitudes of the 
refracted and reflected waves. For this, we need to write explicitly the boundary conditions at the 
interface (i.e. the plane z = 0). Since now the electric and/or magnetic fields may have components 
normal to the plane, in addition to the continuity of their tangential components, which were repeatedly 
discussed above, 
    0,0,0,0, ,   zyxzyxzyxzyx HHEE ,   (7.86) 

we also need relations for the normal components. As it follows from the homogeneous macroscopic 
Maxwell equations (6.99b), they are also the same as in statics, i.e. Dn = const, and Bn = const, for our 
coordinate choice (Fig. 10) giving  

            0000 ,   zzzzzzzz HHEE  .   (7.87) 

 The expressions of these components via the amplitudes E, RE, and TE of the incident, 
reflected, and transmitted waves depend on the incident wave’s polarization. For example, for a linearly-
polarized wave with the electric field vector normal to the plane of incidence, i.e. parallel to the 
interface plane, the reflected and refracted waves are similarly polarized – see Fig. 11a. 

 

 

 

 

 

 

 

 

 

 

 As a result, all Ez are equal to zero (so the first of Eqs. (87) is inconsequential), while the 
tangential components of the electric field are equal to their full amplitudes, just as at the normal 
incidence, so we still can use Eqs. (64) expressing these components via the coefficients R and T. 
However, at    0 the magnetic fields have not only tangential components 
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but also normal components (see Fig. 11a): 

Fig. 7.11. Reflection and refraction at two different linear polarizations of the incident wave. 
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 Plugging these expressions into the boundary conditions expressed by Eqs. (86) (in this case, for 
the y-components only) and the second of Eqs. (87), we get three equations for two unknown 
coefficients R and T. However, two of these equations duplicate each other because of the Snell law, and 
we get just two independent equations, 

      rT
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TR cos
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  ,    (7.90) 

which are a very natural generalization of Eqs. (67), with the replacements Z-  Z–cosr, Z+  Z+cos. 
As a result, we can immediately use Eq. (68) to write the solution of the system (90):35  
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 If we want to express these coefficients via the angle of incidence alone, we should use the Snell 
law (82) to eliminate the angle r, getting frequently quoted bulkier expressions: 

       
 
    2/1222/122

2/122

sin)/(1cos

cos2
,

sin)/(1cos

sin)/(1cos

























kkZZ

Z
T

kkZZ

kkZZ
R . (7.91b) 

However, conceptually it is preferable to use the kinematic relation (82) and the dynamic relations (91a) 
separately, because Eq. (91b) obscures the very important physical fact that the ratio of  k, i.e. of the 
wave velocities of the two media, is only involved in the Snell law, while Eqs. (91b) explicitly include 
only the wave impedances – just as in the case of normal incidence. 

 In the opposite case of the linear polarization of the electric field within the plane of incidence 
(Fig. 11b), it is the magnetic field that does not have a normal component, so it is now the second of 
Eqs. (87) that does not participate in the solution. However, now the electric fields in the two media 
have not only tangential components,  

                    ,cosRe,cos)1(Re 00
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      (7.92) 

but also normal components (Fig. 11b): 

          .sin,sin)1( 00 rTEEREE zzzz        (7.93) 

As a result, instead of Eqs. (90), the reflection and transmission coefficients are related as 
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Again, the solution of this system may be immediately written using the analogy with Eq. (67): 

35 Note that we may calculate the reflection and transmission coefficients R’ and T’ for the wave traveling in the 
opposite direction just by making the following parameter swaps: Z+  Z- and   r, and that the resulting 
coefficients satisfy the following Stokes relations: R’ = –R, and R2 + TT’ = 1, for any Z. 
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or, alternatively, using the Snell law, in a more bulky form: 
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 For the particular case + = – = 0, when Z+/Z– = (–/+)1/2 = k–/k+ = n–/n+ (which is 
approximately correct for traditional optical media), Eqs. (91b) and (95b) are called the Fresnel 
formulas.36 Most textbooks are quick to point out that there is a major difference between them: while 
for the electric field polarization within the plane of incidence (Fig. 11b), the reflected wave’s amplitude 
(proportional to the coefficient R) turns to zero37 at a special value of   (called the Brewster angle):38 
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B tan ,     (7.96) 

while there is no such angle in the opposite case (shown in Fig. 11a). However, note that this statement, 
as well as Eq. (96), is true only for the case + = –. In the general case of different  and , Eqs. (91) 
and (95) show that the reflected wave vanishes at  = B with 
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 Note the natural    symmetry of these relations, resulting from the E  H symmetry for 
these two polarization cases (Fig. 11). These formulas also show that for any set of parameters of the 
two media (with ,  > 0), tan2B is positive (and hence a real Brewster angle B exists) only for one of 
these two polarizations. In particular, if the interface is due to the change of  alone (i.e. if + = -), the 
first of Eqs. (97) is reduced to the simple form (96) again, while for the polarization shown in Fig. 11b, 
there is no Brewster angle, i.e. the reflected wave has a non-zero amplitude for any .  

 Such an account of both media parameters,  and , on an equal footing is necessary to describe 
several interesting effects. The first of them is the so-called negative refraction.39 As was shown in Sec. 

36 Named after Augustin-Jean Fresnel (1788-1827), one of the wave optics pioneers, who is credited, among 
many other contributions (see, in particular, discussions in Ch. 8), for the concept of light as a purely transverse 
wave. 
37 This effect is used in practice to obtain linearly polarized light, with the electric field vector perpendicular to 
the plane of incidence, from the natural light with its random polarization. An even more widespread application 
of the effect is a partial reduction of undesirable glare from wet pavement (for the water/air interface, n+/n–  1.33, 
giving B  50) by covering glasses and car headlights with thin vertically-polarizing layers.   
38 A very simple interpretation of Eq. (96) is based on the fact that, together with the Snell law (82), it gives r +   
= /2. As a result, the vector E+ is parallel to the vector k’–, and hence the oscillating electric dipoles of the 
medium do not have the Cartesian component that could induce the transverse electric field E’– of the potential 
reflected wave.  
39 Despite some important background theoretical work by A. Schuster (1904), L. Mandelstam (1945), D. 
Sivikhin (1957), and especially V. Veselago (1966-67), the negative refractivity effects became a subject of 
intensive scientific research and engineering development only in the 2000s.  
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2, in a medium with electric-field-driven resonances, the function () may be almost real and negative, 
at least within limited frequency intervals – see, in particular, Eq. (34) and Fig. 5. As has already been 
discussed, if, at these frequencies,  the function () is real and positive, then k2() = 2()() < 0, 
and k may be represented as i/ with a real , meaning the exponential field decay into the medium. 
However, let us consider the case when both () < 0 and () < 0 at a certain frequency. (This is 
possible in a medium with both E-driven and H-driven resonances, at a proper choice of their resonance 
frequencies.) Since in this case k2() = 2()()  > 0, the wave vector is real, Eq. (79) describes a 
traveling wave, and one could think that there is nothing new in this case. Not so!  

 First of all, for a sinusoidal plane wave (79), the operator  is equivalent to the multiplication by 
ik. As the Maxwell equations (2a) show, this means that at a fixed direction of vectors E and k, the 
simultaneous reversal of signs of  and  means the reversal of the direction of the vector H. Namely, if 
both  and  are positive, these equations are satisfied with mutually orthogonal vectors {E, H, k} 
forming the usual, right-hand system (see Fig. 1 and Fig. 12a), the name stemming from the popular 
“right-hand rule” used to determine the vector product’s direction. However, if both  and  are 
negative, the vectors form a left-hand system – see Fig. 12b. (Due to this fact, the media with   < 0 and 
 < 0 are frequently called the left-handed materials, LHM for short.) According to the basic relation 
(6.114), which does not involve media parameters, this means that for a plane wave in a left-hand 
material, the Poynting vector S = EH, i.e. the energy flow, is directed opposite to the wave vector k. 

 

 

 

 

 

 

 This fact may look strange but is in no contradiction with any fundamental principle. Let me 
remind you that, according to the definition of the vector k, its direction shows the direction of the phase 
velocity vph = /k of a sinusoidal (and hence infinitely long) wave, which cannot be used, for example, 
for signaling. Such signaling (by sending wave packets – see Fig. 13) is possible only with the group 
velocity vgr = d/dk. This velocity in left-hand materials is always directed (as in the right-hand 
materials) along the vector S, i.e. along the wave’s energy flow.  

 

 

 

 

 

 

 
 

Fig. 7.13. An example of a wave 
packet moving along axis z with a 
negative phase velocity, but positive 
group velocity. Blue lines show a 
packet’s snapshot a short time interval 
after the first snapshot (red lines).

),( tzf

z

grv
phv

E

H

S

k
Fig. 7.12. Directions of the main 
vectors of a plane wave inside a 
medium with (a) positive and (b) 
negative values of  and . 
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 Perhaps the most fascinating effect possible with left-hand materials is the wave refraction at 
their interfaces with the usual, right-handed materials – first predicted by V. Veselago in 1960. Consider 
the example shown in Fig. 14a.  In the incident wave, arriving from a usual material, the directions of 
the vectors k– and S– coincide, and so they are in the reflected wave with vectors k’– and S’–. This 
means that the electric and magnetic fields in the interface plane (z = 0) are, at our choice of the 
coordinate axes, proportional to exp{ikxx}, with a positive component kx = k–cos . To satisfy any linear 
boundary conditions, the refracted wave, propagating into the left-handed material, has to match that 
dependence, i.e. have a positive x-component of its wave vector k+. But in this medium, this vector has 
to be antiparallel to the vector S, which in turn should be directed out of the interface, because it 
represents the power flow from the interface into the material’s bulk. These conditions cannot be 
reconciled by the refracted wave propagating along the usual Snell-law direction (shown with the 
dashed line in Fig. 13a), but are all satisfied at refraction in the direction given by Snell’s angle with the 
opposite sign. (Hence the term “negative refraction”).40 

  

 

 

 

 

 

 

 

 

 

 In order to understand how unusual the results of the negative refraction may be, let us consider 
a parallel slab of thickness d, made of a hypothetical left-handed material with exactly selected values  
= –0, and  = –0 (see Fig. 14b). For such a material, placed in free space, the refraction angle r = –, 
so the rays from a point source, located in free space at a distance a < d from the slab’s surface,  
propagate as shown on that panel, i.e. all meet again at the distance a beyond the surface, and then 
continue to propagate to the second surface of the slab. Repeating our discussion for this surface, we see 
that a point’s image is also formed beyond the slab, at distance 2a + 2b = 2a + 2(d – a) = 2d from the 
object.  

 Superficially, this system looks like a usual lens, but the well-known lens formula, which relates 
a and b with the focal length f, is not satisfied. (In particular, a parallel beam is not focused into a point 
at any finite distance.) As an additional difference from the usual lens, the system shown in Fig. 14b 
does not reflect any part of the incident light. Indeed, it is straightforward to check that for all the above 
formulas for R and T to be valid, the sign of the wave impedance Z in left-handed materials has to be 
kept positive. Thus, for our particular choice of parameters ( = –0,  = –0), Eqs. (91a) and (95a) are 

40 In some publications inspired by this fact, the left-hand materials are prescribed a negative index of refraction 
n. However, this prescription should be treated with care. For example, it complies with the first form of Eq. (84), 
but not its second form, and the sign of n, in contrast to that of the wave vector k, is a matter of convention.   

Fig. 7.14. Negative refraction: (a) waves at the interface between media with positive and negative values 
of , and (b) the hypothetical perfect lens: a parallel plate made of a material with  = –0 and  = –0. 
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valid with Z+ = Z- = Z0 and cos r = cos   = 1, giving R = 0 for any linear polarization, and hence for any 
other wave polarization – circular, elliptic, natural, etc.  

 The perfect lens suggestion has triggered a wave of efforts to implement left-hand materials 
experimentally. (Attempts to find such materials in nature have failed so far.) Most progress in this 
direction has been achieved using the so-called metamaterials, which are essentially quasi-periodic 
arrays of specially designed electromagnetic resonators, ideally with high density n >> -3. For example, 
Fig. 15 shows the metamaterial that was used for the first demonstration of negative refractivity in the 
microwave region – for ~10-GHz waves.41 It combines straight strips of a metallic film, working as 
lumped resonators with a large electric dipole moment (and hence strongly coupled to the wave’s 
electric field E), and several almost-closed film loops (so-called split rings), working as lumped 
resonators with large magnetic dipole moments, strongly coupled to the field H. The negative 
refractivity is achieved by designing the resonance frequencies close to each other. More recently, 
metamaterials with negative refractivity were demonstrated in the optical range as well,42 although to 
the best of my knowledge, their relatively large absorption still prevents practical applications.  

 

        

 

 

 

 

 

 
  

 This progress has stimulated the development of other potential uses of metamaterials (not 
necessarily the left-handed ones), in particular, designs of nonuniform systems with handcrafted 
distributions (r, ) and (r, ) that may provide electromagnetic wave propagation along the desired 
paths, e.g., around a certain region of space, making it virtually invisible for an external observer – so 
far, within very limited frequency ranges.43 

 As was mentioned in Sec. 5.5, another way to reach negative values of () is to place a 
ferromagnetic material into such an external dc magnetic field that the frequency r of the ferromagnetic 
resonance is somewhat lower than . If thin layers of such a material (e.g., nickel) are interleaved with 
layers of a non-magnetic good conductor (such as copper), the average value of () of the resulting 
metamaterial may be positive but substantially below 0. According to Eq. (6.33), the skin-depth s of 
such a material may be larger than that of the good conductor alone, enforcing a more uniform 
distribution of the ac current flowing along the layers, and hence making the energy losses lower than in 
the good conductor alone. This effect may be useful, in particular, for electronic circuit interconnects.44 

41 R. Shelby et al., Science 292, 77 (2001); J. Wilson and Z. Schwartz, Appl. Phys. Lett. 86, 021113 (2005).  
42 See, e.g., J. Valentine et al., Nature 455, 376 (2008). 
43 For a review of such “invisibility cloaks”, see, e.g., B. Wood, Comptes Rendus Physique 10, 379 (2009). 
44 See, for example, N. Sato et al., J. Appl. Phys. 111, 07A501 (2012), and references therein. 

Fig. 7.15. An artificial left-hand material 
providing negative refraction at microwave 
frequencies ~10 GHz. The original by Jeffrey 
D. Wilson (in the public domain) is available 
at https://en.wikipedia.org/wiki/Metamaterial. 
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7.5. Transmission lines: TEM waves 

 So far, we have analyzed plane electromagnetic waves, implying that their cross-section is 
infinite – evidently, an unrealistic assumption. The cross-section may be limited, still sustaining wave 
propagation, using wave transmission lines:45 long, uniform structures made of either good conductors 
or dielectrics. Let us first discuss the first option, using the following simplifying assumptions: 

 (i) the structure is a cylinder (not necessarily with a round cross-section, see Fig. 16) filled with a 
usual (right-handed), uniform dielectric material with negligible energy losses (” = ” = 0), and 

 (ii) the wave attenuation due to the skin effect is also negligibly low. (As Eq. (78) indicates, for 
that the characteristic size a of the line’s cross-section has to be much larger than the skin-depth s of its 
wall material. The energy dissipation effects will be analyzed in Sec. 9 below.) 

  

 

 

 

 

 

 

  

 With such exclusion of energy losses, we may look for a particular solution of the macroscopic 
Maxwell equations in the form of a monochromatic wave traveling along the line: 

         )()( ),(Re),(,),(Re),( tzzkitzzki eyxteyxt 


  HrHErE ,  (7.98) 

with real kz, where the z-axis is directed along the transmission line – see Fig. 16. Note that this form 
allows a substantial coordinate dependence of the electric and magnetic field within the plane [x, y] of 
the transmission line’s cross-section, as well as nonvanishing longitudinal components Ez and/or Hz of 
the fields, so the solution (98) is substantially more general than the plane waves discussed above. We 
will see in a minute that as a result, the parameter kz may be very much different from its plane-wave 
value (13), k  ()1/2, in the same material, at the same frequency. 

 In order to describe these effects quantitatively, let us decompose the complex amplitudes of the 
wave’s fields into their longitudinal and transverse components (Fig. 16):46 

             tzztzz HE HnHEnE   , .    (7.99) 

45 Another popular term is the waveguide, but it is typically reserved for the transmission lines with singly-
connected cross-sections, to be analyzed in the next section. The first structure for guiding waves was proposed 
by J. J. Thomson in 1893, and experimentally tested by O. Lodge in 1894. 
46 For the notation simplicity, I am dropping index  in the complex amplitudes of the field components, and also 
have dropped the argument   in kz and Z, even though these parameters may depend on the wave’s frequency 
rather substantially – see below. 
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Plugging Eqs. (98)-(99) into the source-free Maxwell equations (2), and requiring the longitudinal and 
transverse components to be balanced separately, we get 
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where t is the 2D del operator acting in the transverse plane [x, y] only, i.e. the usual , but with /z 
= 0. The system (100) looks even bulkier than the original equations (2), but it is much simpler for 
analysis. Indeed, by eliminating the transverse components from these equations (or, even simpler, just 
by plugging Eq. (99) into Eqs. (3) and keeping only their z-components), we get a pair of self-consistent 
equations for the longitudinal components of the fields, 47   

                  0,0 2222  zttztt HkEk  ,     (7.101) 

where k is still defined by Eq. (13), k  ()1/2, while 

22222
zzt kkkk        (7.102) 

After the distributions Ez(x,y) and Hz(x,y) have been found from these equations, they provide right-hand 
sides for the rather simple, closed system of equations (100) for the transverse components of field 
vectors. Moreover, as we will see below, each of the following three types of solutions: 

 (i) with Ez = 0 and Hz = 0 (called the transverse electromagnetic, or TEM waves), 

 (ii) with Ez = 0, but Hz  0 (called either the TE waves or, more frequently, H-modes), and 

 (iii) with Ez 0, but Hz = 0 (the so-called TM waves or E-modes), 

has its own dispersion law and hence its own wave propagation velocity; as a result, these modes (i.e. 
the field distribution patterns) may be considered separately. 

 In the balance of this section, we will focus on the simplest, TEM waves (i), with no longitudinal 
components of either field. For them, the top two equations of the system (100) immediately give Eqs. 
(6) and (13), and kz = k. In plain English, this means that E = Et and H = Ht are proportional to each 
other and are mutually perpendicular (just as in the plane wave) at each point of the cross-section and 
that the TEM wave’s impedance Z  E/H and dispersion law (k), and hence the propagation speed, are 
the same as in a plane wave in the same material. In particular, if  and  are frequency-independent 
within a certain frequency range, the dispersion law within this range is linear,  = k/()1/2, and the 
wave’s speed does not depend on its frequency. For practical applications to telecommunications, this is 
a very important advantage of the TEM waves over their TM and TE counterparts – to be discussed in 
the next sections. 

 Unfortunately for practice, such waves cannot propagate in every transmission line. To show 
this, let us have a look at the two last lines of Eqs. (100). For the TEM waves (Ez = 0, Hz = 0, kz = k), 
they are reduced to merely 

47 The wave equation represented in the form (101), even with the 3D Laplace operator, is called the Helmholtz 
equation, named after Hermann von Helmholtz (1821-1894) – the mentor of H. Hertz and M. Planck, among 
many others. 
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Within the coarse-grain description of the conducting walls of the line (i. e., neglecting not only the 
screening depth but also the skin depth in comparison with the cross-section dimensions), we have to 
require that inside them, E = H = 0. Close to a wall but outside it, the normal component En of the 
electric field may be different from zero, because surface charges may sustain its jump – see Sec. 2.1, in 
particular Eq. (2.3). Similarly, the tangential component H of the magnetic field may have a finite jump 
at the surface due to skin currents – see Sec. 6.3, in particular Eq. (6.38). However, the tangential 
component of the electric field and the normal component of the magnetic field cannot experience such 
jumps, and to have them equal to zero inside the walls they have to equal zero just outside the walls as 
well: 
                        0,0  nHE .     (7.104) 

 But the left columns of Eqs. (103)-(104) coincide with the formulation of the 2D boundary 
problem of electrostatics for the electric field induced by electric charges of the conducting walls, with 
the only difference that in our current case, the value of  actually means (). Similarly, the right 
columns of those relations coincide with the formulation of the 2D boundary problem of magnetostatics 
for the magnetic field induced by currents in the walls, with   (), with the only difference is that in 
our current coarse-grain approximation, the magnetic fields cannot penetrate into the conductors.  

 Now we immediately see that in waveguides with a singly-connected wall, for example, a hollow 
conducting tube (see, e.g., Fig. 16), the TEM waves are impossible, because there is no way to create a 
non-zero electrostatic field inside a conductor with such cross-section. However, such fields (and hence 
the TEM waves) are possible in structures with cross-sections consisting of two or more disconnected 
(galvanically-insulated) parts – see, e.g., Fig. 17. 
  

 In order to derive “global” relations for such a transmission line, let us consider the contour C 
drawn very close to the surface of one of its conductors – see, e.g., the red dashed line in Fig. 17. We 
can consider it, on one hand, as the cross-section of a cylindrically-shaped Gaussian volume of a certain 
elementary length dz <<  2/k. Using the generalized Gauss law (3.34), we get 

 



C
nt drE ,     (7.105) 

where  (not to be confused with the wavelength !) is the complex amplitude of the linear density of 
the electric charge of the conductor. On the other hand, the same contour C may be used in the 
generalized Ampère law (5.116) to write 

Fig. 7.17. An example of the cross-
section of a transmission line that may 
support the TEM wave propagation. 
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               Idr
C

t  H ,     (7.106) 

where I is the total current flowing along the conductor (or rather its complex amplitude). But, as was 
mentioned above, in the TEM wave the ratio Et/Ht of the field components participating in these two 
integrals is constant and equal to Z = (/)1/2, so Eqs. (105)-(106) give the following simple relation 
between the “global” variables of the conductor: 
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This important relation may be also obtained in a different way; let me describe it as well, 
because (as we will see below) it has an independent heuristic value. Let us consider a small segment dz 
<<  = 2/k of the line’s conductor, and apply the electric charge conservation law (4.1) to the instant 
values of the linear charge density and current. The cancellation of dz in both parts yields 
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.     (7.108) 

If we accept the sinusoidal waveform, exp{i(kz – t)}, for both these variables, we immediately recover 
Eq. (107) for their complex amplitudes, showing that this relation expresses just the charge continuity 
law. 

 The global equation (108) may be made more specific in the case when the frequency 
dependence of  and  is negligible, and the transmission line consists of just two isolated conductors – 
see, e.g., Fig. 17. In this case, to have the wave localized in the space near the two conductors, we need 
a sufficiently fast decrease of its electric field at large distances. For that, their linear charge densities for 
each value of z should be equal and opposite, and we can simply relate them to the potential difference V 
between the conductors:  
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where C0 is the mutual capacitance of the conductors (per unit length) – which was repeatedly discussed 
in  Chapter 2. Then Eq. (108) takes the following form: 
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 Next, let us consider the contour shown with the red dashed line in Fig. 18 (which shows a 
different cross-section of the transmission line – by a plane containing the wave propagation axis z), and 
apply to it the Faraday induction law (6.3).  

 

 

 

 

 
  

Fig. 7.18. Electric current, magnetic flux, and 
voltage in a two-conductor transmission line. 
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Since, in the coarse-grain approximation, the electric field inside the conductors (in Fig. 18, on 
the horizontal segments of the contour) vanishes, the total e.m.f. equals the difference of the voltages V 
at the ends of the segment dz, while the only sources of the magnetic flux through the area limited by the 
contour are the (equal and opposite) currents I in the conductors, we can use Eq. (5.70) to express the 
flux. As a result, by canceling dz in both parts of the equation, we get 
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where L0 is the mutual inductance of the conductors per unit length. The only difference between this L0 
and the dc mutual inductances discussed in Chapter 5 is that at the high frequencies we are analyzing 
now, L0 should be calculated neglecting the magnetic field penetration into the conductors. (In the dc 
case, we had the same situation for superconductor electrodes within their coarse-grain, ideal-diamagnet 
description.)  

 The system of Eqs. (110) and (111) is frequently called the telegrapher’s equations. Combined, 
they give for any “global” variable f (either V, or I, or ) the usual 1D wave equation, 
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which describes dispersion-free TEM wave’s propagation. Again, this equation is only valid within the 
frequency range where the frequency dependence of both  and  is negligible. If this is not so, the 
global approach may still be used for sinusoidal waves f = Re[fexp{i(kz – t)}]. Repeating the above 
arguments, instead of Eqs. (110)-(111) we get a more general system of two algebraic equations  

          ,, 00   kVILkIVC      (7.113) 

in which L0   and C0   may now depend on frequency. These equations are consistent only if 
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Besides the fact we have already known (that the TEM wave’s speed is the same as that of the plane 
wave), Eq. (114) gives us the result that I confess was not emphasized enough in Chapter 5: the product 
L0C0 does not depend on the shape or size of line’s cross-section, provided that the magnetic field’s 
penetration into the conductors is negligible). Hence, if we have calculated the mutual capacitance C0 of 
a system of two cylindrical conductors, the result immediately gives us their mutual inductance: L0 = 
/C0. This relationship stems from the fact that both the electric and magnetic fields may be expressed 
via the solution of the same 2D Laplace equation for the system’s cross-section. 

 With Eq. (114) satisfied, any of Eqs. (113) gives the same result for the following ratio: 
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which is called the transmission line’s impedance. This parameter has the same dimensionality (in SI 
units – ohms, denoted ) as the wave impedance (7), 
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but these parameters should not be confused, because ZW depends on the cross-section’s geometry, while 
Z does not. In particular, ZW is the only important parameter of a transmission line for its matching with 
a lumped load circuit (Fig. 19) in the important case when both the cable cross-section’s size and the 
load’s linear dimensions are much smaller than the wavelength.48  

 

 

 

 

 

 Indeed, in this case, we may consider the load in the quasistatic limit and write  

            )()()( 00 zIZzV L    ,     (7.117) 

where ZL() is the (generally complex) impedance of the load. Taking V(z,t) and I(z,t) in the form 
similar to Eqs. (61) and (62), and writing the two Kirchhoff’s circuit laws for the point z = z0, we get for 
the reflection coefficient a result similar to Eq. (68): 
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This formula shows that for the perfect matching (i.e. the total wave absorption in the load), the load’s 
impedance ZL() should be real and equal to ZW – but not necessarily to Z. 

  As an example, let us consider one of the simplest (and most practically important) transmission 
lines: the coaxial cable (Fig. 20).49  

               

 

 

 

 

  
  

 For this geometry, we already know the expressions for both C0 and L0,50 though they have to be 
modified for the account of arbitrary dielectric and magnetic constants, and the magnetic field’s non-
penetration into the conductors. As a result of this (elementary) modification, we get the formulas, 

48 The ability of TEM lines to have such a small cross-section is another important practical advantage. 
49 It was invented by the same O. Heaviside in 1880.  
50 See, respectively, Eqs. (2.49) and (5.79). 
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Fig. 7. 20. The cross-section of a coaxial cable 
with (possibly, dispersive) dielectric filling. 
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illustrating that the universal relationship (114) is indeed valid. For the cable’s impedance (115), Eqs. 
(119) yield a geometry-dependent value 
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For the standard TV antenna cables (such as RG-6/U, with b/a ~ 3, /0  2.2), ZW = 75 , while for 
most computer component connections, coaxial cables with ZW  = 50  (such as RG-58/U) are 
prescribed by electronic engineering standards. Such cables are broadly used for the transmission of 
electromagnetic waves with frequencies up to 1 GHz over distances of a few km, and up to ~20 GHz on 
the tabletop scale (a few meters), limited by wave attenuation – see Sec. 9 below. 

Moreover, the following two facts enable a wide application, in electrical engineering and 
physical experiment, of coaxial-cable-like systems. First, as Eq. (5.78) shows, in a cable with a << b, 
most energy of the wave is localized near the internal conductor. Second, the theory to be discussed in 
the next section shows that excitation of other (H- and E-) waves in the cable is impossible until the 
wavelength  becomes smaller than ~(a + b). As a result, the TEM mode propagation in a cable with a 
<< b < / is not much affected even if the internal conductor is not straight, but bent – for example, 
into a helix – see, e.g., Fig. 21. 

 

 

 

 

 

 

 

In such a system, called the traveling-wave tube (TWT), a quasi-TEM wave propagates with 
velocity v  c along the helix’s length, so the velocity’s component along the cable’s axis may be made 
close to the velocity u << c of the electron beam moving ballistically along the tube’s axis, enabling 
their effective interaction, and as a result, a length-accumulating amplification of the wave.51 

Another important example of a TEM transmission line is a set of two parallel wires. In the form 
of twisted pairs,52 they allow communications, in particular long-range telephone and DSL Internet 

51 Despite the current prevalence of semiconductor devices in electronics, TWTs are still used in satellite 
TV and radio systems, because they may work at very high microwave power – e.g., up to 200W at 20 
GHz and pulsed 50W at 200 GHz. Very unfortunately, in this course, I will not have time/space to discuss 
even the (rather elegant) basic theory of such devices. The reader interested in this field may be referred, for 
example, to the detailed monograph by J. Whitaker,  Power Vacuum Tubes Handbook, 3rd ed., CRC Press, 2017.  
52 Such twisting, around the line’s direction axis, reduces the crosstalk between adjacent lines, and the parasitic 
radiation at their bends. 

Coaxial 
cable’s 
C0 and L0 

Fig. 7.21. A typical traveling-wave tube: 
(1) electron gun, (2) ac input, (3) beam-
focusing magnets, (4) wave attenuator, 
(5) helix coil, (6) ac output, (7) vacuum 
tube, (8) electron collector. Adapted from 
https://en.wikipedia.org/wiki/Traveling-
wave_tube under the Creative Commons 
BY-SA 3.0 license.  
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connections, at frequencies up to a few hundred kHz, as well as relatively short, multi-line Ethernet and 
TV cables at frequencies up to ~ 1 GHz, limited mostly by the mutual interference (“crosstalk”) between 
the individual lines of the same cable, and the unintentional radiation of the wave into the environment. 

 

7.6. Waveguides: H and E waves 

 Let us now return to Eqs. (100) and explore the H- and E-waves – with, respectively, either Hz or 
Ez different from zero. At the first sight, they may seem more complex. However, Eqs. (101), which 
determine the distribution of these longitudinal components over the cross-section, are just the 2D 
Helmholtz equations for scalar functions. For simple cross-section geometries, they may be readily 
solved using the methods discussed for the Laplace equation in Chapter 2, in particular the variable 
separation. After the solution of such an equation has been found, the transverse components of the 
fields may be calculated by differentiation, using the simple formulas,  
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which follow from the first line of Eqs. (100).53 

 In comparison with the boundary problems of electro- and magnetostatics, the only conceptually 
new feature of Eqs. (101) is that they form the so-called eigenproblems, with typically many solutions 
(eigenfunctions), each describing a specific wave mode, and corresponding to a specific eigenvalue of 
the parameter kt. The good news here is that these values of kt are determined by this 2D boundary 
problem and hence do not depend on kz. As a result, the dispersion law (kz) of any mode, which 
follows from the last form of Eq. (102), 
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is functionally similar for all modes. It is also similar to that of plane waves in plasma (see Eq. (38), Fig. 
6, and their discussion in Sec. 2), with the only difference that the speed in light c is generally replaced 
with v = 1/()1/2 – the speed of the plane or TEM waves in the medium filling the waveguide, and that 
p is replaced with the so-called cutoff frequency 

                 ,c tvk       (7.123) 

specific for each mode.  (As Eq. (101) implies, and as we will see from several examples below, kt has 
the order of 1/a, where a is the characteristic dimension of the waveguide’s cross-section, so the critical 
value of the free-space wavelength   2c/ is of the order of a.) Below the cutoff frequency of each 
particular mode, this wave cannot propagate in the waveguide.54 As a result, the modes with the lowest 

53 For the derivation of Eqs. (121), one of these two linear equations should be first vector-multiplied by nz. Note 
also that this approach could not be used to analyze the TEM waves, because for them kt = 0, Ez = 0, Hz = 0, and 
Eqs. (121) yield uncertainty. 
54 An interesting twist in the ideas of electromagnetic metamaterials (mentioned in Sec. 5 above) is the so-called 
-near-zero materials, designed to have the effective product  much lower than 00 within certain frequency 
ranges. Since at these frequencies, the speed v (4) becomes much lower than c, the cutoff frequency (123) 
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values of c present special practical interest, because the choice of the signal frequency  between the 
two lowest values of the cutoff frequency (123) guarantees that the waves propagate in the form of only 
one mode, with the lowest kt. Such a choice enables engineers to simplify the excitation of the desired 
mode by wave generators and to avoid the unintentional transfer of electromagnetic wave energy to 
undesirable modes by (virtually unavoidable) small inhomogeneities of the system. 

 The boundary conditions for the Helmholtz equations (101)  depend on the propagating wave 
type. For the E-modes, with Hz = 0 but Ez  0, the condition E = 0 immediately gives 

      ,0CzE       (7.124) 

where C is the inner contour limiting the conducting wall’s cross-section. For the H-modes, with Ez = 0 
but Hz  0, the boundary condition is slightly less obvious and may be obtained using, for example, the 
second equation of the system (100), vector-multiplied by nz. Indeed, for the component normal to the 
conductor surface, the result of such multiplication is 
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But the first term on the left-hand side of this relation must be zero on the wall surface, because of the 
second of Eqs. (104), while according to the first of Eqs. (104), the vector Et in the second term cannot 
have a component tangential to the wall. As a result, the vector product in that term cannot have a 
normal component, so the term should equal zero as well, and Eq. (125) is reduced to   
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Let us see how all this machinery works for a simple but practically important case of a metallic-
wall waveguide with a rectangular cross-section – see Fig. 22  

 

 

 

 

 
 

 In the natural Cartesian coordinates shown in this figure, both Eqs. (101) take the simple form 
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From Chapter 2, we know that the most effective way of solving such equations in a rectangular region 
is the variable separation, in which the general solution is represented as a sum of partial solutions of the 
type 

virtually vanishes. As a result, the waves may “tunnel” through very narrow sections of metallic waveguides filled 
with such materials – see, e.g., M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).  
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0 x

y

Fig. 7.22. A rectangular waveguide, and the 
transverse field distribution in its 
fundamental mode H10 (schematically). 
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      )()( yYxXf  .     (7.128) 

Plugging this expression into Eq. (127), and dividing each term by XY, we get the equation,  
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,     (7.129) 

which should be satisfied for all values of x and y within the waveguide’s interior. This is only possible 
if each term of the sum equals a constant. Taking the X-term and Y-term constants in the form (–kx

2) and 
(–ky

2), respectfully, and solving the corresponding ordinary differential equations,55 for the 
eigenfunction  (128) we get 

            222with  ,sincossincos tyxyyyyxxxx kkkyksykcxksxkcf  ,  (7.130) 

where the constants c and s should be found from the boundary conditions. Here the difference between 
the H-modes and E-modes kicks in. 

 For the H-modes, Eq. (130) is valid for Hz, and we should use the boundary condition (126) on 
all metallic walls of the waveguide, i.e. at x = 0 and a; and y = 0 and b – see Fig. 22.  As a result, we get 
very simple expressions for eigenfunctions and eigenvalues: 
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where Hl is the longitudinal field’s amplitude, and n and m are two integer numbers – each of them 
arbitrary besides that they cannot be equal to zero simultaneously.56 Assuming, just for certainty, that a 
 b (as shown in Fig. 22), we see that the lowest eigenvalue of kt and hence the lowest cutoff frequency 
(123) are achieved for the so-called H10 mode with n = 1 and m = 0, and hence with 
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
10)( ,      (7.133) 

thus confirming our prior estimate of kt. 

Depending on the a/b ratio, the second-lowest kt (and hence c) belongs to either the H11 mode 
with n = 1 and m = 1:  
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or to the H20 mode with n = 2 and m = 0: 

55 Let me hope that the solution of equations of the type d2X/dx2 + kx
2X = 0 does not present any problem for the 

reader, at least due to their prior experience with problems such as standing waves on a guitar string, 
wavefunctions in a flat 1D quantum well, or (with the replacement x  t) a classical harmonic oscillator. 
56 Otherwise, the function Hz(x,y) would be constant, so, according to Eq. (121), the transverse components of the 
electric and magnetic field would equal zero. As a result, as the last two lines of Eqs. (100) show, the whole field 
would be zero for any kz  0. 

Fundamental 
mode’s 

cutoff 
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These values become equal at a/b = 3  1.7; in practical waveguides, the a/b ratio is not too far from 
this value. For example, in the standard X-band (~10-GHz) waveguide WR90, a  2.3 cm (fc  c/2  
6.5 GHz), and b  1.0 cm. 

 Now let us have a look at the alternative E-modes. For them, we still should use the general 
solution (130) with f = Ez, but now with the boundary condition (124). This gives us the eigenfunctions 
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sinsin ,    (7.136) 

and the same eigenvalue spectrum (132) as for the H modes. However, now neither n nor m can be equal 
to zero; otherwise, Eq. (136) would give the trivial solution Ez(x,y) = 0. Hence the lowest cutoff 
frequency of TM waves is achieved at the so-called E11 mode with n =1, m = 1, and with the eigenvalue 
given by Eq. (134), always higher than (kt)10. 

 Thus the fundamental H10 mode is certainly the most important wave in rectangular waveguides; 
let us have a better look at this field distribution. Plugging the corresponding solution (131) with n = 1 
and m = 0 into the general relation (121), we easily get 
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This field distribution is (schematically) shown in Fig. 22. Neither of the fields depends on the 
coordinate y – the feature very convenient, in particular, for microwave experiments with small samples. 
The electric field has only one (in Fig. 22, vertical) component that vanishes at the side walls and 
reaches its maximum at the waveguide’s center; its field lines are straight, starting and ending on wall 
surface charges (whose distribution propagates along the waveguide together with the wave). In 
contrast, the magnetic field has two non-zero components (Hx and Hz), and its field lines are shaped as 
horizontal loops wrapped around the electric field maxima. 

 An important question is whether the H10 wave may be usefully characterized by a unique 
impedance introduced similarly to ZW of the TEM modes – see Eq. (115). The answer is not, because the 
main value of ZW is a convenient description of the impedance matching of a transmission line with a 
lumped load – see Fig. 19 and Eq. (118). As was discussed above, such a simple description is possible 
(i.e., does not depend on the exact geometry of the connection) only if both dimensions of the line’s 
cross-section are much less than . But for the H10 wave (and more generally, any non-TEM mode) this 
is impossible – see, e.g., Eq. (129): its lowest frequency corresponds to the TEM wavelength max = 
2/(kt)min = 2/(kt)10 = 2a. (The reader is challenged to find a simple interpretation of this equality.) 

 Now let us consider metallic-wall waveguides with a round cross-section (Fig. 23a). In this 
single-connected geometry, the TEM waves are impossible again, while for the analysis of H-modes and 
E-modes, the polar coordinates {, } are most natural. In these coordinates, the 2D Helmholtz equation 
(101) takes the following form: 
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Separating the variables as f = R()F(), we get 
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But this is exactly the Eq. (2.127) that was studied in Sec. 2.7 in the context of electrostatics, just with a 
replacement of notation:   kt. So we already know that to have 2-periodic functions F() and finite 
values R(0) (which are evidently necessary for our current case – see Fig. 23a), the general solution 
must have the form given by Eq. (2.136), i.e. the eigenfunctions are expressed via integer-order Bessel 
functions of the first kind: 

                 0cosconstsincos   nkJnsnckJf nmnnnnmnnm ,   (7.141) 

with the eigenvalues knm of the transverse wave number kt to be determined from appropriate boundary 
conditions, and an arbitrary constant 0. 

 

 

 

 

 

 

 

 As for the rectangular waveguide, let us start with the H-modes (f = Hz). Then the boundary 
condition on the wall surface ( = R) is given by Eq. (126), which, for the solution (141), takes the form 
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This means that the eigenvalues of Eq. (139) are 
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where ’nm is the mth zero of the function dJn()/d. Approximate values of these zeros for several 
lowest n and m may be read out from Fig. 2.18; their more accurate values are given in Table 1 below.  

 
      

 

  

 

Fig. 7.23. (a) Metallic and (b) dielectric 
waveguides with circular cross-sections. 
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Table 7.1. Zeros ’nm of the function dJn()/d for a few lowest 
values of the Bessel function’s index n and the root’s number m.

 m = 1 2 3 

n = 0 3.83171 7.015587 10.1735 
1 1.84118 5.33144 8.53632 
2 3.05424 6.70613 9.96947 
3 4.20119 8.01524 11.34592 
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 The table shows, in particular, that the lowest of the zeros is ’11  1.84.57 Thus, perhaps a bit 
counter-intuitively, the fundamental mode, providing the lowest cutoff frequency c = vknm, is H11, 
corresponding to n = 1 rather than n = 0: 

               0111 cos  
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





R
JHH '

lz .    (7.144) 

It has the transverse wave number is kt = k11 = ’11/R  1.84/R, and hence the cutoff frequency 
corresponding to the TEM wavelength max = 2/k11  3.41 R. Thus the ratio of max to the waveguide’s 
diameter 2R is about 1.7, i.e. is close to the ratio max/a = 2 for the rectangular waveguide. The origin of 
this proximity is clear from Fig. 24, which shows the transverse field distribution in the H11 mode. (It 
may be readily calculated from Eqs. (121) with Ez = 0 and Hz given by Eq. (144).)  

  

 

 

 

 
 

 One can see that the field structure is actually very similar to that of the fundamental mode in the 
rectangular waveguide, shown in Fig. 22, despite the different nomenclature (which is due to the 
different coordinate system used for the solution). However, note the arbitrary constant angle 0, 
indicating that in circular waveguides, the transverse field’s polarization is arbitrary. For some practical 
applications, such degeneracy of these “quasi-linearly-polarized” waves creates problems; some of them 
may be avoided by using waves with circular polarization. 

 As Table 1 shows, the next lowest H-mode is H21, for which kt = k21 = ’21/R  3.05/R, almost 
twice larger than that of the fundamental mode, and only then comes the first mode with no angular 
dependence of any field, H01, with kt = k01 = ’01/R  3.83/R,58 followed by several angle-dependent 
modes: H31, H12, etc. 

 For the E modes, we may still use Eq. (141) (with f = Ez), but with the boundary condition (124) 
at  = R. This gives the following equation for the problem eigenvalues: 

       ,0RkJ nmn   i.e. 
R

k nm
nm


 ,    (7.145) 

where nm is the mth zero of function Jn() – see Table 2.1. That table shows that the lowest kt is equal to 
01/R  2.405/R. Hence the corresponding mode (E01), with no angular dependence of its fields, e.g. 

57 Mathematically, the lowest root of Eq. (142) with n = 0 equals 0. However, it would yield k = 0 and hence a 
constant field Hz, which, according to the first of Eqs. (121), would give a vanishing electric field. 
58 The electric field lines in the H01 mode (as well as all higher H0m modes) are directed straight from the 
symmetry axis to the walls, reminding those of the TEM waves in the coaxial cable. Due to this property, these 
modes provide, at  >> c, much lower energy losses (see Sec. 9 below) than the fundamental H11 mode, and are 
sometimes used in practice, despite the inconvenience of working in the multimode frequency range. 

E

H Fig. 7.24. Transverse field components in the 
fundamental H11 mode of a metallic, circular 
waveguide (schematically). 
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 has the second-lowest cutoff frequency, ~30% higher than that of the fundamental mode H11. 

 Finally, let us discuss one more topic of general importance – the number N of electromagnetic 
modes that may propagate in a waveguide within a certain range of relatively large frequencies  >> c. 
It is easy to calculate for a rectangular waveguide, with its simple expressions (132) for the eigenvalues 
of {kx, ky}. Indeed, these expressions describe a rectangular mesh on the [kx, ky] plane, so each point 
corresponds to the plane area Ak = (/a)(/b), and the number of modes in a large k-plane area Ak >> 
Ak is N =  Ak/Ak = abAk/2 = AAk/2, where A is the waveguide’s cross-section area.59 However, it is 
frequently more convenient to discuss transverse wave vectors kt of arbitrary direction, i.e. with an 
arbitrary sign of their components kx and ky. Taking into account that the opposite values of each 
component actually give the same wave, the actual number of different modes of each type (E- or H-) is 
a factor of 22  4 lower than was calculated above. This means that the number of modes of both types is 

      
2)2(

2


AA
N k .       (7.147) 

 Let me leave it for the reader to find hand-waving (but convincing :-) arguments that this mode 
counting rule is valid for waveguides with cross-sections of any shape, and any boundary conditions on 
the walls, provided that N >> 1.  

 

7.7. Dielectric waveguides, optical fibers, and paraxial beams 

 Now let us discuss electromagnetic wave propagation in dielectric waveguides. The simplest, 
step-index waveguide (see Figs. 23b and 25) consists of an inner core and an outer shell (in the optical 
fiber technology lingo, called cladding) with a higher wave propagation speed, i.e. a lower index of 
refraction: 

               ,,  i.e., kknnvv .   (7.148) 

at the same frequency. (In most cases the difference is achieved due to that in the electric permittivity, + 
< -, while magnetically both materials are virtually passive: -  +  0, so their refraction indices n, 
defined by Eq. (84), are very close to (/0)

1/2; I will limit my discussion to this approximation.)  

 The basic idea of the waveguide’s operation may be readily understood in the limit when the 
wavelength  is much smaller than the characteristic size R of the core’s cross-section. In this 
“geometric-optics” limit, at distances of the order of  from the core-cladding interface, which provides 
the wave reflection, we can neglect the interface’s curvature and approximate its geometry with a plane. 
As we know from Sec. 4, if the angle  of the wave’s incidence on such a plane interface is larger than 
the critical value c specified by Eq. (85), the wave is totally reflected. As a result, the waves launched 
into the fiber core at such “grazing” angles, propagate inside the core, being repeatedly reflected from 
the cladding – see Fig. 25.  

59 This formula ignores the fact that, according to the above analysis, some modes (with n = 0 and m = 0 for the H 
modes, and n = 0 or m = 0 for the E modes) are forbidden. However, for N >> 1, the associated corrections of Eq. 
(147) are negligible. 
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 The most important type of dielectric waveguides is optical fibers.60 Due to a heroic 
technological effort over three decades starting from the mid-1960s, the attenuation of such fibers has 
been decreased from values of the order of 20 db/km (typical for a window glass) to the fantastically 
low values of ~0.2 db/km (meaning virtually perfect transparency of 10-km-long fiber segments!), 
combined with the extremely low plane-wave (“chromatic”) dispersion below 10 ps/kmnm.61 In 
conjunction with the development of inexpensive erbium-based quantum amplifiers, this breakthrough 
has enabled inter-city and inter-continental (undersea), broadband62 optical cables, which are the 
backbone of all modern telecommunication infrastructure.  

 The only bad news is that these breakthroughs were achieved for just one kind of materials 
(silica-based glasses)63 within a very narrow range of their chemical composition. As a result, the 
dielectric constants   /0 of the cladding and core of practical optical fibers are both close to 2.2 
(giving n  1.5) and hence very close to each other, so the relative difference of the refraction indices, 
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is typically below 0.5%. This factor limits the fiber bandwidth. Indeed, let us use the geometric-optics 
picture to calculate the number of quasi-plane-wave modes that may propagate in the fiber. For the 
complementary angle (Fig. 25) 

          cossin that  so,
2

 ,      (7.150) 

Eq. (85) gives the following propagation condition: 

              
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60 For a comprehensive discussion of this vital technology see, e.g., A. Yariv and P. Yeh, Photonics, 6th ed., 
Oxford U. Press, 2007. 
61 Both these parameters have their best values not in the visible light range (with wavelengths from 380 to 740 
nm), but in the near-infrared, with the attenuation lowest between approximately 1,500 and 1,630 nm. As a result, 
most modern communication systems use two spectral windows – the so-called C-band (1,530-1,565 nm) and L-
band (1,570-1,610 nm) within that range. 
62 Each of the spectral bands mentioned above, at a typical signal-to-noise ratio S/N > 105, corresponds to the 
Shannon bandwidth f log2(S/N) exceeding 1014 bits per second, some five orders of magnitude (!) higher than 
that of a modern Ethernet cable. The practically usable bandwidth of each fiber is somewhat lower, but a typical 
optical cable, with many fibers in parallel, has a proportionately higher aggregate bandwidth. A relatively recent 
(circa 2017) example is the C-band transatlantic (6,600-km-long) cable Marea, with eight fiber pairs and an 
aggregate useable bandwidth of 160 terabits per second.  
63 The silica-based fibers were developed in 1966 by an industrial research group led by Charles Kao (who shared 
the 2009 Nobel Prize in physics), but the very idea of using optical fibers for long-range communications may be 
traced back at least to the 1963 work by Jun-ichi Nishizawa – who also invented semiconductor lasers. 

Fig. 7.25. Wave propagation in 
a thick optical fiber at  > c. 
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In the limit  << 1, when the incidence angles   > c of all propagating waves are very close to /2, and 
hence the complementary angles are  small, we may keep only two first terms in the Taylor expansion 
of the left-hand side of Eq. (151) and get 
          22

max .      (7.152) 

(Even for the higher-end value  = 0.005,  this critical angle is only ~0.1 radian, i.e. is close to 5.) Due 
to this smallness, we may approximate the maximum transverse component of the wave vector as 

          kkkkt 2)(sin)( maxmaxmax  ,    (7.153) 

and use Eq. (147) to calculate the number N of propagating modes: 
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For typical values k = 0.73107 m-1 (corresponding to the free-space wavelength 0 = n = 2n/k  1.3 
m), R = 25 m, and  = 0.005, this formula gives N  150.  

 Now we can calculate the geometric dispersion of such a fiber, i.e. the difference in the mode 
propagation speed, which is commonly characterized in terms of the difference between the wave delay 
times (traditionally measured in picoseconds per kilometer) of the fastest and slowest modes. Within the 
geometric optics approximation, the difference in time delays of the fastest mode (with kz = k) and the 
slowest mode (with kz = k sinc) at distance l is 
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For the example considered above, the TEM wave’s speed in the glass, v = c/n  2108 m/s, and the 
geometric dispersion t/l is close to 25 ps/m, i.e. 25,000 ps/km. (This means, for example, that a 1-ns 
pulse, being distributed between the modes, would spread to a ~25-ns pulse after passing a just 1-km 
fiber segment.) This result should be compared with the chromatic dispersion mentioned above, below 
10 ps/kmnm, which gives dt/l is of the order of only 1,000 ps/km in the whole communication band d 
~ 100 nm. Due to this high geometric dispersion, such relatively thick (2R ~ 50 nm) multi-mode fibers 
are used for the transfer of signals over only short distances below ~ 100 m. (As compensation, they 
may carry relatively large power, beyond 10 mW, without being damaged by the field.) 

 Long-range telecommunications are based on single-mode fibers, with thin cores (typically with 
diameters 2R ~ 5 m,  i. e. of the order of /1/2). For such structures, Eq. (154) yields N ~ 1, but in this 
case, the geometric optics approximation is not quantitatively valid, and for the fiber analysis, we should 
get back to the Maxwell equations. In particular, this analysis should take into explicit account the 
evanescent wave in the cladding, because its penetration depth may be comparable with R.64   

64 The following quantitative analysis of the single-mode fibers is very valuable – both for practice and as a very 
good example of Maxwell equations’ solution. However, I have to confess that its results will not be used in the 
following parts of the course. So, if the reader is not interested in this topic, they may safely jump to the text 
following Eq. (181). (I believe that the discussion of the angular momentum of electromagnetic radiation, starting 
at that point, is compulsory for every professional physicist.) 
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 Since the cross-section of an optical fiber lacks metallic walls, the Maxwell equations describing 
them cannot be exactly satisfied with either TEM-wave, or H-mode, or E-mode solutions. Instead, the 
fibers can carry the so-called HE and EH modes, with both vectors H and E having longitudinal 
components simultaneously. In such modes, both Ez and Hz inside the core (   R) have a form similar 
to Eq. (141): 

       22222
0   and,0  where,cos kkkknkJff zttnl , (7.156) 

where the constant angles 0 may be different for each field. On the other hand, for the evanescent wave 
in the cladding, we may rewrite Eqs. (101) as 

             2222222   and,0  where,0 kkkf ztt .  (7.157) 

 Figure 26 illustrates these relations between kt, t, kz, and k; note that the following sum, 

 
2

0
222 2)( kk tt  ,    (7.158) 

is fixed (at a given frequency) and, for typical fibers, is very small (<< k2). In particular, Fig. 26 shows 
that neither kt nor t can be larger than  [(- – +)0]

1/2 = (2)1/2 k. This means that the depth  = 1/t of 
the wave penetration into the cladding is at least 1/k(2)1/2 = /2(2)1/2 >> /2. This is why the 
cladding layers in practical optical fibers are made as thick as ~50 m, so only a negligibly small tail of 
this evanescent wave field reaches their outer surfaces. 

 

 

 

 
  
 

 In the polar coordinates, Eq. (157) becomes 
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- the equation to be compared with Eq. (139) for the circular metallic-wall waveguide. From Sec. 2.7, 
we know that the eigenfunctions of Eq. (159) are the products of the sine and cosine functions of n by 
a linear combination of the modified Bessel functions In and Kn, shown in Fig. 2.22, now of the 
argument t. The fields have to vanish at   , so only the latter functions (of the second kind) can 
participate in the solution: 

 0cos)(   nKf tn    (7.160) 

 Now we have to reconcile Eqs. (156) and (160), using the boundary conditions at  = R for both 
longitudinal and transverse components of both fields, with the latter components first calculated using 
Eqs. (121). Such a conceptually simple, but a bit bulky calculation (which I am leaving for the reader’s 
exercise), yields a system of two homogeneous linear equations for the complex amplitudes El and Hl, 
which are compatible if 

2
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2
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222 )(    kk

Fig. 7.26. The relation between the transverse 
exponents kt and t  for waves in optical fibers. 
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,  (7.161) 

where the prime signs denote the derivatives of each Bessel function over its full argument: kt for Jn, 
and t for Kn, and the functions and their derivatives are taken at  = R. 

 For any given frequency , the system of equations (158) and (161) determines the values of kt 
and t, and hence kz.  Actually, for any n > 0, this system provides two different solutions: one 
corresponding to the so-called HE wave, with a larger ratio of Ez/Hz, and the EH wave, with a smaller 
value of that ratio. For angular-symmetric modes with n = 0 (for whom we might naively expect the 
lowest cutoff frequency), the equations may be satisfied by the fields having just one non-zero 
longitudinal component (either Ez or Hz), so the HE wave are the usual E-modes, while the EH modes 
are the H-waves. For the H-modes, the characteristic equation is reduced to the requirement that the 
expression in the second parentheses on the left-hand side of Eq. (161) is equal to zero. Using the Bessel 
function identities J0’ = –J1 and K0’ = –K1, this equation may be rewritten  in a simpler form: 
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 Using the universal relation between kt and t given by Eq. (158), we may plot both sides of Eq. 
(162) as functions of the same argument, say,   ktR – see Fig. 27.  

 

 

 

 

 

 

 

 

 

 
The right-hand side of Eq. (162) depends not only on , but also on the dimensionless parameter 

V defined as the normalized right-hand side of Eq. (158): 

             222
0

22 2)( RkR   V .    (7.163) 

(According to Eq. (154), if V >> 1, it gives twice the number N of the fiber modes – the conclusion 
confirmed by Fig. 27, taking into account that it describes only the H-modes.) Since the ratio K1/K0 is 
positive for all values of the functions’ argument (see, e.g., the right panel of Fig. 2.22), the right-hand 
side of Eq. (162) is always negative, so the equation may have solutions only in the intervals where the 
ratio J1/J0 is negative, i.e. at 

           ,..., 12021101   RkRk tt ,    (7.164) 
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Fig. 7.27. Two sides of the characteristic 
equation (162), plotted as functions of ktR, 
for two values of its dimensionless 
parameter: V = 8 (blue line) and V = 3 (red 
line). Note that according to Eq. (158), the 
argument of the functions K0 and K1 is  
tR = [V 2 – (ktR)2]1/2  (V 2 – 2)1/2. 
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where nm is the m-th zero of the function Jn() – see Table 2.1. The right-hand side of the characteristic 
equation (162) diverges at tR  0, i.e. at ktR  V, so no solutions are possible if V is below the critical 
value Vc = 01  2.405. At this cutoff point, Eq. (163) yields k  01/R(2)1/2. Hence, the cutoff 
frequency of the lowest H mode corresponds to the TEM wavelength 

                  2/12/1

01
max 7.32

2
 R

R


 .    (7.165) 

For typical parameters  = 0.005 and R = 2.5 m, this result yields max ~ 0.65 m, corresponding to the 
free-space wavelength 0 ~ 1 m. A similar analysis of the first parentheses on the left-hand side of Eq. 
(161) shows that at   0, the cutoff frequency for the E modes is similar. 

 This situation may look exactly like that in metallic-wall waveguides, with no waves possible at 
frequencies below c, but this is not so. The basic reason for the difference is that in the metallic 
waveguides, the approach to c results in the divergence of the longitudinal wavelength z  2/kz. On 
the other hand, in dielectric waveguides, the approach leaves z finite (kz  k+). Due to this difference, a 
certain linear superposition of HE and EH waves with n = 1 can propagate at frequencies well below the 
cutoff frequency for n = 0, which we have just calculated.65 This mode, in the limit +  - (i.e.  << 1) 
allows a very interesting and simple description using the Cartesian (rather than polar) components of 
the fields, but still expressed as functions of the polar coordinates  and . The reason is that this mode 
is very close to a linearly polarized TEM wave. (Due to this reason, this mode is referred to as LP01.)  

 Let us select the x-axis parallel to the transverse component of the magnetic field vector at  = 0, 
so Ex=0 = 0, but Ey=0   0, and Hx=0 0, but Hy=0  = 0. The only suitable solutions of the 2D 
Helmholtz equation (that should be obeyed not only by the z-components of the fields but also their x- 
and  y-components) are proportional to J0(kt), with zero coefficients for Ex and Hy: 

       RHkJHHkJEEE ytxtyx   for ,0),(),(,0 0000 .  (7.166) 

Now we can use the last two equations of Eqs. (100) to calculate the longitudinal components of the 
fields: 

          cos)(
1

,sin)(
1

1010 t
z

tx

z
zt

z

ty

z
z kJH

k

k
i

x

H

ik
HkJE

k

k
i

y

E

ik
E 












 , (7.167) 

where I have used the following mathematical identities: J0 = –J1’, /x = x/ = cos, and /y = y/ 
= sin. As a sanity check, we see that the longitudinal component or each field is a (legitimate!) 
eigenfunction of the type (141), with n = 1. Note also that if kt << kz (this relation is always true if  << 
1 – see either Eq. (158) or Fig. 26), the longitudinal components of the fields are much smaller than their 
transverse counterparts, so the wave is indeed very close to the TEM one. Because of that, the ratio of 
the electric and magnetic field amplitudes is also close to that in the TEM wave: E0/H0  Z–  Z+. 

 Now to satisfy the boundary conditions at the core-to-cladding interface ( = R), we need to have 
a similar angular dependence of these components at   R. The longitudinal components of the fields 

65 This fact becomes less surprising if we recall that in the circular metallic waveguide, discussed in Sec. 6,  the 
fundamental mode (H11, see Fig. 23) also corresponded to n = 1 rather than n = 0. 

LP01 mode 
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are tangential to the interface and thus should be continuous. Using the solutions similar to Eq. (160) 
with n = 1, we get 
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For the transverse components, we should require the continuity of the normal magnetic field Hn, for 
our simple field structure equal to just Hxcos, of the tangential electric field E = Eysin, and of the 
normal component of Dn = En = Eycos. Assuming that - = + = 0, and +  -–

66
 we can satisfy these 

conditions with the following solutions: 
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From here, we can calculate components from Ez and Hz, using the same approach as for   R: 

          

.for ,cos)(
)(

)(1

,sin)(
)(

)(1

10
0

0

10
0

0

RKH
RK

RkJ

k
i

x

H

ik
H

KE
RK

RkJ

k
i

y

E

ik
E

t
t

t

z

tx

z
z

t
t

t

z

ty

z
z


























  (7.170) 

These relations provide the same functional dependence of the fields as Eqs. (167), i.e. the internal and 
external fields are compatible, but their amplitudes at the interface coincide only if 
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 This characteristic equation (which may be also derived from Eq. (161) with n = 1 in the limit  
 0) looks close to Eq. (162), but functionally is much different from it – see Fig. 28. Indeed, its right-
hand side is always positive, and the left-hand side tends to zero at ktR  0. As a result, Eq. (171) may 
have a solution for arbitrary small values of the parameter V defined by Eq. (163), i.e. for arbitrary low 
frequencies (large wavelengths). This is why this mode is used in practical single-mode fibers: there are 
no other modes with wavelengths larger than the max given by Eq. (165), so they cannot be 
unintentionally excited on small inhomogeneities of the fiber. 

It is easy to use the Bessel function approximations by the first terms of the Taylor expansions 
(2.132) and (2.157) to show that in the limit V  0, tR tends to zero much faster than ktR  V: tR  
2exp{-1/ V } << V. This means that the scale c  1/t of the radial distribution of the LP01 wave’s fields 
in the cladding becomes very large. In this limit, this mode may be interpreted as a virtually TEM wave 
propagating in the cladding, just slightly deformed (and guided) by the fiber’s core. The drawback of 
this feature is that it requires very thick cladding, to avoid energy losses in its outer (“buffer” and 
“jacket”) layers that defend the silica layers from the elements and mechanical damages, but lack their 

66 This is the core assumption of this approximate theory, which accounts only for the most important effect of the 
small difference of the dielectric constants + and –: the difference between (k+

2 – kz
2)  = kt

2 > 0 and (k-
2 – kz

2) = –
t

2 < 0. For more discussion of the accuracy of this approximation and some exact results, the interested reader 
may be referred either to the monograph by A. Snyder and D. Love, Optical Waveguide Theory, Chapman and 
Hill, 1983, or to Chapter 3 and Appendix B in the monograph by Yariv and Yeh, that was cited above. 

LP01 mode: 
characteristic 

equation 
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low optical absorption. Due to this reason, the core radius is usually selected so that the parameter V is 
just slightly less than the critical value Vc =  01  2.4 for higher modes, thus ensuring the single-mode 
operation. 

 

 

 

 

 

 

 

 

 
 
 In order to reduce the field spread into the cladding, the step-index fibers discussed above may 
be replaced with graded-index fibers whose dielectric constant   is gradually and slowly decreased from 
the center to the periphery.67 Keeping only the main two terms in the Taylor expansion of the function 
() at  = 0, we may approximate such reduction as68 

            21)0()(   ,     (7.172) 

where   –[(d2/d2)/2]=0 is a positive constant characterizing the fiber composition gradient. 
Moreover, if this constant is sufficiently small ( << k2), the field distribution across the fiber’s cross-
section may be described by the same 2D Helmholtz equation (101), but with a space-dependent 
transverse wave vector:69   

                   ,022  fktt     

where             (7.173) 
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22222222 00  and  ,0)0()()(   kkkkkk tzt . 

Surprisingly for such an axially-symmetric problem, because of its special dependence on the radius, 
this equation may be most readily solved in the Cartesian coordinates. Indeed, rewriting it as 
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and separating the variables as f = X(x)Y(y), we get 

67 Due to the difficulty of fabrication of graded-index fibers with wave attenuation below a few dm/km, they are 
not used as broadly as the step-index ones. 
68 For an axially-symmetric smooth function (), the first derivative d/d always vanishes at  = 0, so Eq. (172) 
does not have a term linear in . 
69 This approach is invalid at arbitrary (large)   because in the macroscopic Maxwell equations, (r) is under the 
differentiation sign, and the exact Helmholtz-type equations for fields have additional terms containing . 
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Fig. 7.28. Two sides of the 
characteristic equation (171) for the 
LP01 mode, plotted as a function of 
ktR, for two values of the 
dimensionless parameter: V = 8 
(blue line) and V = 1 (red line). 
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so the functions X and Y obey similar differential equations, for example 

                       ,00 222
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with the separation constants satisfying the following condition: 

                  22222 0)0( ztyx kkkkk  .     (7.177) 

The ordinary differential equation (176) is well known in quantum mechanics, because the 
stationary Schrödinger equation for one of the most important basic quantum systems, a 1D harmonic 
oscillator, may be rewritten in this form. Its eigenvalues are very simple: 
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but the corresponding eigenfunctions Xn(x) and Ym(y) are expressed via not quite elementary functions – 
the Hermite polynomials.70 For most practical purposes, however, the lowest eigenfunctions X0(x) and 
Y0(y) are sufficient, because they correspond to the lowest kx,y, and hence the lowest  
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and the lowest cutoff frequency. As may be readily verified by the substitution to Eq. (176), the 
eigenfunctions corresponding to this fundamental mode are also simple:  
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 and similarly for Y0(y), so the field distribution follows the Gaussian function 
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where a >> 1/k(0) has the sense of the effective width of the field’s extension in the radial direction, 
normal to the wave’s propagation axis z. This is the so-called Gaussian beam, very convenient for some 
applications.  

 The Gaussian beam (181) is just one example of the so-called paraxial beams, which may be 
represented as a result of modulation of a plane wave with a wave number k, by an axially-symmetric 
envelope function f(), where   {x, y}, with a relatively large effective radius a >> 1/k.71 Such beams 
give me a convenient opportunity to deliver on the promise made in Sec. 1: calculate the angular 
momentum L of a circularly polarized wave propagating in free space, and prove its fundamental 
relation to the wave’s energy U. Let us start from the calculation of U for a paraxial beam (with an 

70 See, e.g., QM Sec. 2.9. 
71 Note that propagating in a uniform medium, i.e. outside of grade-index fibers or other focusing systems, such 
beams gradually increase their width a due to diffraction – the effect to be analyzed in the next chapter. 
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arbitrary, but spatially localized envelope f) of a circularly polarized wave, with the transverse electric 
field components given by Eq. (19): 

        ,sin,cos 00  fEEfEE yx              (7.182a) 

where E0 is the real amplitude of the wave’s electric field at the propagation axis,   kz – t +  is its 
total phase, and the two signs correspond to two possible directions of the circular polarization.72 
According to Eq. (6), the corresponding transverse components of the magnetic field are 
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These expressions are sufficient to calculate the energy density (6.113) of the wave,73 
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and hence the full energy (per unit length in the direction z of the wave’s propagation) of the beam: 

                 



0

22
00

0

2 22  dfEdurudU .   (7.184) 

 However, the transverse fields (182) are insufficient to calculate a non-zero average of L. 
Indeed, following the angular moment’s definition in mechanics,74 L  rp, where p is the particle’s  
(linear) momentum, we may use Eq. (6.115) for the electromagnetic field momentum’s density g in free 
space, to define the field’s angular momentum’s density as 

            HErSrgrl 
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.    (7.185) 

Let us use the familiar bac minus cab rule of the vector algebra75 to transform this expression to 
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 If the field is purely transverse (Ez = Hz = 0), as it is in a strictly plane wave, the first square 
brackets in the last expression vanish, while the second bracket gives an azimuthal component of l, 
which oscillates in time and vanishes at its time averaging. (This is exactly the reason why I have not 
tried to calculate L during our first discussion of the circularly polarized waves in Sec. 1.) 

72 For our task of calculating two quadratic forms of the fields (L and U), their real representation (182) is more 
convenient than the complex-exponent one. However, for linear manipulations, the latter representation of the 
circularly polarized waves, Et = E0f()Re[(nx  iny)exp{i}], Ht = (E0/Z0)f()Re[(inx + ny)exp{i}], is usually 
more convenient, and is broadly used. 
73 Note that, in contrast to a linearly-polarized wave (16), the energy density of a circularly-polarized wave does 
not depend on the full phase  – in particular, on t at fixed z, or vice versa. This is natural because its field vectors 
rotate (keeping their magnitude) rather than oscillate – see Fig. 3b. 
74 See, e.g., CM Eq. (1.31). 
75 See, e.g., MA Eq. (7.5). 
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 Fortunately, our discussion of optical fibers, in particular, the derivation of Eqs. (167), (168), and 
(170) gives us a clear clue on how to resolve this paradox. If the envelope function f() differs from a 
constant, the transverse wave components (182) alone do not satisfy the Maxwell equations (2b), which 
necessitates longitudinal components Ez and Hz of the fields, with76 

              
y

H

x

H

z

H

y

E

x

E

z

E yxzyxz

























, .   (7.187) 

However, as these expressions show, if the envelope function f changes very slowly in the sense df/d ~ 
f/a << kf, the longitudinal components are very small and do not have a back effect on the transverse 
components. Hence, the above calculation of U is still valid (asymptotically, at ka  0), and we may 
still use Eqs. (182) on the right-hand side of Eqs. (187),  
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and integrate them over z as 
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Here the integration constant is taken for zero because no wave field component may have a time-
independent part. Integrating, absolutely similarly, the second of Eqs. (188), we get 
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 With the same approximation, we may calculate the longitudinal (z–) component of l, given by 
the first term of Eq. (186), keeping only the dominating, transverse fields (182) in the scalar products: 
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 Plugging in Eqs. (182) and (189), and taking into account that in free space, k = /c, and hence 1/Z0c
2k 

= 0/, we get: 
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Hence the total angular momentum of the beam (per unit length), is 
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Taking this integral by parts, with the assumption that f  0 at   0 and    (as it is true for the 
Gaussian beam (181) and all realistic paraxial beams), we finally get 

76 The complex-exponential versions of these equalities are given by the bottom line of Eq. (100). 
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 Now comparing this expression with Eq, (184), we see that remarkably, the ratio Lz/U does not 
depend on the shape and the width of the beam (and of course on the wave’s amplitude E0), so these 
parameters are very simply and universally related: 

           

U

Lz  .      (7.194) 

Since this relation is valid in the plane-wave limit a  , it may be attributed to plane waves as well, 
with the understanding that in reality, they always have some width (“aperture”) restriction.  

 As the reader certainly knows, in quantum mechanics the energy excitations of any harmonic 
oscillator of frequency  are quantized in the units of , while the internal angular momentum of a 
particle is quantized in the units of s, where s is its spin. In this context, the classical relation (194) is 
used in quantum electrodynamics as the basis for treating the electromagnetic field excitation quanta 
(photons) as some sort of quantum particles with spin s = 1. (Such integer spin also fits the Bose-
Einstein statistics of the electromagnetic radiation.) 

 Unfortunately, I do not have time/space for a further discussion of the (very interesting) physics 
of paraxial beams but cannot help noticing, at least in passing, the very curious effect of helical waves – 
the beams carrying not only the “spin” momentum (194), but also an additional “orbital” angular 
momentum. The distribution of their energy in space is not monotonic, as it is in the Gaussian beam 
(181), but reminds several threads twisted around the propagation axis – hence the term “helical”.77 
Mathematically, their field structure is described by the associate Laguerre polynomials – the same 
special functions that are used for the quantum-mechanical description of hydrogen-like atoms.78 
Presently, there are efforts to use such beams for the so-called orbital angular momentum (OAM) 
multiplexing for high-rate information transmission.79 

 

7.8. Resonant cavities 

 Generally, resonators are structures that may sustain oscillations (in electrodynamics, of the 
electromagnetic field) even without an external source, until the oscillation amplitude slowly decreases 
in time due to unavoidable energy losses. If the resonator quality (described by the so-called Q-factor, 
which will be defined and discussed in the next section) is high, Q >> 1, this decay takes many 
oscillation periods. Alternatively, high-Q resonators may sustain high oscillating fields permanently, if 
driven by relatively weak incident waves. In contrast to lumped-element resonators, say, the well-known 
LC tank circuit, the subject of this section is resonant cavities (or “distributed resonators”) limited by 
either conducting or dielectric walls that contain distributed standing waves inside them. 

77 Noticing such solutions of the Maxwell equations may be traced back to at least a 1943 theoretical work by J. 
Humblet; however, this issue had not been discussed in literature too much until experiments carried out in 1992 – 
see, e.g. L. Allen et al., Optical Angular Momentum; IOP, 2003.  
78 See, e.g., QM Sec. 3.7. 
79 See, e.g., J. Wang et al., Nature Photonics 6, 488 (2012). 
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 Conceptually the simplest resonant cavity is the Fabry-Pérot interferometer80 that may be 
obtained by placing two well-conducting planes parallel to each other.81 Indeed, in Sec. 3 we have seen 
that if a plane wave is normally incident on such a “perfect mirror”, located at z = 0,  its reflection, at 
negligible skin depth, results in a standing wave described by Eq. (61b): 

               kzeEtzE iti sin2Re),( 2/


 .    (7.195) 

This wave would not change if we place the second mirror (isolating the segment of length  l  from the 
external wave source) at any position z = l with sin kl = 0, i.e. with 

      ,....2,1  where,  ppkl                 (7.196) 

This condition, which determines the spectrum of own (or resonance, or eigen-) frequencies of the 
resonator of fixed length l, 
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has a simple physical sense: the resonator’s length l equals exactly p half-waves of the frequency p. 
Though this is all very simple, please note a considerable change of philosophy from what we have been 
doing in the previous sections: the main task of the resonator’s analysis is finding its own frequencies 
p, which are now determined by the system’s geometry rather than by an external wave source. 

 Before we move to cavities of more complex shapes, let us use Eq. (62) to represent the 
magnetic field in the Fabry-Pérot interferometer: 
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Expressions (195) and (198) show that in contrast to traveling waves, each field of the standing wave 
changes simultaneously (proportionately) at all points of the Fabry-Pérot resonator, turning to zero 
everywhere twice a period. At these instants, the energy of the corresponding field vanishes, but the 
total energy of the two fields stays constant because the counterpart field oscillates with the phase shift 
/2. Such behavior is typical for all electromagnetic resonators. 

 A more technical remark is that we can readily get the same results (195)-(198) by solving the 
Maxwell equations from scratch. For example, we already know that in the absence of dispersion, 
losses, and sources, they are reduced to wave equations (3) for any field components. For the Fabry-
Pérot resonator’s analysis, we can use the 1D form of these equations, say, for the transverse component 
of the electric field: 

           ,0
1

2

2

22

2
















E
tvz

     (7.199) 

and solve it as a part of an eigenvalue problem with the corresponding boundary conditions. Indeed, by 
separating time and space variables as E(z, t) = Z(z)T(t), we obtain 

80 This device, named after its inventors, Charles Fabry and Alfred Pérot; is also called the Fabry-Pérot etalon 
(meaning “gauge”), because of its initial usage for light wavelength measurements. 
81 The resonators formed by well-conducting (usually, metallic) walls are frequently called resonant cavities. 
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Calling the separation constant k2, we get two similar ordinary differential equations, 
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both with sinusoidal solutions, so the product Z(z)T(t) is a standing wave with the wave vector k and 

frequency  = kv. (In this form, the equations are valid even in the presence of dispersion, but with a 
frequency-dependent wave speed: v2 = 1/()().) Now using the boundary conditions E(0, t) = E(l, t) 
= 0,82 we get the eigenvalue spectrum for kp and hence for p = vkp,  given by Eqs. (196) and (197).  

 Lessons from this simple case study may be readily generalized to any cavity formed as a 
transmission line’s section:83 there are two approaches to finding the resonant frequency spectrum:  

 (i) We may look at a traveling wave solution and find where reflecting mirrors may be inserted 
without affecting the wave’s structure. 

  (ii) We may solve the general 3D wave equations, 
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for field components, as an eigenvalue problem with appropriate boundary conditions. If the system’s 
parameters (and hence the coefficient v) do not change in time, the spatial and temporal variables of Eq. 
(202) may be always separated by taking 

              
k

kk ttf )()(),( Tf rr ,     (7.203)  

where each function Tk(t) always obeys the same equation as in Eq. (201), having the sinusoidal solution 

of frequency k = vk. Plugging this solution back into Eqs. (202), for the spatial distribution of the field, 
we get the 3D Helmholtz equation, 

                0)(22  rkk f ,     (7.204) 

whose eigenfunctions fk(r) may be much more involved, especially for non-symmetric geometries. 

Let us use these approaches to find the resonant frequency spectrum of a few simple, but 
practically important cavities. First of all, the first method is completely sufficient for the analysis of any 
resonator formed as a fragment of a uniform TEM transmission line (e.g., a coaxial cable), confined 
with two conducting lids normal to the line’s direction. Indeed, since in such lines kz = k = /v, and the 
electric field is perpendicular to the propagation axis, e.g., parallel to the lid surface, the boundary 
conditions are exactly the same as in the Fabry-Pérot resonator, and we again arrive at the 
eigenfrequency spectrum (197). 

82 This is of course the expression of the first of the general boundary conditions (104). The second of these 
conditions (for the magnetic field) is satisfied automatically for the transverse waves we are considering. 
83 The resonators may have different geometries as well, and in many cases, only the second approach may be 
used.  
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 Now let us analyze a slightly more complex system: a rectangular metallic-wall cavity of volume 
abl – see Fig. 29. To use the first approach outlined above, let us consider the resonator as a finite-
length (z = l) section of the rectangular waveguide extended along the z-axis, which was analyzed in 
detail in Sec. 6. As a reminder, at a < b, in the fundamental H10 traveling wave mode, both vectors E and 
H do not depend on y, with E having only a y-component. In contrast, H has two components, Hx and 
Hz, with the phase shift /2 between them, and with Hx having the same phase as Ey – see Eqs. (131), 
(137), and (138). Hence, if a plane perpendicular to the z-axis, is placed so that the electric field 
vanishes on it, Hx also vanishes, so both boundary conditions (104), pertinent to a perfect metallic wall, 
are fulfilled simultaneously. 

 

 

 

 

 

 

  
  As a result, the H10 wave would not be perturbed by two metallic walls separated by an integer 
number of half-wavelengths z/2 corresponding to the wave number given by the combination of Eqs. 
(102) and (133):  
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Using this expression, we see that the smallest of these distances, l = z/2 = /kz, gives the resonance 
frequency84 

2/122

101


























la
v

 ,   (7.206) 

where the indices of  show the numbers of half-waves along each dimension of the system, in the order 
[a, b, l]. This is the lowest (“fundamental”) frequency of the resonator (if b < a, l). 

 The field distribution in this mode is close to that in the corresponding waveguide mode H10 
(Fig. 22), with the important difference that the magnetic and electric fields are now shifted by phase /2 
both in space and time, just as in the Fabry-Pérot resonator – see Eqs. (195) and (198). Such a time shift 
allows for a very simple interpretation of the H101 mode, which is especially adequate for very flat 
resonators, with b << a, l. At the instant when the electric field reaches its maximum (Fig. 30a), i.e. 
when the magnetic field vanishes in the whole volume, the surface electric charge of the broadest (in 
Fig. 30, horizontal) walls of the resonator is largest, being localized mostly near the centers of the walls. 
At the immediate later times, the walls start to recharge via surface currents, whose density J is largest 
in the side walls, and reaches its maximal value in a quarter of the oscillation period T = 2/101 – see 
Fig. 30b. The currents generate the vortex magnetic field, with looped field lines in the plane of the 

84 In most electrical engineering handbooks, the index corresponding to the shortest side of the resonator is listed 
last, so the fundamental mode is nominated as H110 and its eigenfrequency as 110. 
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0 Fig. 7.29. Rectangular metallic-wall resonator 
as a finite section of a waveguide with the 
cross-section shown in Fig. 22. 
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broadest face of the resonator. The surface currents continue to flow in this direction until (in one more 
quarter period) the broader walls of the resonator are fully recharged in the polarity opposite to that 
shown in Fig. 30a. After that, the surface currents start to flow in the direction opposite to that shown in 
Fig. 30b. This process, which repeats again and again, is conceptually similar to the well-known 
oscillations in a lumped LC circuit, with the role of (now, distributed) capacitance played mostly by the 
broadest walls of the resonator, and that of (now, distributed) inductance, by its narrower walls. 

 

 

 

  
 
  

  
 In order to generalize Eq. (206) to higher oscillation modes, the second of the approaches 
discussed above is more prudent. Separating the variables in the Helmholtz equation (204) as R(r) = 
X(x)Y(y)Z(z), we see that X, Y, and Z have to be either sinusoidal or cosinusoidal functions of their 
arguments, with the wave vector components satisfying the characteristic equation 
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In contrast to the wave propagation problem, now we are dealing with standing waves along all three 
dimensions, and have to satisfy the macroscopic boundary conditions (104) on all sets of parallel walls. 
It is straightforward to check that these conditions (E = 0, Hn = 0) are fulfilled at the following field 
component distribution: 
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with each of the wave vector components having an equidistant spectrum similar to Eq. (196): 
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so the full spectrum of resonance frequencies is given by the following formula: 
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which is a natural generalization of Eq. (206). Note, however, that of the three integers m, n, and p, at 
least two have to be different from zero to keep the fields (208) from vanishing at all points. 

 We may use Eq. (210), in particular, to evaluate the number of different modes in a relatively 
small range d3k  << k3 of the wave vector space volume that is, on the other hand, much larger than the 
reciprocal volume, 1/V = 1/abl, of the cavity. Taking into account that each eigenfrequency (210), with 
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nml  0, corresponds to two field modes with different polarizations,85 the argumentation absolutely 
similar to the one used for the 2D case at the end of Sec. 7, yields 
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This property, valid for resonators of arbitrary shape, is broadly used in classical and quantum statistical 
physics,86 in the following form. If some electromagnetic mode functional f(k) is a smooth function of 
the wave vector k, and the volume V is large enough, then Eq. (211) may be used to approximate the 
sum of the functional’s values over the modes by an integral: 
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 Leaving similar analyses of resonant cavities of some other simple shapes for the reader’s 
exercises, let me finish this section by noting that low-loss resonators may be also formed by finite-
length sections of not only metallic-wall waveguides of various cross-sections but also of dielectric 
waveguides. Moreover, even a simple slab of a dielectric material with a / ratio substantially different 
from that of its environment (say, of the free space) may be used as a high-Q Fabry-Pérot interferometer 
(Fig. 31), due to an effective wave reflection from its surfaces at the normal and especially an inclined 
incidence – see, respectively, Eqs. (68), and Eqs. (91) and (95).  

 

 

 

 

 

 

  
 Actually, such dielectric Fabry-Pérot interferometers are frequently more convenient for 
practical purposes than metallic-wall resonators, not only due to possibly lower losses (especially in the 
optical range) but also due to a natural coupling to the environment, which offers a ready way of wave 
insertion and extraction – see Fig. 31 again. The backside of the same medal is that this coupling to the 
environment provides an additional mechanism of power losses, limiting the resonance’s quality factor – 
see the next section. 

 

7.9. Energy loss effects 

 The inevitable energy losses (“dissipation”) in passive media lead, in two basic situations, to two 
different effects. In a long transmission line fed by a constant wave source, the losses lead to a gradual 

85 This fact becomes evident from plugging Eqs. (208) into the Maxwell equation E = 0. The resulting 
equation, kxE1 + kyE2 + kzE3 =0, with the discrete, equidistant spectrum (209) for each wave vector component, 
may be always satisfied by two linearly independent sets of the constants E1,2,3. 
86 See, e.g., QM Sec. 1.1 and SM Sec. 2.6. 

Fig. 7.31. A dielectric Fabry-Pérot interferometer. 
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attenuation of the wave, i.e. to a decrease of its amplitude, and hence its power P, with the growing 
distance z from the source. In linear materials, the power losses are proportional to the power P carried 
by the wave, so the energy balance on a small segment dz takes the form 

          dzdz
dz

d
dd P

P
PP loss .    (7.213) 

The coefficient  participating in the last form of Eq. (213), and hence defined as 

      
P

P dzd /
 ,     (7.214) 

 is called the attenuation constant.87 Comparing the solution of Eq. (213), 

              zez  )0()( PP ,     (7.215) 

with Eq. (29), where k is replaced with kz, we see that  may be expressed as  

        zkIm2 ,      (7.216) 

where kz is the component of the wave vector along the transmission line. In the most important limit 
when the losses are low in the sense  <<  kz   Re kz, its effects on the field distribution along the 
line’s cross-section are negligible, making the calculation of  rather straightforward. In particular, in 
this limit, the contributions to attenuation from two major sources, the energy losses in the filling 
dielectric and the skin-effect losses in conducting walls, are independent and additive.  

 The dielectric losses are especially simple to describe. Indeed, a review of our calculations in 
Secs. 5-7 shows that all of them remain valid if either (), or (), or both, and hence k(), have small 
imaginary parts:  

                 k'k"   2/12/1Im .    (7.217) 

In TEM transmission lines, kz = k, and hence Eq. (216) yields 
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For dielectric waveguides, in particular optical fibers, these losses are the main attenuation mechanism. 
As was discussed in Sec. 7, in practical optical fibers tR >> 1, i.e. most of the field propagates (as an 
evanescent wave) in the cladding, with a field distribution very close to the TEM wave. This is why Eq. 
(218) is approximately valid if it is applied to the cladding material alone.  In waveguides with non-
TEM waves, we can use the relations between kz and k, derived in the previous sections, to re-calculate 
k” into Im kz. (Note that at this recalculation, the values of kt have to be kept real, because they are just 
the eigenvalues of the Helmholtz equation (101), which does not include the filling media parameters.). 

87 In engineering, wave attenuation is most frequently measured in decibels per meter, abbreviated as db/m (the 
term not to be confused with dBm standing for decibel-milliwatt):  
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Alternatively, it is sometimes measured in nepers per meter (Np/m) defined as np/m  /2, so db/m  8.686 Np/m. 

Wave’s 
attenuation 

Attenuation 
due to  filling 
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 In transmission lines and waveguides and with metallic walls, higher energy losses may come 
from the skin effect. If the wavelength  is much larger than s, as it usually is,88 the losses may be 
readily evaluated using Eq. (6.36): 

                    
4

s2
wall

loss 
H

dA

d

dA

d


PP
,     (7.219) 

where Hwall is the real amplitude of the tangential component of the magnetic field at the wall’s surface. 
The total power loss Ploss/dz per unit length of a waveguide, i.e. the right-hand side of Eq. (213), now 
may be calculated by the integration of this expression along the contour(s) limiting the cross-section of 
all conducting walls. Since our calculation is only valid for low losses, we may ignore their effect on the 
field distribution, so the unperturbed distributions may be used both in Eq. (219), i.e. in the numerator of 
Eq. (214), and also for the calculation of the average propagating power, i.e. the denominator of Eq. 
(214) – as the integral of the Poynting vector over the cross-section of the waveguide. 

 Let us see how this approach works for the TEM mode in one of the simplest transmission lines, 
the coaxial cable (Fig. 20). As we already know from Sec. 5, in the coarse-grain approximation, 
implying negligible power loss, the TEM mode field distributions between the two conductors are the 
same as in statics, namely: 

         ,)(,0,0 0 


a
HHHH z      (7.220) 

where H0 is the field’s amplitude on the surface of the inner conductor, and 
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Neglecting the power losses for a minute, we may plug these expressions into Eq. (42) to calculate the 
time-averaged Poynting vector:  
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and from it, the total wave power flow through the cross-section: 
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 Next, for this particular system (Fig. 20), the contours limiting the wall cross-section are circles 
of radii   = a (where the surface field amplitude Hwalls equals, in our notation, H0), and  = b (where, 
according to Eq. (214), the field is a factor of b/a lower). As a result, for the power loss per unit length, 
Eq. (219) yields 
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88 As follows from Eq. (78), which may be used for crude estimates even in cases of arbitrary wave incidence, this 
condition is necessary for low attenuation:  << k only if f  << 1. 
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Note that at a << b, the losses in the inner conductor dominate, despite its smaller surface, because of 
the higher surface field.  

 Now we may plug Eqs. (223) and (224) into the definition (214) of , to calculate the skin-effect 
contribution to the attenuation constant: 
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This result shows that the relative (dimensionless) attenuation, /k, scales approximately as the ratio 
s/min[a, b], in a semi-quantitative agreement with the plane-wave result (78). 

 Let us use this result to evaluate   for the standard TV cable RG-6/U, with copper conductors of 
diameters 2a = 1 mm, 2b = 4.7 mm, and   2.20 and   0. According to Eq. (6.33), for  f = 100 MHz 
(i.e.   6.3108 s-1) the skin depth of pure copper at room temperature (with    6.0107 S/m) is close 
to 6.510-6 m, while k = ()1/2 = (/0)

1/2(/c)  3.1 m–1. As a result, the attenuation is rather low: skin 
 0.016 m-1, so the attenuation length scale ld  1/  is about 60 m. Hence the attenuation in a cable 
connecting a roof TV antenna or a cable distribution box to a TV set is not a big problem, though using 
a worse conductor, e.g., steel, would make the losses rather noticeable. (Hence the current worldwide 
shortage of copper.) However, the use of such cable in the X-band (f ~ 10 GHz) is more problematic. 
Indeed, though the skin depth s  –1/2  decreases with frequency, the wavelength drops, i.e. k 
increases, even faster (k  ), so the attenuation skin  1/2 becomes close to 0.16 m–1, i.e. ld to ~6 m. 
This is why at such frequencies, it may be necessary to use rectangular waveguides, with their larger 
internal dimensions a, b ~ 1/k, and hence lower attenuation. Let me leave the calculation of this 
attenuation, using Eq. (219) and the results derived in Sec. 7, for the reader’s exercise. 

The main effect of dissipation on free oscillations in resonators is different: here it leads to a 
gradual decay of the oscillating fields’ energy U in time. A useful dimensionless measure of this decay, 
called the Q factor, is commonly defined by writing the following temporal analog of Eq. (213):89 

     Udt
Q

dtdU


 lossP ,     (7.226) 

where  in the resonance frequency in the loss-free limit, and  

          
UQ
lossP
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.      (7.227) 

The solution of Eq. (226), 
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which is the temporal analog of Eq. (215), shows the physical meaning of the Q-factor: the characteristic 
time  of the oscillation energy’s decay is (Q/2) times longer than the oscillation period T = 2/. 
(Another useful interpretation of Q comes from the universal relation90  

89 As losses grow, the oscillation waveform deviates from the sinusoidal one, and the very notion of “oscillation 
frequency” becomes vague. As a result, the parameter Q is well-defined only if it is much higher than 1.   
90 See, e.g., CM Sec. 5.1. 

Q-factor 
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



Q ,      (7.229) 

where  is the so-called FWHM91 bandwidth of the resonance, namely the difference between the two 
values of the external signal frequency, one above and one below , at which the energy of the 
oscillations induced in the resonator by an input signal is twice lower than its resonance value.) 

 In the important particular case of a resonant cavity formed by the insertion of metallic walls into 
a TEM transmission line of a small cross-section (with the linear size scale a much less than the 
wavelength ), there is no need to calculate the Q-factor directly, provided that the line attenuation 
coefficient  is already known. In fact, as was discussed in Sec. 8 above, the standing waves in such a 
resonator, of the length given by Eq. (196): l = p(/2) with p = 1, 2,…, may be understood as an overlap 
of two TEM waves propagating in opposite directions, or in other words, a traveling wave plus its 
reflection from one of the ends, the whole roundtrip taking time t = 2l/v = p/v = 2p/ = pT. 

According to Eq. (215), at this distance, the wave’s power drops by a factor of exp{-2l} = exp{-p}. 
On the other hand, the same decay may be viewed as taking place in time, and according to Eq. (228), 
results in the drop by a factor of exp{-t/} =  exp{-(pT )/(Q/)} = exp{-2p/Q}. Comparing these two 
exponents, we get 

       


 k
Q 

2
.       (7.230) 

 This simple relation neglects the losses at the wave reflection from the walls limiting the 
resonator length. This approximation is indeed legitimate at l >> ; if this relation is violated, or if we 
are dealing with more complex resonator modes (such as those based on the reflection of E or H waves), 
the Q-factor may be different from that given by Eq. (230), and needs to be calculated directly from Eq. 
(227). A substantial relief for such a direct calculation is that, just at the calculation of small attenuation 
in waveguides, in the low-loss limit (Q >> 1), both the numerator and denominator of the right-hand 
side of that formula may be calculated neglecting the effects of the energy loss on the field distribution 
in the resonator. I am leaving such a calculation, for a few simple resonant cavities, including the 
rectangular and the circular ones, for the reader’s exercise.  

 To conclude this chapter, the last remark: in some distributed resonators (including certain 
dielectric resonators92 and metallic cavities with holes in their walls), additional energy losses due to the 
wave radiation into the environment are also possible. In some simple cases (say, the Fabry-Pérot 
interferometer shown in Fig. 31), the calculation of these radiative losses is straightforward, but 
sometimes it requires more elaborated approaches that will be discussed in the next chapter. 

 

7.10. Exercise problems 

 7.1.* Find the temporal Green’s function of a medium whose complex permittivity () obeys 
the Lorentz oscillator model given by Eq. (32), by using:  

 (i) the Fourier transform of the underlying Eq. (7.30), and  

91 FWHM is the acronym for Full Width at Half-Maximum. 
92 Due to the absence of metallic walls and the associated skin-effect losses, some microwave dielectric resonators 
(e.g., those based on pure sapphire crystals cooled to helium temperatures) may feature Q-factors as high as 109 – 
see, e.g., D. Creedon et al., Appl. Phys. 98, 222903 (2011). 

Q vs.  
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 (ii) the direct solution of that equation. 

Hint: For the Fourier-transform approach, you may like to use the Cauchy integral.93  
 
 7.2. The electric polarization of some material responds to an electric field step94 in the 
following way: 

     


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
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  if,1 001

/

t

t
EtEeEtP t   

where  > 0 and 1 are some constants. Calculate the complex permittivity () of this material, and 
discuss a possible simple physical model giving such dielectric response. 
 
 7.3. Calculate the complex permittivity () of a material whose dielectric-response Green’s 
function defined by Eq. (23), is 

    /10
 eGG , 

with some positive constants G0 and . What is the difference between this dielectric response and the 
apparently similar one considered in the previous problem? 
 
 7.4. Use the oscillator model of an atom, given by Eq. (30), to calculate its average potential 
energy in a uniform, sinusoidal ac electric field, and use the result to calculate the potential profile 
created for the atom by a standing electromagnetic wave with the electric field amplitude E(r). 
 
 7.5. The solution of the previous problem shows that a standing electromagnetic wave may exert 
a time-averaged force on an otherwise free non-relativistic charged particle. Reveal the physics of this 
force by writing and solving the equations of motion of such a particle in: 

 (i) a linearly-polarized monochromatic plane traveling wave, and 
 (ii) a similar but standing wave. 

 7.6. Use the first of Eqs. (54) to relate the integral  



0

d"  to the plasma frequency for the 

Lorentz oscillator model of a system of non-interacting particles. 
 
 7.7. Prove that Eq. (6.42) cannot be correct for all frequencies, and suggest its correction making 
the result compatible with both the causality principle and the physical model (6.39). 
 
 7.8. Calculate, sketch, and discuss the dispersion relation for electromagnetic waves propagating 
in a medium described by the Lorentz oscillator model (32), for the case of negligible damping. 
 
 7.9. As was briefly discussed in Sec. 2,95 a wave pulse of a finite but relatively large spatial 
extension z >>   2/k may be formed as a wave packet – a sum of sinusoidal waves with wave 

93 See, e.g., MA Eq. (15.2). 
94 This function E(t) is of course proportional to the well-known Heaviside step function (t)  – see, e.g., MA Eq. 
(14.3). I am not using this notion here just to avoid confusion between two different uses of the Greek letter . 
95 For even more detail, see CM Sec. 5.3 and especially QM Sec. 2.2. 
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vectors k within a relatively narrow interval. Consider an electromagnetic plane wave packet of this 
type, with the electric field distribution 

       2/1with  ,Re),( kkk
k

k kdket
tkzi 
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




ErE , 

propagating along the z-axis in an isotropic, linear, and dissipation-free (but not necessarily dispersion-
free) medium. Express the full energy of the packet (per unit area of the wave’s front) via the complex 
amplitudes Ek, and discuss its dependence on time. 
 
 7.10. Prove the Lorentz reciprocity relation (6.121) for a linear isotropic medium. 
 
 7.11.* A plane wave of frequency  is normally incident, from free space, on a plane surface of a 
collision-free plasma with the electron density growing linearly and slowly with the distance from the 
surface: n = z for z  0, where  > 0 is a small constant. Calculate the functional form of the resulting 
standing wave’s “tail” inside the plasma. 
 
 7.12.* Analyze the effect of a time-independent uniform magnetic field B0, parallel to the 
direction n of an electromagnetic wave propagation, on the wave’s dispersion in plasma, within the 
same simple model that was used in Sec. 2 for the derivation of Eq. (38). (Limit your analysis to 
relatively weak waves, whose magnetic field is much smaller than B0.) 

 Hint: You may like to represent the incident wave as a linear superposition of two circularly 
polarized waves, with opposite polarization directions. 
 
 7.13. A monochromatic plane electromagnetic wave is normally incident, from free space, on a 
uniform slab with electric permittivity  and magnetic permeability , with the slab’s thickness d 
comparable with the wavelength.  

 (i) Calculate the power transmission coefficient T, i.e. the fraction of the incident wave’s power, 
that is transmitted through the slab.  
 (ii) Assuming that  and  are frequency-independent and positive, analyze in detail the 
frequency dependence of T.  In particular, how does the function T () depend on the slab’s thickness d 

and the wave impedance Z  (/)1/2 of its material? 
 
7.14. A plane electromagnetic wave with a free-space wave number k0 is normally incident on a 

planar conducting film of thickness d ~ s << 1/k0. Calculate the power transmission coefficient of the 
system and analyze the result in the limits of small and large values of the ratio d/s. 

 
 7.15. One of the results of the previous problem’s solution was the following expression for the 
coefficient of power transmission of a plane electromagnetic wave through a thin conducting film of 
thickness d << s, , at normal incidence: 
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where R�  1/d is the sheet resistance (“resistance per square”) of the film. Derive this formula in a 
simpler way, utilizing the smallness of d from the very beginning. Also, calculate the power reflection 
coefficient R, compare it with T, and comment. 

 
7.16. A plane wave of frequency  is normally incident, from 

free space, on a plane surface of a material with real electric 
permittivity ’ and magnetic permeability ’. To minimize the wave’s 
reflection from the surface, it may be covered with a layer, of thickness 
d, of another transparent material – see the figure on the right. 
Calculate the optimal values of , , and d. 

 
7.17. A monochromatic plane wave is incident from inside a medium with  > 00 on its planar 

surface, at an incidence angle   larger than the critical angle c = sin–1(00/)1/2. Calculate the depth  
of the evanescent wave penetration into the free space, and analyze its dependence on . Does the result 
depend on the wave’s polarization? 

 
 7.18. Calculate the critical angle c for a wave of frequency , incident from free space upon a 
planar surface of a plasma with electron density n, and discuss the implications of the result for 
ultraviolet and X-ray optics. 
 

7.19. Analyze the possibility of propagation of surface electromagnetic waves along a planar 
boundary between plasma and free space. In particular, calculate and analyze the dispersion relation of 
the waves. 

Hint: Assume that the magnetic field of the wave is parallel to the boundary and perpendicular to 
the wave’s propagation direction. (After solving the problem, justify this mode choice.) 

 
 

7.20. Light from a very distant source arrives to an observer through a 
plane layer of nonuniform medium with a certain 1D gradient of its refraction 
index n(z), at angle 0 – see the figure on the right. What is the genuine direction 
i to the source, if n(z)  1 at z  ? (This problem is evidently important for 
high-precision astronomical measurements at the Earth’s surface.)  

 
 

7.21. Calculate the TEM impedance ZW of uniform TEM transmission lines with well-conducting 
electrodes and the cross-sections shown in the figure below: 
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 (i) two parallel round wires separated by distance d >> R, 
 (ii) a microstrip line of width w >> d, 
 (iii) a stripline with w >> d1 ~ d2, 

in all cases using the coarse-grain boundary conditions on conductor surfaces. Assume that the 
conductors are embedded into a linear dielectric with constant  and . 
 
 7.22. Modify the solution of Task (ii) of the previous problem for a superconductor microstrip 
line, taking into account the magnetic field’s penetration into both the strip and the ground plane. 
  
 7.23.* What lumped ac circuit would be equivalent to the TEM-line system shown in Fig. 19, 
with an incident wave’s power Pi? Assume that the wave reflected from the lumped load circuit does 
not return to it. 

 
7.24. Find the lumped ac circuit equivalent to a loss-free 

TEM transmission line of length l ~ , with a small cross-section 
area A << 2, as “seen” (measured) from one end, if the line’s 
conductors are galvanically connected (“shortened”) at the other 
end – see the figure on the right. Discuss the result’s dependence on 
the signal frequency. 
 
 7.25. Represent the fundamental H10 wave in a rectangular waveguide (Fig. 22) with a sum of 
two plane waves, and discuss the physics behind such a representation. 
 
 7.26.* For the coaxial cable (see, e.g., Fig. 20), find the lowest non-TEM mode and calculate its 
cutoff frequency. 
 
 7.27. Two coaxial cable sections are connected coaxially – 
see the figure on the right, which shows the system’s cut along its 
symmetry axis. Relations (118) and (120) seem to imply that if the 
ratios b/a of these sections are equal, their impedance matching is 
perfect, i.e. a TEM wave incident from one side on the connection 
would pass it without any reflection at all: R = 0. Is this statement 
correct?  
 
 7.28. Calculate the cutoff frequencies c of the fundamental mode 
and the next lowest mode in the so-called ridge waveguide with the cross-
section shown in the figure on the right, in the limit t << a, b, w. Briefly 
discuss possible advantages and drawbacks of such waveguides for signal 
transfer and physical experiment.  

 

 7.29. Prove that TEM-like waves may propagate, in the radial direction, in the 
free space between two coaxial, round, well-conducting cones – see the figure on the 
right. Can this system be characterized by a certain transmission line impedance ZW, as 
defined by Eq. (115)? 
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 7.30. Use the recipe outlined in Sec. 7 to prove the characteristic equation (161) for the HE and 
EH waves in step-index optical fibers with a round cross-section. 

 
7.31. Derive an approximate equation describing spatial variations of the complex amplitude of a 

general monochromatic paraxial beam propagating in a uniform medium, for the case when these 
variations are sufficiently slow. Is the Gaussian beam described by Eq. (181) one of the possible 
solutions of this equation? Give your interpretation of the last result. 

 

7.32. Calculate the lowest resonance frequencies and the corresponding 
field distributions of standing electromagnetic waves inside a round cylindrical 
cavity with well-conducting walls (see the figure on the right), neglecting the 
skin depth s in comparison with l and R.   

 

 7.33. Analyze electromagnetic waves that may propagate inside a relatively narrow gap between 
two well-conducting concentric spherical shells of radii R and R + d, in the limit d << R. 

 (i) Within the coarse-grain approximation, derive the 2D equation describing such waves with 
relatively large wavelengths  ~ R >> d. 
 (ii) Calculate the lowest resonance frequencies of the system. 
  
 7.34. A molecule with an electric polarizability  is placed inside an otherwise empty 
macroscopic cavity with well-conducting walls. Express the resulting shifts of its resonance frequencies 
via the unperturbed field distribution in the corresponding mode. 
 
 7.35. A plane monochromatic wave propagates through a medium with an Ohmic conductivity  
and negligible electric and magnetic polarization effects. Calculate the wave’s attenuation and relate the 
result to a certain calculation carried out in Chapter 6. 
 
 7.36. Generalize the telegrapher’s equations (110)-(111) by accounting for small energy losses:  

 (i) in the transmission line’s conductors, and 
 (ii) in the medium separating the conductors, 

using their simplest (Ohmic) models. Formulate the conditions of validity of the resulting equations. 
 
7.37. Calculate the skin-effect contribution to the attenuation constant  of a TEM wave in the 

microstrip line discussed in Problem 21 (ii).  
 
7.38. Calculate the skin-effect contribution to the attenuation coefficient  defined by Eq. (214), 

for the fundamental (H10) mode propagating in a waveguide with well-conducting walls, of a rectangular 
cross-section – see Fig.22. Use the results to evaluate the wave decay length ld  1/  of a 10 GHz wave 
in the standard X-band waveguide WR-90 (with copper walls, a = 23 mm, b = 10 mm, and no dielectric 
filling), at room temperature. Compare the result with that (obtained in Sec. 9) for the standard TV 
coaxial cable, at the same frequency. 
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 7.39. Calculate the skin-effect contribution to the attenuation coefficient  of 

  (i) the fundamental (H11) wave, and 
  (ii) the H01 wave, 

in a conductor-wall waveguide with the circular cross-section (see Fig. 23a), and analyze the low-
frequency ( c) and high-frequency ( >> c) behaviors of  for each of these modes. 
 
 7.40. For a rectangular cavity of dimensions abl, with b  a, l, calculate the Q-factor of the 
fundamental oscillation mode, due to the skin-effect losses in its conducting walls. Evaluate the factor 
for a 232310 mm3 cavity with copper walls, at room temperature. 
 
 7.41.* Calculate the lowest eigenfrequency and the Q-factor (due to 
the skin-effect losses) of the axially symmetric toroidal cavity with well-
conducting walls and the interior’s cross-section shown in the figure on the 
right, for the case d << r, R.96 
  
 7.42. Express the contribution to the damping coefficient (the reciprocal Q-factor) of a resonant 
cavity, by small energy losses in the dielectric that fills it, via the complex functions () and () of 
the material. 
 
 7.43. For the dielectric Fabry-Pérot resonator (Fig. 31) with the normal wave incidence, calculate 
the Q-factor due to radiation losses, in the limit of a strong impedance mismatch (Z >> Z0), by using two 
approaches: 

 (i) from the energy balance, using Eq. (227), and 
  (ii) from the frequency dependence of the power transmission coefficient, using Eq. (229). 

Compare the results.  

96 Such resonators are broadly used in particle accelerators and also in vacuum electron devices for high-power 
microwave amplification and generation (e.g., the so-called klystrons), where the electric field has to be 
concentrated in the region of charged particle passage – typically, along the symmetry axis (in the figure above, 
the z-axis), through a pair of small holes in the cavity’s walls, which do not affect the field distribution 
substantially. 
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Chapter 8. Radiation, Scattering, Interference, and Diffraction 

This chapter continues the discussion of electromagnetic wave propagation, now focusing on the results 
of wave incidence on various objects of more complex shapes. Depending on the shape, the resulting 
wave pattern is called either “scattering”, or “diffraction”, or “interference”. However, as the reader 
will see, the boundaries between these effects may be blurry, and their basic mathematical description 
may be conveniently based on the same key calculation – the electric-dipole radiation of a spherical 
wave by a localized source. Naturally, I will start the chapter from this calculation, deriving it from an 
even more general result – the “retarded-potential” solution of the Maxwell equations. 

 

8.1. Retarded potentials 

 Let us start by finding the general solution of the macroscopic Maxwell equations (6.99) in a 
dispersion-free, linear, uniform, isotropic medium characterized by frequency-independent real  and .1 
The easiest way to perform this calculation is to use the scalar () and vector (A) potentials defined by 
Eqs. (6.7): 

               AB,
A

E 



 
t

 .    (8.1) 

As was discussed in Sec. 6.8, by imposing upon the potentials the Lorenz gauge condition (6.117),  

          


 1
with  ,0

1 2
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
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 v
tv

A ,    (8.2) 

which does not affect the fields E and B, the Maxwell equations are reduced to a pair of very similar, 
simple equations (6.118) for the potentials: 
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     (8.3b) 

 Let us find the general solution of these equations, for now thinking of the densities (r, t) and 
j(r, t) of the stand-alone charges and currents as known functions. (This will not prevent the results from 
being valid for the cases when (r, t) and j(r, t) should be calculated self-consistently.) The idea of such 
a solution may be borrowed from electro- and magnetostatics. Indeed, for the stationary case (/t = 0), 
the solutions of Eqs. (8.3) are given by a ready generalization of, respectively, Eqs. (1.38) and (5.28) to 
a uniform, linear medium: 

1 When necessary (e.g., at the discussion of the Cherenkov radiation in Sec. 10.5), it will be not too hard to 
generalize these results to a dispersive medium. 
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As we know, these expressions may be derived by, first, calculating the potential of a point source, and 
then using the linear superposition principle for a system of such sources. 

 Let us do the same for the time-dependent case, starting from the field induced by a time-
dependent point charge at the origin:2 
              )()(),( rr  tqt  ,     (8.5) 

In this case, Eq. (3a) is homogeneous everywhere but the origin: 

     0for  ,0
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2
2 
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 r
tv

 .    (8.6) 

Due to the spherical symmetry of the problem, it is natural to look for a spherically symmetric solution 
to this equation.3 Thus, we may simplify the Laplace operator correspondingly (as was repeatedly done 
earlier in this course), so Eq. (6) becomes 

      0for ,0
11

2

2

2
2

2


























 r
tvr

r
rr

 .   (8.7) 

By introducing a new variable (r, t)  r(r, t), Eq. (7) is reduced to the 1D wave equation 
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From discussions in Chapter 7,4 we know that its general solution may be represented as 
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where in and out are (so far) arbitrary functions of one variable. The physical sense of out = out/r is a 
spherical wave propagating from our source (located at r = 0) to outer space, i.e. exactly the solution we 
are looking for. On the other hand, in = in/r describes a spherical wave that could be created by some 
distant spherically-symmetric source, that converged exactly on our charge located at the origin – 
evidently not the effect we want to consider here. Discarding this term, and returning to  = /r, we get  

             0for  ,
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 In order to calculate the function out, let us consider the solution (10) at distances r so small (r 
<< vt) that the time-derivative term in Eq. (3a), with the right-hand side (5),  

       )(
)(1
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tv
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
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 ,     (8.11) 

2 Admittedly, this expression does not satisfy the continuity equation (4.5), but this deficiency will be corrected 
imminently, at the linear superposition stage – see Eq. (17) below. 
3 Let me emphasize that this is not the general solution to Eq. (6). For example, it does not describe the possible 
waves created by other sources, that pass by the considered charge q(t). However, such fields are irrelevant to our 
current task: to calculate the field induced by the charge q(t). The solution becomes general when it is integrated 
(as it will be) over all relevant charges. 
4 See also CM Sec. 6.3.  
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is much smaller than the spatial derivative term (which diverges at r  0) . Then Eq. (11) is reduced to 
the Poisson equation, whose solution (4a), for the source (5), is 

             
r

tq
tr




4

)(
),0(  .     (8.12) 

Now requiring the two solutions, Eqs. (10) and (12), to coincide at r << vt, we get out(t) = q(t)/4r, so 
Eq. (10) becomes 
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 Just as was repeatedly done in statics, this result may be readily generalized for the arbitrary 
position r’ of the point charge: 
                      )()()()(),( Rr-rr  tq'tqt  ,    (8.14) 

where R is the distance between the field observation point r and the source position point r’, i.e. the 
length of the vector, 
         , 'rr R        (8.15) 

connecting these points  – see Fig. 1.   

 

 

 

 

 

 

Obviously, now Eq. (13) becomes 
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Finally, we may use the linear superposition principle to write, for the arbitrary charge distribution, 
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where the integration is extended over all charges of the system under analysis. Solving Eq. (4b) 
absolutely similarly, for the vector potential we get5 

                





 

R

r'd

v

R
t't

3

,
4

),( rjrA



.    (8.17b) 

5 As should be clear from the analogy of Eqs. (17) with their stationary forms (4), which were discussed, 
respectively, in Chapters 1 and 5, in the Gaussian units the retarded potential formulas are valid with the 
coefficient 1/4 dropped in Eq. (17a), and replaced with 1/c in Eq. (17b). 
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(Now nothing prevents the functions (r, t) and j(r, t) from satisfying the continuity equation.) 

 The solutions expressed by Eqs. (17) are traditionally called the retarded potentials, the name 
signifying the fact that the observed fields are “retarded” (in the meaning “delayed”) in time by t = R/v 
relative to the source variations – physically, because of the finite speed v of the electromagnetic wave 
propagation. Note that, very remarkably, these simple expressions are exact solutions of the 
macroscopic Maxwell equations (again, in a uniform, linear, dispersion-free medium) for an arbitrary 
distribution of stand-alone charges and currents. They also may be considered as the general solutions 
of these equations, provided that the integration has been extended over all field sources in the Universe 
– or at least over those ones that affect our observations.  

Note also that due to the mathematical similarity of the microscopic and macroscopic Maxwell 
equations, Eqs. (17) are valid, with the coefficient replacement   0 and   0, for the exact, rather 
than the macroscopic fields, provided that the functions (r, t) and j(r, t) describe not only stand-alone 
but all charges and currents in the system. (Alternatively, this statement may be formulated as the 
validity of Eqs. (17), with the same coefficient replacement, in free space.) 

 Finally, note that Eqs. (17) may be plugged into Eqs. (1), giving (after an explicit differentiation) 
the so-called Jefimenko equations6 for fields E and B – similar in structure to Eqs. (17), but more 
cumbersome. Conceptually, the existence of such equations is good news, because they are free from the 
gauge ambiguity pertinent to the potentials  and A. However, the practical value of these explicit 
expressions for the fields is not overly high: for all applications I am aware of, it is easier to use Eqs. 
(17) to calculate the particular expressions for the potentials first, and only then calculate the fields from 
Eqs. (1). Let me now present an (arguably, the most important) example of this approach. 

 

8.2. Electric dipole radiation 

 Consider again the problem that was discussed in electrostatics (Sec. 3.1), namely the field of a 
localized source with linear dimensions a << r (see Fig. 1 again), but now with time-dependent charge 
and/or current distributions. Using all the arguments of that discussion, in particular the condition 
expressed by Eq. (3.1), r’ << r, we may apply the Taylor expansion (3.3), truncated to two leading 
terms, 
      ...)()()(  rrrR f'ff  ,    (8.18) 

to the scalar function f(R)  R (for which f(r) = R = n, where n  r/r is the unit vector directed 
toward the observation point – see Fig. 1) to approximate the distance R as 

                 nr  'rR .       (8.19) 

In each of the retarded potential formulas (17), R participates in two places: in the denominator 
and in the source’s time argument. If  and j change in time on the scale ~1/,  where  is some 
characteristic frequency, then any change of the argument (t – R/v) on that time scale, for example due 
to a change of R on the spatial scale ~v/ = 1/k, may substantially change these functions. Thus, the 
expansion (19) may be applied to R in the argument  (t – R/v) only if ka << 1, i.e. if the system’s size a 

6 They were published by O. D. Jefimenko only in 1966, but the Fourier representation of the same result was 
obtained much earlier (in 1912) by G. A. Scott. 
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is much smaller than the radiation wavelength  = 2/k. On the other hand, the function 1/R changes 
relatively slowly, and for it even the first term of the expansion (19) gives a good approximation as soon 
as a << r, R. In the latter approximation alone, Eq. (17a) yields  

            





 






 

v

R
tQ

r
r'd

v

R
t'

r
t







4

1
,

4

1
),( 3rr ,   (8.20) 

where Q(t) is the net electric charge of the localized system. Due to the charge conservation, this charge 
cannot change with time, so the approximation (20) describes just a static Coulomb field of our 
localized source, rather than a radiated wave.  

 Let us, however, apply a similar approximation to the vector potential (17b): 

                 





  .,

4
),( 3r'd

v

R
t'

r
t rjrA




    (8.21) 

According to Eq. (5.87), the right-hand side of this expression vanishes in statics, but in dynamics, this 
is no longer true. For example, if the current is due to some non-relativistic motion7 of a system of point 
charges qk, we can write 
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where p(t) is the dipole moment of the localized system, defined by Eq. (3.6). Now, after the integration, 
we may keep only the first term of the approximation (19) in the argument (t – R/v) as well, getting 
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 Let us analyze what exactly this result describes. The second of Eqs. (1) allows us to calculate 
the magnetic field by the spatial differentiation of A. At large distances r  >>  (i.e. in the so-called far-
field zone), where Eq. (23) describes a locally-plane wave, the dominating contribution to this derivative 
is given by the dipole moment factor:  
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This expression means that the magnetic field, at the observation point, is perpendicular to the vectors n 
and (the retarded value of) p , and its magnitude is 
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where  is the angle between those two vectors – see Fig. 2.8 

7 For relativistic particles, moving with velocities of the order of speed of light, one has to be more careful. As the 
result, I will postpone the discussion of their radiation until Chapter 10, i.e. until after the detailed discussion of 
special relativity in Chapter 9.  
8 From the first of Eqs. (1) for the electric field, in the first approximation (23), we would get –A/t = –(1/4vr) 
p (t – r/v) = –(Z/4r) p (t – r/v). The transverse component of this vector (see Fig. 2) is the proper electric field E 
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 The most important feature of this result is that the time-dependent field decreases very slowly 
(only as 1/r) with the distance from the source, so the radial component of the corresponding Poynting 
vector (7.9b),9 
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drops only as 1/r2, i.e. the full instant power P of the emitted wave,  
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does not depend on the distance from the source – as it should for radiation. 10  

 This is the famous Larmor formula11 for the electric dipole radiation; it is the dominating 
component of radiation by a localized system of charges – unless p  = 0. Please notice its angular 

dependence: the radiation vanishes at the axis of the retarded vector p  (where   = 0), and reaches its 
maximum in the plane normal to that axis.  

 In order to find the average power, Eq. (27) has to be averaged over a sufficiently long time. In 
particular, if the source is monochromatic, p(t) = Re[p exp{–it}], with a time-independent vector 
amplitude p, such averaging may be carried out just over one period, giving an extra factor 2 in the 
denominator: 
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 The easiest application of this formula is to a point charge oscillating, with frequency , along a 
straight line (which we may take for the z-axis), with amplitude a. In this case, p = qz(t)nz = qa 
Re[exp{–it}]nz, and if the charge velocity amplitude, a, is much less than the electromagnetic wave’s 
speed v, we may use Eq. (28) with  p = qa, giving 

= ZHn of the radiated wave, while its longitudinal component is exactly compensated by (–) in the next term 
of the Taylor expansion of Eq. (17a) in small parameter ka ~ a/ << 1. 
9 Note the “doughnut” dependence of Sr on the direction n, frequently used to visualize the dipole radiation. 
10 In the Gaussian units, for free space (v = c), Eq. (27) reads .)3/2( 23 pc P   
11 Named after Joseph Larmor, who was the first to derive this formula (in 1897) for the particular case of a single 
point charge q moving with acceleration r , when rp  q . 
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Applied to a classical picture of an electron (with q = –e  1.610–19C), initially rotating about an 
atom’s nucleus at an atomic distance a ~ 10–10 m, Eq. (29) shows12 that the energy loss due to the dipole 
radiation is so large that it would cause the electron to collapse on the nucleus in just ~10-11 s. In the 
beginning of the 1900s, this result was one of the main arguments for the development of quantum 
mechanics, which prevents such a collapse of electrons for their lowest-energy (ground) quantum state. 

 Another useful application of Eq. (28) is the radio wave radiation by a short, straight, symmetric 
antenna which is fed, for example, by a TEM transmission line such as a coaxial cable – see Fig. 3. 

 

 

 

 

 

 

 

 The exact solution of this problem is rather complicated because the law I(z) of the current 
variation along the antenna’s length should be calculated self-consistently with the distribution of the 
electromagnetic field induced by the current in the surrounding space. (Unfortunately, this fact is not 
mentioned in some textbooks.) However, the current should be largest in the feeding point (in Fig. 3, 
taken for z = 0) and vanish at the antenna’s ends (z = l/2), and hence we may guess that at l << , the 
linear function 
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should be a good approximation of the actual distribution – as it indeed is. Now we can use the 
continuity equation Q/t = I, i.e. –iQ = I, to calculate the complex amplitude Q(z) = iI(z)sgn(z)/ 
of the electric charge Q(z, t) = Re[Qexp{–it}] of the wire’s segment [0, z], and from it, the amplitude 
of the charge’s linear density: 
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From here, the dipole moment’s amplitude is 
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so Eq. (28) yields 

12 Actually, the formula needs a numerical coefficient adjustment to account for the electron’s orbital (rather than 
linear) motion – the task left for the reader’s exercise. However, this adjustment does not affect the order-of-
magnitude estimate given above. 
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where k = /v. The analogy between this result and the dissipation power P = ReZ  I 2/2 in a lumped 
linear circuit element, enables the interpretation of the first fraction in the last form of Eq. (33) as the 
real part of the antenna’s impedance:  

24
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2kl
ZZ A  ,     (8.34)

as felt by the transmission line.  

 According to Eq. (7.118), the wave traveling along the line toward the antenna is fully radiated, 
i.e. not reflected back, only if ZA equals to ZW of the line. As we know from Sec. 7.5 (and the solution of 
the related problems), for typical TEM lines, ZW ~ Z0, while Eq. (34), which is only valid in the limit kl 
<< 1, shows that for the radiation into free space (Z = Z0), ReZA is much less than Z0. Hence to reach the 
impedance matching condition ZW = ZA, the antenna’s length should be increased – as a more involved 
theory shows, to l  /2. However, in many cases, practical considerations make short antennas 
necessary. The example most often met nowadays is the cell phone antennas, which use frequencies 
close to 1 or 2 GHz, with free-space wavelengths  between 15 and 30 cm, i.e. much larger than the 
phone size.13 The quadratic dependence of the antenna’s efficiency on l, following from Eq. (34), 
explains why every millimeter counts in the design of such antennas, and why the designs are carefully 
optimized using software packages for the (virtually exact) numerical solution of the Maxwell equations 
for the specific shape of the antenna and other phone parts.14 

 To conclude this section, let me note that if the wave source is not monochromatic, so p(t) 
should be represented as a Fourier series, 
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




tiet pp Re)( ,     (8.35) 

the terms corresponding to the interference of spectral components with different frequencies  are 
averaged out at the time averaging of the Poynting vector, and the average radiated power is just a sum 
of contributions (28) from all substantial frequency components. 

 

8.3. Wave scattering 

 The Larmor formula may be used as the basis of the theory of scattering – the phenomenon 
illustrated by Fig. 4. Generally, scattering is a complex problem. However, in many cases it allows the 
so-called Born approximation,15 in which the scattered wave field’s effect on the scattering object is 
assumed to be much weaker than that of the incident wave, and is neglected. 

13 The situation will be partly remedied by the planned transfer of wireless mobile technology to the next 
generations, with the signal frequencies gradually moving up. 
14 A partial list of popular software packages of this kind includes both publicly available codes such as Nec2 
(whose various versions are available online, e.g., at http://www.qsl.net/4nec2/), and proprietary packages – such 
as Momentum from Agilent Technologies (now owned by Hewlett-Packard), FEKO from EM Software & 
Systems, and XFdtd from Remcom. 
15 Named after Max Born, one of the founding fathers of quantum mechanics. However, the basic idea of this 
approach was developed much earlier (in 1881) by Lord Rayleigh – born John William Strutt. 
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 As the first example of this approach, let us consider the scattering of a plane wave, propagating 
in free space (Z = Z0, v = c), by an otherwise free16 charged particle whose motion may be described by 
non-relativistic classical mechanics. (This requires, in particular, the incident wave to be not too 
powerful, so the speed of the charge’s motion induced by the wave remains much lower than c.) As was 
already discussed at the derivation of Eq. (7.32), in this case, the magnetic component of the Lorentz 
force (5.10) is negligible in comparison with the force Fe = qE exerted by the wave’s electric field. 
Thus, assuming that the incident wave is linearly polarized along some axis x, the equation of the 
particle’s motion in the Born approximation is just m x  = qE(t), so for the x-component px = qx of its 
dipole moment we can write 

              )(
2

tE
m

q
xqp   .     (8.36) 

As we already know from Sec. 2, oscillations of the dipole moment lead to radiation of a wave with a 
wide angular distribution of intensity; in our case, this is the scattered wave – see Fig. 4. Its full power 
may be found by plugging Eq. (36) into Eq. (27): 

                        )(
66

2
22

4
02

2
0 tE

mc

qZ
p

c

Z


 P ,    (8.37) 

so for the average power, we get 

            
2

22

4
0

12 
E

mc

qZ
P .     (8.38) 

 Since this power is proportional to the incident wave’s intensity S, it is customary to characterize 
the scattering ability of an object by the ratio, 

           
0

2
incident 2/ ZES 

 PP
 ,     (8.39) 

which has the dimensionality of area, and is called the total cross-section of scattering.17 For this 
measure, Eq. (38) yields the famous result 

16 As Eq. (7.30) shows, this calculation is also valid for an oscillator with a low own frequency, 0 << .  
17 This definition parallels those accepted in the classical and quantum theories of particle scattering – see, e.g., 
respectively, CM Sec. 3.5 and QM Sec. 3.3.  

Fig. 8.4. Wave scattering (schematically). 
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which is called the Thomson scattering formula,18 especially when applied to an electron. This relation 
is most frequently represented in the form19 

                               
2

0

2

c
2

c

1

4
with ,

3

8

mc

q
rr 


 .    (8.41) 

This constant rc is called the classical radius of the particle (or sometimes the “Thomson scattering 
length”); for the electron (q = –e, m = me) it is close to 2.8210-15 m. Its possible interpretation is 
evident from Eq. (41) for rc: at that distance between two similar particles, the potential energy q2/40r 
of their electrostatic interaction is equal to the particle’s rest-mass energy mc2.20  

 Now we have to go back and establish the conditions at which the Born approximation, when the 
field of the scattered wave is negligible, is indeed valid for a point-object scattering. Since the scattered 
wave’s intensity described by Eq. (26) diverges at r  0 as 1/r2, according to the definition (39) of the 
cross-section, it may become comparable to Sincident at r2 ~ . However, Eq. (38) itself is only valid if  r 
>> , so the Born approximation does not lead to a contradiction only if  

           2  .      (8.42) 

For the Thompson scattering by an electron, this condition means  >> rc ~ 310-15 m and is fulfilled for 
all frequencies up to very hard -rays with photon energies ~100 MeV. 

 Possibly the most notable feature of the result (40) is its independence of the wave frequency. As 
it follows from its derivation, particularly from Eq. (37), this independence is intimately related to the 
unbound character of charge motion. For bound charges, say for electrons in gas molecules, this result is 
only valid if the wave frequency  is much higher than the frequencies j of most important quantum 
transitions. In the opposite limit,  << j, the result is dramatically different. Indeed, in this limit we 
may approximate the molecule’s dipole moment by its static value (3.48): 

            Ep  .      (8.43)  

In the Born approximation, and in the absence of the molecular field effects mentioned in Sec. 3.3, E in 
this expression is just the incident wave’s field, and we can use Eq. (28) to calculate the power of the 
wave scattered by a single molecule:  

18 Named after Sir Joseph John (“JJ”) Thomson, the discoverer of the electron – and isotopes as well! He should 
not be confused with his son, G. P. Thomson, who discovered (simultaneously with C. Davisson and L. Germer)  
quantum-mechanical wave properties of the same electron. 
19 In the Gaussian units, this formula looks like rc = q2/mc2 (giving, of course, the same numerical values: for the 
electron, rc  2.8210-13 cm). This classical quantity should not be confused with the particle’s Compton 
wavelength C  2/mc (for the electron, close to 2.2410-12m), which naturally arises in quantum 
electrodynamics – see a brief discussion in the next chapter, and also QM Sec. 1.1. 
20 It is fascinating how smartly the relativistic expression mc2 sneaked into the result (40)-(41), which was 
obtained using the non-relativistic equation (36) of the particle motion. This was possible because the calculation 
engaged electromagnetic waves, which propagate with the speed of light, and whose quanta (photons), as a result, 
may be frequently treated as relativistic (moreover, ultra-relativistic) particles – see the next chapter. 
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Now, using the last form of the definition (39) of the cross-section, we get a very simple result, 
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 ,        (8.45) 

showing that in contrast to Eq. (40), at low frequencies   changes as fast as 4. 

 Now let us explore the effect of such Rayleigh scattering on wave propagation in a gas, with a 
relatively low volumic density n. We may expect (and will prove in the next section) that due to the 
randomness of molecule positions, the waves scattered by individual molecules may be treated as 
incoherent ones, so the total scattering power may be calculated just as the sum of those scattered by 
each molecule. We can use this fact to write the balance of the incident’s wave intensity in a small 
volume dV of length (along the incident wave direction) dz, and area A across it. Since such a segment 
includes ndV = nAdz molecules, and according to Eq. (39), each of them scatters power S = P/A, the 
total scattered power is nPdz; hence the incident power’s change is 

      dznd PP  .     (8.46) 

Comparing this equation with the definition (7.213) of the wave attenuation constant, applied to the 
scattering, 21 
      dzd PP scat .     (8.47) 

we see that this effect gives the following contribution to attenuation: scat = n. From here, using Eq. 
(3.50) to write  = 0( – 1)/n, where  is the dielectric constant, and Eq. (45) for , we get 

               
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6
.   (8.48) 

 This is the famous Rayleigh scattering formula, which in particular explains the colors of blue 
sky and red sunsets. Indeed, through the visible light spectrum,  changes almost two-fold; as a result, 
the scattering of blue components of sunlight is an order of magnitude higher than that of its red 
components. For the air near the Earth’s surface,  – 1  610-4, and n ~ 2.51025 m-3 – see Sec. 3.3. 
Plugging these numbers into Eq. (48), we see that the effective length lscat  1/scat of scattering is ~30 
km for the blue light and ~200 km for the red light.22 The effective thickness h of the Earth’s 
atmosphere is ~10 km, so the Sun looks just a bit yellowish during most of the day. However, an 
elementary geometry shows that at sunset, the light has to pass the length l ~ (REh)1/2  300 km to reach 
an Earth-surface observer; as a result, the blue components of the Sun’s light spectrum are almost 
completely scattered out, and even the red components are weakened very substantially. 

  

21 I am sorry for using the same letter () for both the molecular polarizability and the wave attenuation, but both 
notations are traditional. Hopefully, the subscript “scat” marking  in the latter meaning minimizes the possibility 
of confusion. 
22 These values are approximate because both n and ( – 1) vary through the atmosphere’s thickness. 
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8.4. Interference and diffraction 

 Now let us discuss scattering by objects with a size of the order of, or even larger than . For 
such extended objects, the phase difference factors (neglected above) step in, leading in particular to the 
important effects of interference and diffraction. These effects show up not as much in the total power 
of the scattered radiation, as in its angular distribution. It is common to characterize this distribution by 
the differential cross-section defined as 

      
incident

2

Ω S

rS

d

d r


,      (8.49) 

where r is the distance from the scatterer, at which the scattered wave is observed.23 Both the definition 
and the notation may become clearer if we notice that according to Eq. (26), at large distances (r >> a), 
the numerator of the right-hand side of Eq. (49), and hence the differential cross-section as a whole, do 
not depend on r, and that its integral over the total solid angle  = 4 coincides with the total cross-
section defined by Eq. (39): 
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.  (8.50) 

 For example, according to Eq. (26), the angular distribution of the radiation scattered by a single  
dipole is rather broad; in particular, in the quasistatic case (43), within the Born approximation,  

              
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If the wave is scattered by a small dielectric body, with a characteristic size a <<  (i.e., ka << 1), then 
all its parts re-radiate the incident wave coherently. Hence, we can calculate it similarly, just replacing 
the molecular dipole moment (43) with the total dipole moment of the object – see Eq. (3.45): 

                   VV EPp 01   ,     (8.52) 

where V ~ a3 is the body’s volume. As a result, the differential cross-section may be obtained from Eq. 
(51) with the replacement mol  ( – 1)0V:  
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i.e. follows the same sin2  law.  

 The situation for extended objects, with at least one dimension of the order of (or larger than) the 
wavelength, is different: here we have to take into account the phase shifts between the wave’s re-
radiation by various parts of the body. Let us analyze this issue first for an arbitrary collection of similar 
point scatterers located at points rj. If the wave vector of the incident plane wave is k0, the wave’s field 
has the phase factor exp{ik0r} – see Eq. (7.79). At the location rj of the jth scattering center, this factor 
equals exp{ik0rj}, defining the time dependence of the dipole vector p, and hence of the scattered wave. 

23 Just as in the case of the total cross-section, this definition is also similar to that accepted at the particle 
scattering – see, e.g., CM Sec. 3.5 and QM Sec. 3.3.  
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According to Eq. (17), the scattered wave with a wave vector k (with k = k0) acquires, on its way from 
the source point rj to the observation point r, an additional phase factor exp{ik(r – rj)}, so the scattered 
wave field is proportional to  

                   jjj ieii i rkkrrkrk rk   )(exp)(exp 00 .   (8.54) 

Since the first factor in the last expression does not depend on rj, to calculate the total scattering wave, it 
is sufficient to sum up the last phase factors, exp{–iqrj}, where the vector 

          0kkq        (8.55) 

has the physical sense of the wave vector change at scattering.24 It may look like the phase factor 
depends on our choice of the reference frame. However, according to Eq. (7.42), the average intensity of 
the scattered wave is proportional to EE

*, i.e. to the following real scalar function of the vector q: 
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where the complex function 
           }exp{)( j

j

iI rqq        (8.57) 

is called the phase sum, and may be calculated in any reference frame without affecting the final result 
given by Eq. (56).  

 So, besides the sin2 factor, the differential cross-section (49) of scattering by an extended 
object is also proportional to the scattering function (56). Its double-sum form is convenient to notice 
that for a system of many (N >> 1) similar but randomly located scatterers, only the terms with j = j’ 
accumulate at summation, so F(q), and hence d/d, scale as N, rather than N2 – thus justifying again 
our treatment of the Rayleigh scattering problem in the previous section.  

 Now let us apply Eq. (56) to a simple problem of just two similar small scatterers, separated by a 
fixed distance a: 

         
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where qa  qa/a is the component of the vector q along the vector a connecting the scatterers. The 
apparent simplicity of this result may be a bit misleading because the mutual plane of the vectors k and 
k0 (and hence of the vector q) does not necessarily coincide with the mutual plane of the vectors k0 and 
E, so the scattering angle   between k and k0 is generally different from (/2 – ) – see Fig. 5. 
Moreover, the angle between the vectors q and a (within their common plane) is one more parameter 
independent of both  and . As a result, the angular dependence of the scattered wave’s intensity (and 
hence d/d), which depends on all three angles, may be rather involved,  but some of its details are 
irrelevant for the basic physics of interference/diffraction.  

24 In quantum mechanics, q has a very clear sense of the momentum transferred from the scattering object to the 
scattered particle (for example, a photon), and this terminology is sometimes smuggled even into classical 
electrodynamics texts. 
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 This is why let me consider in detail only the simple cases when the vectors k, k0, and a all 
reside in the same plane, with k0 normal to a – see Fig. 6a. 

 

 

 

 

  

  

 

In this case, qa = ksin, and Eq. (58) is reduced to  

                  
2

sin
cos4)( 2 ka

F q .     (8.59) 

This function always has two maxima, at   = 0 and   = , and, if the product ka is large enough, other 
maxima25 at the special angles n that satisfy the simple Bragg condition 

           nanka nn  sin i.e.,2sin .     (8.60) 

As Fig. 6a shows, this condition may be readily understood as that of the in-phase addition (the 
constructive interference) of two coherent waves scattered from the two points, when the difference 
between their paths toward the observer, asin, is equal to an integer number of wavelengths. At each 
such maximum, F = 4, due to the doubling of the wave amplitude and hence quadrupling its power. 

If the distance between the point scatterers is large (ka >> 1), the first maxima (60) correspond to 
small scattering angles,   << 1. For this region, Eq. (59) is reduced to a simple periodic dependence of 
function F on the angle . Moreover, within the range of small , the wave polarization factor sin2  is 
virtually constant, so the angular dependence of the scattered wave’s intensity, and hence of the 
differential cross-section, is also very simple: 
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25 In optics especially, such intensity maxima/minima patterns are called interference fringes. 

Young’s 
interference 
pattern 

Bragg 
condition 
 

E

0k

0kkq 
rn





zk
yk

Fig. 8.5. The angles important for the 
general scattering problem. 

k

0

xk

Fig. 8.6. The 
simplest cases of 
(a) interference and 
(b) diffraction. 

z

2

a


2

a


0k

k
q

sina

x(a)            (b) 

z0k

k
q

aq

sina



x

a

 


aq



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 15 of 38 

This simple interference pattern is well known from Young’s two-slit experiment.26 (As will be 
discussed in the next section, the theoretical description of the two-slit experiment is more complex than 
that of the Born scattering, but is preferable experimentally because, at such scattering, the wave of 
intensity (61) has to be observed on the backdrop of a much stronger incident wave that propagates in 
almost the same direction,   = 0.) 

 A very similar analysis of scattering from N > 2 similar, equidistant scatterers, located along the 
same straight line shows that the positions (60) of the constructive interference maxima do not change 
(because the derivation of this condition is still applicable to each pair of adjacent scatterers), but the 
increase of N makes these peaks sharper and sharper. Leaving the quantitative analysis of this system for 
the reader’s exercise, let me jump immediately to the limit N  0, in which we may ignore the 
scatterers’ discreteness. The resulting pattern is similar to that at scattering by a continuous thin rod (see 
Fig. 6b), so let us first spell out the Born scattering formula for an arbitrary extended, continuous, 
uniform dielectric body. Transferring Eq. (56) from the sum to an integral, for the differential cross-
section we get 
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where I(q) now becomes the phase integral,27  
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with the dimensionality of volume.  

 Now we may return to the particular case of a thin rod (with both dimensions of the cross-
section’s area A much smaller than , but an arbitrary length a), otherwise keeping the same simple 
geometry as for two point scatterers – see Fig. 6b. In this case, the phase integral is just 
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where V = Aa is the volume of the rod, and   is the dimensionless argument defined as 
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 kaaqa  .     (8.65) 

The fraction participating in the last form of Eq. (64) is met in physics so frequently that it has deserved 
the special name of the sinc (not “sync”, please!)  function (see Fig. 7): 

26 This experiment was described in 1803 by Thomas Young – one more universal genius of science, who also 
introduced the Young modulus in the elasticity theory (see, e.g., CM Chapter 7), besides numerous other 
achievements – including deciphering Egyptian hieroglyphs! It is fascinating that the first clear observation of 
wave interference was made as early as 1666 by another genius, Sir Isaac Newton, in the form of so-called 
Newton’s rings. Unbelievably, Newton failed to give the most natural explanation of his observations – perhaps 
because he was vehemently opposed to the very idea of light as a wave, which was promoted in his times by 
others, notably by Christian Huygens. Due to Newton’s enormous authority, only Young’s two-slit experiments 
more than a century later have firmly established the wave picture of light – to be replaced by the dualistic 
wave/photon picture formalized by quantum electrodynamics (see, e.g., QM Ch. 9), in one more century.  
27 Since the observation point’s position r does not participate in this formula explicitly, the prime sign in r’ could 
be dropped, but I keep it as a reminder that the integral is taken over points r’ of the scattering object.  
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It vanishes at all points n = n with integer n, besides such point with n = 0: sinc0  sinc 0  = 1. 

 

 

 

 

 

 

 

 
 
 The function F(q) = V2sinc2, given by Eq. (64) and plotted with the red line in Fig. 8, is called 
the Fraunhofer diffraction pattern.28  

 

 

 

 

 

 

 

  
 
 Note that it oscillates with the same argument’s period (kasin) = 2/ka as the interference 
pattern (61) from two-point scatterers (shown with the blue line in Fig. 8). However, at the interference, 
the scattered wave intensity vanishes at angles n’ that satisfy the condition 
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i.e. when the optical path difference asin  is equal to a semi-integer number of wavelengths /2 = /k, 
and hence the two waves from the scatterers reach the observer in anti-phase – the so-called destructive 
interference. On the other hand, for the diffraction on a continuous rod the minima occur at a different 
set of scattering angles: 
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,      (8.68) 

28 It is named after Joseph von Fraunhofer (1787-1826) – who invented the spectroscope, developed the 
diffraction grating  (see below), and also discovered the dark Fraunhofer lines in the Sun’s spectrum. 
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 i.e. exactly where the two-point interference pattern has its maxima – please have a look at Fig. 8 again. 
The reason for this relation is that the wave diffraction on the rod may be considered as a simultaneous 
interference of waves from all its elementary fragments, and exactly at the observation angles when the 
rod edges give waves with phases shifted by 2n, the interior points of the rod give waves with all 
phases within this difference, with their algebraic sum equal to zero. As even more visible in Fig. 8, at 
the diffraction, the intensity oscillations are limited by a rapidly decreasing envelope function 1/2 – 
while at the two-point interference, the oscillations retain the same amplitude. The reason for this fast 
decrease is that with each Fraunhofer diffraction period, a smaller and smaller fraction of the road gives 
an unbalanced contribution to the scattered wave.   

If the rod’s length is small (ka << 1, i.e. a << ), then the sinc function’s argument  is small at 
all scattering angles , so I(q)  V, and Eq. (62) is reduced to Eq. (53). In the opposite limit, a >> , the 
first zeros of the function I(q) correspond to very small angles , for which sin  1, so the differential 
cross-section is just 

              
2

sinc)1(
4

22

22 


 kak

d

d












,    (8.69) 

i.e. Fig. 8 shows the scattering intensity as a function of the direction toward the observation point – if 
this point is within the plane containing the rod. 

 Finally, let us discuss a problem of large importance for applications: calculate the positions of 
the maxima of the interference pattern arising at the incidence of a plane wave on a very large 3D 
periodic system of point scatterers. For that, first of all, let us quantify the notion of 3D periodicity. The 
periodicity in one dimension is simple: the system we are considering (say, the positions of point 
scatterers) should be invariant with respect to the linear translation by some period a, and hence by any 
multiple sa of this period, where s is any integer. Anticipating the 3D generalization, we may require 
any of the possible translation vectors R to that the system is invariant, to be equal sa, where the 
primitive vector a is directed along the (so far, the only) axis of the 1D system.   

 Now we are ready for the common definition of the 3D periodicity – as the invariance of the 
system with respect to the translation by any vector of the following set: 

        



3

1l
lls aR ,      (8.70) 

where sl are three independent integers, and {al} is a set of three linearly independent primitive vectors. 
The set of geometric points described by Eq. (70) is called the Bravais lattice (first analyzed in detail, 
circa 1850, by Auguste Bravais). Perhaps the most nontrivial feature of this relation is that the vectors al 
should not necessarily be orthogonal to each other. (That requirement would severely restrict the set of 
possible lattices and make it unsuitable for the description, for example, of many solid-state crystals.) 
For the scattering problem we are considering, we will assume that the position rj of each point scatterer 
coincides with one of the points R of some Bravais lattice, with a given set of primitive vectors al, so in 
the basic Eq. (57), the index j is coding the set of three integers {s1, s2, s3}.  

 Now let us consider a similarly defined Bravais lattice, but in the reciprocal (wave-number) 
space, numbered by three independent integers {t1, t2, t3}: 
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where in the last expression, the indices m, m’, and m” are all different. This is the so-called reciprocal 
lattice, which plays an important role in all physics of periodic structures, in particular in the quantum 
energy-band theory.29 To reveal its most important property, and thus justify the above introduction of 
the primitive vectors bm, let us calculate the following scalar product: 
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Applying to the numerator of the last fraction the operand rotation rule of vector algebra,30 we see that 
it is equal to zero if l  m, while for l = m the whole fraction is evidently equal to 1. Thus the double 
sum (72) is reduced to a single sum: 
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22
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where each of the products nl  sltl  is an integer, and hence their sum,  

               ,332211

3

1
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

     (8.74) 

is an integer as well, so the main property of the direct/reciprocal lattice couple is very simple: 

         1exp  hence and,2  QRQR in .   (8.75)  

 Now returning to the scattering function (56) for a Bravais lattice of point scatters, we see that if 
the vector q  k – k0 coincides with any vector Q of the reciprocal lattice, then all terms of the phase 
sum (57) take their largest possible values (equal to 1), and hence the sum as the whole is largest as 
well, giving a constructive interference maximum. This equality, q = Q, where Q is given by Eq. (71), is 
called the von Laue condition  (named after Max von Laue) of the constructive interference; it is, in 
particular, the basis of the whole field of the X-ray crystallography of solids and polymers – the main 
tool for revealing their atomic/molecular structure.31 

 In order to recast the von Laue condition in a more vivid geometric form, let us consider one of 
the vectors Q of the reciprocal lattice, corresponding to a certain integer n in Eq. (75), and notice that if 
that relation is satisfied for one point R of the direct Bravais lattice (70), i.e. for one set of the integers 
{s1, s2, s3}, it is also satisfied for a 2D system of other integer sets, which may be parameterized, for 
example, by two integers S1 and S2:     

       22113
'
3322

'
2311

'
1 ,, tStSsstSsstSss  .   (8.76) 

Indeed, each of these sets has the same value of the integer n, defined by Eq. (74), as the original one: 

        nttStSsttSsttSstststsn'  322113232213113
'
32

'
21

'
1 . (8.77) 

Since, according to Eq. (75), the vector of the distance between any pair of the corresponding points of 
the direct Bravais lattice (70), 

29 See, e.g., QM Sec. 3.4, where several particular Bravais lattices R, and their reciprocals Q, are considered. 
30 See, e.g., MA Eq. (7.6). 
31 For more reading on this important topic, I can recommend, for example, the classical monograph by B. 
Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, 1978. (Note that its title uses the alternative 
name of the field, once again illustrating how blurry the boundary between the interference and diffraction is.) 
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      32211232131 aaaR tStStStS  ,    (8.78) 

satisfies the condition RQ = 2n = 0, this vector is normal to the (fixed) vector Q. Hence, all the 
points corresponding to the 2D set (76) with arbitrary integers S1 and S2, are located on one geometric 
plane, called the crystal (or “lattice”) plane. In a 3D system of N >> 1 scatterers (such as N ~1020 atoms 
in a ~1-mm3 solid crystal), with all linear dimensions comparable, such a plane contains ~N2/3 >> 1 
points. As a result, the constructive interference peaks are very sharp. 

 Now rewriting Eq. (75) as a relation for the vector R’s component along the vector Q, 

    Q
Q

RnR  Q
Q

Rn
Q

R QQQ   and,  where,
2

,  (8.79) 

we see that the parallel crystal planes corresponding to different numbers n (but the same Q) are located 
in space periodically, with the smallest distance   

          
Q

d
2

 ,      (8.80) 

so the von Laue condition q = Q  may be rewritten as the following rule for the possible magnitudes of 
the scattering vector q  k – k0: 

          
d

n
q

2
 .      (8.81) 

 Figure 9a shows the diagram of the three wave vectors k, k0, and q, taking into account the 
elastic scattering condition k = k0 = k  2/.  From the diagram, we immediately get the famous 
Bragg rule32 for the (equal) angles    /2 between the crystal plane and each of the vectors k and k0: 

         nd
d

nq
k  sin2  i.e.,

2
sin .    (8.82) 

The physical sense of this relation is very simple – see Fig. 9b drawn in the “direct” space of the radius-
vectors r, rather than in the reciprocal space of the wave vectors, as Fig. 9a. It shows that if the Bragg 
condition (82) is satisfied, the total difference 2dsin  of the optical paths of two waves, partly reflected 
from the adjacent crystal planes, is equal to an integer number of wavelengths, so these waves interfere 
constructively. 

 

 

 

 

  

 

   

32 Named after Sir William Bragg and his son, Sir William Lawrence Bragg, who were the first to demonstrate (in 
1912) the X-ray diffraction by atoms in crystals. The Braggs’ experiments have made the existence of atoms 
(before that, a somewhat hypothetical notion ignored by many physicists) indisputable. 

Fig. 8.9. Deriving the Bragg rule: (a) from the von Laue condition (in the reciprocal space), and 
(b) from a direct-space diagram. Note that the scattering angle  equals 2. 
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 Finally, note that the von Laue and Bragg rules, as well as the similar condition (60) for the 1D 
system of scatterers, are valid not only in the Born approximation but also follow from any adequate 
theory of scattering, because the phase sum (57) does not depend on the magnitude of the wave 
propagating from each elementary scatterer, provided that they are all equal. 

 

8.5. The Huygens principle 

 As the reader could see, the Born approximation is very convenient for tracing the basic features 
of (and the difference between) the phenomena of interference and diffraction. Unfortunately, this 
approximation, based on the relative weakness of the scattered wave, cannot be used to describe more 
typical experimental implementations of these phenomena, for example, Young’s two-slit experiment, 
or diffraction on a single slit or orifice – see, e.g. Fig. 10. Indeed, at such experiments, the orifice size a 
is typically much larger than the light’s wavelength , and as a result, no clear decomposition of the 
fields to the “incident” and “scattered” waves is possible inside it.33 

 

   

 

 

 

 

 

 However, another approximation called the Huygens (or “Huygens-Fresnel”) principle,34 is very 
instrumental in the description of such situations. In this approach, the wave beyond the screen is 
represented as a linear superposition of spherical waves of the type (17), as if they were emitted by 
every point of the incident wave’s front that has arrived at the orifice. This approximation is valid if the 
following strong conditions are satisfied: 
       ra  ,      (8.83) 

where r is the distance of the observation point from the orifice. In addition, as we have seen in the last 
section, at small /a the diffraction phenomena are confined to angles  ~ 1/ka ~ /a << 1. For 
observation at such small angles, the mathematical expression of the Huygens principle, for the complex 
amplitude f(r) of a monochromatic wave f(r, t) = Re[fe-it], is given by the following simple formula 

     r'd
R

e
'fCf

ikR
2

orifice

)()(  rr  .    (8.84) 

33 Another complaint against the Born approximation is that it does not satisfy the so-called optical (or “forward 
scattering”) theorem relating  to scattering with k = k0. This relation is especially important for the quantum-
mechanical description of particle scattering, and in this series, will be discussed in its QM part (Sec. 3.3). 
34 Named after Christian Huygens (1629-1695) who had conjectured the wave nature of light (which remained 
controversial for more than a century, until T. Young’s experiments), and Augustin-Jean Fresnel (1788-1827) 
who developed a quantitative theory of diffraction, and in particular gave a mathematical formulation of the 
Huygens principle. (Note that Eq. (91), sufficient for the purposes of this course, is not its most general form.) 
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Here f is any transverse component of any of the wave’s fields (either E or H),35 R is the distance 
between point r’ at the orifice and the observation point r (i.e. the magnitude of vector R  r – r’), and 
C is a complex constant.   

 Before describing the proof of Eq. (84), let me carry out its sanity check – which also will give 
us the constant C. Let us see what the Huygens principle gives for the case when the field under the 
integral is a plane wave with the complex amplitude f(z), propagating along axis z, with an unlimited x-
y front, (i.e. when there is no opaque screen at all), so in Eq. (84) we should take the whole [x, y] plane, 
say with z’ = 0, as the integration area– see Fig. 11. 

 

 

 

 

 

 
 Then, for the observation point with coordinates x = 0, y = 0, and z > 0, Eq. (84) yields 
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Before specifying the integration limits, let us consider the range x’, y’ << z.  In this range, the 
square root participating in Eq. (85) twice, may be approximated as 
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At z >> , the denominator of Eq. (85) is a much slower function of x’ and y’ than the exponent in the 
numerator, and in the former case, it is sufficient (as we will check a posteriori) to keep just the main, 
first term of expansion (86). With that, Eq. (85) becomes 
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where Ix and Iy are two similar integrals; for example, 
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where   (k/2z)1/2x’. These are the so-called Fresnel integrals. I will discuss them in more detail in the 
next section (see, in particular, Fig. 13), and for now, only one property36 of these integrals is important 

35 The fact that the Huygens principle is valid for any field component should not too surprising. In the limit a >> 
, the real boundary conditions at the orifice edges are not important; it is only important for the screen that limits 
the orifice, to be opaque. Because of this, the Huygens principle (84) is a part of the so-called scalar theory of 
diffraction. (I will not have time to discuss the vector theory of these effects, which is more accurate at smaller a – 
see, e.g., Chapter 11 of the monograph by M. Born and E. Wolf, cited at the end of Sec. 7.1.) 
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for us: if taken in symmetric limits [-0, +0],  both of them rapidly converge to the same value, (/2)1/2, 
as soon as 0 becomes much larger than 1. This means that even if we do not impose any exact limits on 
the integration area in Eq. (85), this integral converges to the value   
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due to contributions from the central area with a linear size corresponding to  ~ 1, i.e. to 
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so the net contribution from the front points r’ well beyond the range (90) is negligible.37 (Within our 
assumptions (83), which in particular require  to be much less than z, the diffraction angle x/z ~ y/z 
~ (/z)1/2, corresponding to the important area of the front, is small.) According to Eq. (89), to sustain 
the unperturbed plane wave propagation, f(z) = f(0)eikz, the constant C has to be taken equal to k/2i. 
Thus, the Huygens principle’s prediction (84), in its final form, reads 
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and describes, in particular, the straight propagation of the plane wave (in a uniform medium). 

 Let me pause to emphasize how nontrivial this result is. It would be a natural corollary of Eqs. 
(25) (and the linear superposition principle) if all points of the orifice were filled with point scatterers 
that re-emit all the incident waves as spherical waves. However, as it follows from the above example, 
the Huygens principle also works if there is nothing in the orifice but the free space! 

This is why let us discuss a proof of this principle,38 based on Green’s theorem (2.207).  Let us 
apply it to the function f = f where f is the complex amplitude of a scalar component of one of the 
wave’s fields, which satisfies the Helmholtz equation (7.204), 

                         0)(22  rfk ,     (8.92) 

and the function g = G is the temporal Fourier image of the corresponding Green’s function. The latter 
function may be defined, as usual, as the solution of the same equation with the added delta-functional 
right-hand side with an arbitrary coefficient, for example, 

                         )(4),(22 ''Gk rrrr   .    (8.93) 

Using Eqs. (92) and (93) to express the Laplace operators of the functions f and G, we may rewrite  
Eq. (2.207) as 

36 See, e.g., MA Eq. (6.10). 
37 This result very is natural, because the function exp{ikR} oscillates fast with the change of r’, so the 
contributions from various front points are averaged out. Indeed, the only reason why the central part of the plane 
[x’, y’] gives a non-zero contribution (89) to f(z) is that the phase exponents stop oscillating as (x’2 + y’2) is 
reduced below ~z/k – see Eq. (86).  
38 This proof was given in 1882 by the same G. Kirchhoff whose circuit rules were discussed in Sec. 4.1 and 6.6.  
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where n is the outward normal to the surface S limiting the integration volume V. Two terms on the left-
hand side of this relation cancel, so after swapping the arguments r and r’, we get 
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 This relation is only correct if the selected volume V includes the point r (otherwise we would 
not get its left-hand side from the integration of the delta function), but does not include the genuine 
source of the wave – otherwise, Eq. (92) would have a non-zero right-hand side. Now let r be the field 
observation point, V be all the source-free half-space (for example, the space right of the screen in Fig. 
10), so S is the surface of the screen, including the orifice. Then the right-hand side of Eq. (95) describes 
the field (at the observation point r) induced by the wave passing through the orifice points r’. Since no 
waves are emitted by the opaque parts of the screen, we can limit the integration by the orifice area.39 
Assuming also that the opaque parts of the screen do not re-emit the waves “radiated” by the orifice, we 
can take the solution of Eq. (93) to be the retarded potential for the free space:40  
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Plugging this expression into Eq. (82), we get 
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 This is the so-called Kirchhoff (or “Fresnel-Kirchhoff”) integral. (Again, with the integration 
extended over all boundaries of the volume V, this would be an exact mathematical result.) Now, let us 
make two additional approximations. The first of them stems from Eq. (83): at ka >> 1, the wave’s 
spatial dependence in the orifice area may be represented as  

              }exp{) offunction  slow a()( 0 'i''f rkrr  ,   (8.98) 

where “slow” means a function that changes on the scale of a rather than . If, also, kR >> 1, then the 
differentiation in Eq. (97) may be, in both instances, limited to the rapidly changing exponents, giving 
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Second, if all observation angles are small, we may take kn’  k0n’  –k. With that, Eq. (99) is reduced 
to the Huygens principle in its form (91). 

39 Actually, this is a nontrivial point of the proof. Indeed, it may be shown that the exact solution of Eq. (94) 
identically is equal to zero if f(r’) and f(r’)/n’ vanish together at any part of the boundary, of a non-zero area. A 
more careful analysis of this issue (it is the task of the formal vector theory of diffraction, which I will not have 
time to pursue) confirms the validity of the described intuition-based approach at a >> . 
40 It follows, e.g., from Eq. (16) with a monochromatic source q(t) = qexp{-it}, with the amplitude q = 4  
that fits the right-hand side of Eq. (93). 

Kirchhoff 
integral 
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 It is clear that the principle immediately gives a very simple description of the interference of 
waves passing through two small holes in the screen. Indeed, if the holes’ sizes are negligible in 
comparison with the distance a between them (though still are much larger than the wavelength!), Eq. 
(91) yield 

              ,2with  ,)( 2,12,12,12,1
2

2
1

1 iRAkfcececf
ikRikR  r   (8.100) 

where R1,2 are the distances between the holes and the observation point, and A1,2 are the hole areas. For 
the wave intensity, Eq. (100) gives 
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The first two terms in the last expression clearly represent the intensities of the partial waves passed 
through each hole, while the last one is the result of their interference. The interference pattern’s 
contrast ratio 
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is the largest (infinite) when both waves have equal amplitudes. 

 The analysis of the interference pattern is simple if the line connecting the holes is perpendicular 
to wave vector k  k0 – see Fig. 6a. Selecting the coordinate axes as shown in that figure, and using for 
the distances R1,2 the same expansion as in Eq. (86), for the interference term in Eq. (101) we get 
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This means that the term does not depend on y, i.e. the interference pattern in the plane of constant z is a 
set of straight, parallel strips, perpendicular to the vector a, with the period given by Eq. (60), i.e. by the 
Bragg law.41 This result is strictly valid only at y2 << z2; it is straightforward to use the next term in the 
Taylor expansion (73) to show that farther on from the interference plane y = 0, the strips start to 
diverge. 

 

8.6. Fresnel and Fraunhofer diffraction patterns 

 Now let us use the Huygens principle to analyze a slightly more complex problem: plane wave’s 
diffraction on a long, straight slit of a constant width a (Fig. 12). According to Eq. (83), to use the 
Huygens principle for the problem’s analysis we need to have  << a << z. Moreover, the simple 
version (91) of the principle is only valid for small observation angles,  x  << z. Note, however, that the 
relation between two dimensionless parameters of the problem, z/a and a/, which are both much less 
than 1, is so far arbitrary; as we will see in a minute, this relation determines the type of the observed 
diffraction pattern. 

41 The phase shift   vanishes at the normal incidence of a plane wave on the holes. Note, however, that the 
spatial shift of the interference pattern following from Eq. (103), x = –(z/ka), is extremely convenient for the 
experimental measurement of the phase shift between two waves, especially if it is induced by some factor (such 
as insertion of a transparent object into one of the interferometer’s arms) that may be turned on/off at will. 
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 Let us apply Eq. (91) to our current problem (Fig. 12), for the sake of simplicity assuming the 
normal wave incidence, and taking z’ = 0 at the screen plane: 
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where f0  f(x’, 0) = const is the incident wave’s amplitude. This is the same integral as in Eq. (85), 
except for the finite limits for the integration variable x’, and may be simplified similarly, using the 
small-angle condition (x – x’)2 +  y’2 << z2:  
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 The integral over y’ is the same as in the last section: 
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but the integral over x’ is more general, because of its finite limits: 
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It may be simplified in the following two (opposite) limits.  

 (i) Fraunhofer diffraction takes place when z/a >> a/ – the relation which may be rewritten 
either as a << (z)1/2, or as ka2  << z. In this limit, the ratio kx’2/z is negligibly small for all values of x’ 
under the integral, and we can approximate it as 
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 so Eq. (105) yields 
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and hence the relative wave intensity is 
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where S0 is the intensity of the incident wave, and    x/z << 1 is the observation angle. Comparing this 
expression with Eq. (69), we see that this diffraction pattern is exactly the same as that for a similar 
(uniform, 1D) object in the Born approximation – see the red line in Fig. 8. Note again that the angular 
width  of the Fraunhofer pattern is of the order of 1/ka, so its linear width x = z is of the order of 
z/ka ~ z/a.42 Hence the condition of the Fraunhofer approximation’s validity may be also represented as 
a << x.  

 (ii) Fresnel diffraction. In the opposite limit of a relatively wide slit, with a >> x = z ~ z/ka ~ 
z/a, i.e. ka2 >> z, the diffraction patterns at two edges of the slit are well separated. Hence, near each 
edge (for example, near x’ = –a/2) we may simplify Eq. (107) as 
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and express it via the special functions called the Fresnel integrals:43 
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whose plots are shown in Fig. 13a. As was mentioned above, at large values of their argument (), both 
functions tend to ½. 

 

 

 

 

 

 

 

 

 
  

42 Note also that since in this limit ka2 << z, Eq. (97) shows that even the maximum value S(0, z) of the diffracted 
wave’s intensity is much lower than that (S0) of the incident wave. This is natural because the incident power S0a 
per unit length of the slit is now distributed over a much larger width x >> a, so S(0, z) ~ S0 (a/x) << S0. 
43 Slightly different definitions of these functions, affecting the constant factors, may also be met in literature. 
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 Plugging this expression into Eqs. (105) and (111), for the diffracted wave intensity, in the 
Fresnel limit (i.e. at  x + a/2  << a), we get 

           








































 




































 








2
2/1

2
2/1

0 2

1

222

1

222

1),( a
x

z

ka
x

z

k

S

zxS
SC .  (8.113) 

A plot of this function (Fig. 14) shows that the diffraction pattern is very peculiar: while in the “dark” 
region x < –a/2 the wave intensity fades monotonically, the transition to the “bright” region within the 
gap (x > –a/2) is accompanied by intensity oscillations, just as at the Fraunhofer diffraction – cf. Fig. 8.  

 

 

 

 

 

 

 

  

 

 This behavior, which is described by the following asymptotes, 
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is essentially an artifact of “observing” just the wave intensity (i.e. its real amplitude) rather than its 
phase as well. Indeed, as may be seen even more clearly from the parametric representation of the 
Fresnel integrals, shown in Fig. 13b, these functions oscillate similarly at large positive and negative 
values of their argument. (This famous pattern is called either the Euler spiral or the Cornu spiral.)  
Physically, this means that the wave diffraction at the slit edge leads to similar oscillations of its phase 
at x < –a/2 and x > –a/2; however, in the latter region (i.e. inside the slit) the diffracted wave overlaps 
the incident wave passing through the slit directly, and their interference reveals the phase oscillations, 
making them visible in the observed intensity as well. 

  Note that according to Eq. (113), the linear scale x of the Fresnel diffraction pattern is of the 
order of (2z/k)1/2, i.e. complies with the estimate given by Eq. (90). If the slit is gradually narrowed so 
that its width a becomes comparable to x,44 the Fresnel diffraction patterns from both edges start to 
“collide” (interfere). The resulting wave, fully described by Eq. (107), is just a sum of two contributions 
of the type (111) from both edges of the slit. The resulting interference pattern is somewhat complicated, 
and only when a becomes substantially less than x, it is reduced to the simple Fraunhofer pattern (110). 

44 Note that this condition may be also rewritten as a ~ x, i.e. z/a ~ a/.   

5 0 5 10
0

0.5

1

1.5

   2/2/ 2/1 axzk 

0S

S

Fig. 8.14. The Fresnel 
diffraction pattern. 

Fresnel 
diffraction 

pattern 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 28 of 38 

Of course, this crossover from the Fresnel to Fraunhofer diffraction may be also observed, at fixed 
wavelength  and slit width a, by increasing z, i.e. by measuring the diffraction pattern farther and 
farther away from the slit.  

 Note also that the Fraunhofer limit is always valid if the diffraction is measured as a function of 
the diffraction angle  alone. This may be done, for example, by collecting the diffracted wave with a 
“positive” (converging) lens and observing the diffraction pattern in its focal plane. 

 

8.7. Geometrical optics placeholder 

 I would not like the reader to miss, behind all these details, the main feature of the Fresnel 
diffraction, which has an overwhelming practical significance. Namely, besides narrow diffraction 
“cones” (actually, parabolic-shaped regions) with the lateral scale x ~ (z)1/2, the wave far behind a slit 
of width a >> , x, reproduces the field just behind the slit, i.e. reproduces the unperturbed incident 
wave inside it, and has a negligible intensity in the shade regions outside it. An evident generalization of 
this fact is that when a plane wave (in particular an electromagnetic wave) passes any opaque object of a 
large size a >> , it propagates around it, by distances z up to ~a2/, along straight lines, with virtually 
negligible diffraction effects. This fact gives the strict foundation for the notion of the wave ray (or 
beam), as the line perpendicular to the local front of a quasi-plane wave. In a uniform media such a ray 
follows a straight line,45 but it refracts in accordance with the Snell law at the interface of two media 
with different values of the wave speed v, i.e. different values of the refraction index. The concept of 
rays enables the whole vast field of geometric optics, devoted mostly to ray tracing in various 
(sometimes very sophisticated) optical systems. 

 This is why, at this point, an E&M course that followed the scientific logic more faithfully than 
this one, would give an extended discussion of the geometric and quasi-geometric optics, including (as a 
minimum46) such vital topics as 

 - the so-called lensmaker’s equation expressing the focus length f of a lens via the curvature radii 
of its spherical surfaces and the refraction index of the lens material, 
 - the thin lens formula relating the image distance from the lens via f and the source distance, 
 - the concepts of basic optical instruments such as glasses, telescopes, and microscopes, 
 - the concepts of the spherical, angular, and chromatic aberrations (optical image distortions). 

 However, since I have made a (possibly, wrong) decision to follow the common tradition in 
selecting the main topics for this course, I do not have time/space left for such discussion. Still, I am 
using this “placeholder” pseudo-section to relay my deep conviction that any educated physicist has to 
know the geometric optics basics. If the reader has not been exposed to this subject during their 
undergraduate studies, I highly recommend at least browsing one of the available textbooks.47  

45 In application to optical waves, this notion may be traced back to at least the work by Hero (a.k.a. Heron) of 
Alexandria (circa 170 AD). Curiously, he correctly described light reflection from one or several plane mirrors, 
starting from the completely wrong idea of light propagation from the eye of the observer to the observed object. 
46 Admittedly, even this list leaves aside several spectacular effects, including such a beauty as conical refraction 
in biaxial crystals – see, e.g., Chapter 15 of the textbook by M. Born and E. Wolf, cited in the end of Sec. 7.1. 
47 My top recommendation for that purpose would be Chapters 3-6 and Sec. 8.6 in Born and Wolf. A simpler 
alternative is Chapter 10 in G. Fowles, Introduction to Modern Optics, 2nd ed., Dover, 1989. Note also that the 
venerable field of optical microscopy is currently revitalized by holographic/tomographic methods, using the 
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8.8. Fraunhofer diffraction from more complex scatterers 

 So far, our quantitative analysis of diffraction has been limited to a very simple geometry – a 
single slit in an otherwise opaque screen (Fig. 12). However, in the most important Fraunhofer limit, z 
>> ka2, it is easy to get a very simple expression for the plane wave diffraction/interference by a plane 
orifice (with a linear size scale a) of arbitrary shape. Indeed, the evident 2D generalization of the 
approximation (106)-(107) is 
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so besides the inconsequential total phase factor, Eq. (105) is reduced to 
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Here the 2D vector  (not to be confused with wave vector k, which is virtually perpendicular to !) is 
defined as 
           0k-kq

ρ
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z
k ,     (8.117)  

and  = {x, y} and ’ = {x’, y’} are 2D radius vectors in the, respectively, observation and orifice planes 
– both nearly normal to the vectors k and k0.48 In the last form of Eq. (116), the function T(’) describes 
the screen’s transparency at point ’, and the integral is over the whole screen plane z’ = 0. (Though the 
two forms of Eq. (116) are strictly equivalent only if T(’ ) is equal to either 1 or 0, its last form may be 
readily obtained from Eq. (91) with f(r’) = T(’ )f0 for any transparency profile, provided that T(’ ) is 
any function that changes substantially only at distances much larger than   2/k.) 

 From the mathematical point of view, the last form of Eq. (116) is just the 2D spatial Fourier 
transform of the function T(’), with the variable  defined by the observation point’s position:   
(z/k)  (z/2). This interpretation is useful because of the experience we all have with the Fourier 
transform, if only in the context of its time/frequency applications. For example, if the orifice is a single 
small hole, T(’) may be approximated by a delta function, so Eq. (116) yields f()  const. This 
result corresponds (at least for the small diffraction angles   /z, for which the Huygens 
approximation is valid) to a spherical wave spreading from the point-like orifice. Next, for two small 
holes, Eq. (116) immediately gives the interference pattern (103). Let me now use Eq. (116) to analyze 
other simplest (and most important) 1D transparency profiles, leaving a few 2D cases for the reader’s 
exercise.  

 (i) A single slit of width a (Fig. 12) may be described by transparency 

scattered wave’s phase information.  These methods are especially productive in biology and medicine – see, e.g., 
M. Brezinski, Optical Coherence Tomography, Academic Press, 2006, and G. Popescu, Quantitative Phase 
Imaging of Cells and Tissues, McGraw-Hill (2011). 
48 Note that for a thin uniform plate of the same shape as the orifice we are discussing now, the Born phase 
integral (63) with q << k gives a result functionally similar to Eq. (116).  
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Its substitution into Eq. (116) yields  
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naturally returning us to Eqs. (64) and (110), and hence to the red lines in Fig. 8 for the wave intensity. 
(Please note again that Eq. (116) describes only the Fraunhofer, but not the Fresnel diffraction!)   

 (ii) Two infinitely narrow, similar, parallel slits with a larger distance a between them (i.e. the 
simplest model of Young’s two-slit experiment) may be described by taking 
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so Eq. (116) yields the generic 1D interference pattern, 
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whose intensity is shown with the blue line in Fig. 8.  

 (iii) In a more realistic model of Young’s experiment, each slit has a width (say, w) that is much 
larger than the light wavelength , but still much smaller than the slit spacing a. This situation may be 
described by the following transparency function 
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for which Eq. (116) yields a natural combination of the results (119) (with a replaced with w) and (121): 
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This is the usual interference pattern, but modulated with a Fraunhofer-diffraction envelope – shown in 
Fig. 15 with the dashed blue line. Since the function sinc2 decreases very fast beyond its first zeros at  
= , the practical number of observable interference fringes is close to 2a/w. 
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Fig. 8.15. Young’s double-slit interference pattern for a finite-width slit. 
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 (iv) A structure very useful for experimental and engineering practice is a set of many parallel, 
similar slits, called the diffraction grating.49 If the slit’s width is much smaller than period d of the 
grating, its transparency function may be approximated as  
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and Eq. (116) yields 
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 This sum vanishes for all values of xd that are not multiples of 2, so the result describes sharp 
intensity peaks at the following diffraction angles: 
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Taking into account that this result is only valid for small angles m  << 1, it may be interpreted 
exactly as Eq. (59) – see Fig. 6a. However, in contrast with the interference (121) from two slits, the 
destructive interference from many slits kills the net wave as soon as the angle is even slightly different 
from each value (60). This is very convenient for spectroscopic purposes because the diffraction lines 
produced by multi-frequency waves do not overlap even if the frequencies of their adjacent components 
are very close. 

 Two unavoidable features of practical diffraction gratings make their properties different from 
this simple, ideal picture. First, the finite number N of slits, which may be described by limiting the sum 
(125) to the interval n = [-N/2, +N/2], results in a non-zero spread, / ~ 1/N, of each diffraction peak, 
and hence in the reduction of the grating’s spectral resolution. (Unintentional variations of the inter-slit 
distance d have a similar effect, so before the advent of high-resolution photolithography, special high-
precision mechanical tools had been used for grating fabrication.)  

 Second, a finite slit width w leads to the diffraction peak pattern modulation by the sinc2(kw/2) 
envelope, similar to the pattern shown in Fig. 15. Actually, for spectroscopic purposes, such modulation 
is sometimes a plus, because only one diffraction peak (say, with m = 1) is practically used, and if the 
frequency spectrum of the analyzed wave is very broad (covers more than one octave), the higher peaks 
produce undesirable hindrance. Because of this reason, w is frequently selected to be equal exactly to 
d/2, thus suppressing each other diffraction maximum. Moreover, sometimes semi-transparent films are 
used to make the transparency function T(r’) continuous and close to a sinusoidal one: 
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Plugging the last expression into Eq. (116) and integrating, we see that the output wave consists of just 3 
components: the direct-passing wave (proportional to T0) and two diffracted waves (proportional to T1)  
propagating in the directions of the two lowest Bragg angles, 1 =  /d.50 

49 The rudimentary diffraction grating effect, produced by the parallel fibers of a bird’s feather, was discovered as 
early as 1673 by James Gregory (who also invented the “Gregorian” telescope – one of the basic designs for 
reflecting telescopes). 
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 The same Eq. (116) may be also used to obtain one more general (and rather curious) result, 
called the Babinet principle.51 Consider two experiments with the diffraction of similar plane waves on 
two “complementary” screens – such that together they would cover the whole plane, without a hole or 
an overlap. (Think, for example, about an opaque disk of radius R and a large opaque screen with a 
round orifice of the same radius.) Then, according to the Babinet principle, the diffracted wave patterns 
produced by these two screens in all directions with   0 are identical.  

 The proof of this principle is straightforward: since the transparency functions produced by the 
screens are complementary: 
       ,1)()()( 21  'T'T'T ρρρ      (8.128) 

and the diffracted wave is (in the Fraunhofer approximation only!) a Fourier transform of T(’), which is 
a linear operation, we get 
          ),()()( 021 ρρρ fff       (8.129) 

where f0 is the wave “scattered” by the composite screen with T0(’)  1, i.e. the unperturbed initial 
wave propagating in the initial direction (  = 0). In all other directions, f1 = –f2, i.e. the diffracted waves 
are indeed similar besides the difference in sign – which is equivalent to a phase shift by . However, it 
is important to remember that the Babinet principle notwithstanding, in real experiments, with screens at 
finite distances, the diffracted waves may interfere with the unperturbed plane wave f0(), leading to 
different diffraction patterns in cases 1 and 2 – see, e.g., Fig. 14 and its discussion. 

 

8.9. Magnetic dipole and electric quadrupole radiation 

 Throughout this chapter, we have seen how many important results may be obtained from Eq. 
(26) for the electric dipole radiation by a small-size source (Fig. 1). Only in rare cases when this 
radiation is absent, for example, if the dipole moment p of the source equals zero (or does not change in 
time – either at all or at the frequency of our interest), higher-order effects may be important. I will now 
discuss the main two of them, quadrupole electric radiation and dipole magnetic radiation.  

 In Sec. 2 above, the electric dipole radiation was calculated by plugging the expansion (19) into 
the exact formula (17b) for the retarded vector potential A(r, t). Let us make a more exact calculation, 
by keeping the second term of that expansion as well: 
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Since the expansion is only valid if the last term in the time argument of j is relatively small, in the 
Taylor expansion of j with respect to that argument we may keep just two leading terms:  
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50 Similar tricks are used in the so-called phased-array antennas, broadly used in radar systems and 
radioastronomy, in which electronically controlled mutual phase shifts of microwave signals feeding many similar 
component antennas are used to steer the direction of the resulting narrow beam. For more on this important 
technology, see, e.g. T. Milligan, Modern Antenna Design, 2nd ed., Wiley (2005). 
51 Named after Jacques Babinet (1784-1874) who made several important contributions to optics. 
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so Eq. (17b) yields A = Ad + A’, where Ad is the electric dipole contribution as given by Eq. (23), and 
A’ is the new term of the next order in the small parameter r’ << r: 
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 Just as it was done in Sec. 2, let us evaluate this term for a system of non-relativistic particles 
with electric charges qk and radius vectors rk(t): 
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Using the “bac minus cab” identity of the vector algebra again,52 the vector operand of Eq. (133) may be 
rewritten as 
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so the right-hand side of Eq. (133) may be represented as a sum of two terms, A’ = Am + Aq, where 
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 Comparing the second of Eqs. (135) with Eq. (5.91), we see that m is just the total magnetic 
moment of the source. On the other hand, the first of Eqs. (135) is absolutely similar in structure to Eq. 
(23), with p replaced with (mn)/v, so for the corresponding component of the magnetic field it gives 
(in the same approximation r >> ) a result similar to Eq. (24): 

        













 














  nmnnmrB

v

r
t

rvv

r
t

rv
t 

2m 44
),(







 .  (8.137) 

According to this expression, just as at the electric dipole radiation, the vector B is perpendicular to the 
vector n, and its magnitude is also proportional to sin, where  is now the angle between the direction 
toward the observation point and the second time derivative of the vector m – rather than p: 
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As a result, the intensity of this magnetic dipole radiation has a similar angular distribution: 
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52 If you still need it, see MA Eq. (7.5). 
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- cf. Eq. (26), besides the (generally) different meaning of the angle .  

 Note, however, that this radiation is usually much weaker than its electric-dipole counterpart. 
For example, for a non-relativistic particle with electric charge q, moving on a trajectory of linear size 
~a, the electric dipole moment is of the order of qa, while its magnetic moment scales as qa2, where   
is the motion frequency. As a result, the ratio of the magnetic and electric dipole radiation intensities is 
of the order of (a/v)2, i.e. the squared ratio of the particle’s speed to the speed of the emitted waves – 
that has to be much smaller than 1 for our non-relativistic calculation to be valid. 

 The angular distribution of the electric quadrupole radiation described by Eq. (136) is more 
involved. To show this, let us add to Aq a vector parallel to n (i.e. directed along the wave’s 
propagation), getting 
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since this addition does not contribute to the transverse components of the electric and magnetic fields, 
i.e. to the radiated wave. According to the above definition of the vector Q, its Cartesian components 
may be represented as 
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where Qjj’ are the elements of the electric quadrupole tensor of the system – see the last of Eqs. (3.4):53 
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Now taking the curl of the first of Eqs. (140) at r >> , we get  
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This expression is similar to Eqs. (24) and (137), but according to Eqs. (140) and (142), components of 
the vector Q do depend on the direction of the vector n, leading to a different angular dependence of Sr.  

 As the simplest example, let us consider the system of two equal point electric charges moving 
symmetrically, at equal distances d(t) <<  from a stationary center – see Fig. 16.  

  

 

 

 
 
 
 Due to the symmetry of the system, its dipole moments p and m (and hence its electric and 
magnetic dipole radiation) vanish, but the quadrupole tensor (142) still has non-zero elements. With the 
coordinate choice shown in Fig. 16, these elements are diagonal: 

53 Let me hope that the reader has already acquired some experience in the calculation of this tensor’s elements – 
e.g., for the simple systems specified in Problems 3.2-3.4. 
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           .4,2 22 qdqd zzyyxx  QQQ     (8.144) 

With the x-axis selected within the common plane of the z-axis and the direction n toward the 
observation point (Fig. 16), so nx = sin, ny = 0, and nz = cos, Eq. (141) yields 

           cos4,0,sin2 22 qdqd zyx QQQ ,   (8.145) 

and the vector product in Eq. (143) has only one non-vanishing Cartesian component: 
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As a result, the quadrupole radiation intensity, S  Bq
2, is proportional to sin2cos2, i.e. vanishes not 

only along the symmetry axis of the system (as the electric-dipole and the magnetic-dipole radiations 
would), but also in all directions perpendicular to this axis, reaching its maxima at  = /4. 

 For more complex systems, the angular distribution of the electric quadrupole radiation may be 
different, but it may be proved that its total (instant) power always obeys the following simple formula: 
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 Let me finish this section by giving, also without proof, one more fact important for some 
applications: due to their different spatial structure, the magnetic-dipole and electric-quadrupole 
radiation fields do not interfere, i.e. the total power of radiation (neglecting the electric-dipole and 
higher multipole terms) may be found as the sum of these components, calculated independently. On the 
contrary, the electric-dipole and magnetic-dipole radiations of the same system typically interfere 
coherently, so their radiation fields (rather than powers) should be summed up. 

 

8.10. Exercise problems 

 8.1. Equation (8) obviously has standing-wave solutions (r, t) = Re [Csinkr exp{–it}], turning 
the scalar potential  = /r into a finite constant at r = 0 and into zero at kr = n, with n = 0, 1, 2,… This 
fact seems to imply that a cavity of radius R, carved inside a good conductor, has resonant modes with a 
purely radial electric field E(r) = nrE(r)  and that the lowest nonvanishing of them, with k = /R, gives 
the lowest (fundamental) frequency   vk = (v/R) of the cavity. Is this conclusion correct? 
 
 8.2. Simplify the Lorentz reciprocity theorem (6.121) for space-localized field sources. Then find 
out what it says about the fields of two compact, well-separated sources of electric-dipole radiation.  
 
 8.3. In the electric-dipole approximation, calculate the angular distribution and the total power of 
electromagnetic radiation by the hydrogen atom within the following classical model: an electron 
rotates, at a constant distance R, about a much heavier proton. Use this result to calculate the law of a 
gradual reduction of R in time. Finally, evaluate the classical lifetime of the atom by borrowing the 
initial value of R from quantum mechanics: R(0) = rB  0.5310-10 m. 
 
 8.4. A non-relativistic particle of mass m, with electric charge q, is placed into a time-
independent uniform magnetic field B. Derive the law of decrease of the particle’s kinetic energy due to 
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its electromagnetic radiation at the cyclotron frequency c = qB/m. Evaluate the rate of such radiation 
cooling of electrons in a magnetic field of 1 T, and estimate the energy interval in which this result is 
quantitatively correct. 

 Hint: The cyclotron motion will be discussed in detail (for arbitrary particle velocities) in Sec. 
9.6 below, but I hope that the reader already knows that in the non-relativistic case (v << c), the above 
formula for c may be readily obtained by combining the 2nd Newton law mv

2/R = qvB for the 
particle’s circular rotation under the effect of the magnetic component of the Lorentz force (5.10), and 
the geometric relation v = Rc.  (Here v is the particle’s velocity in the plane normal to the vector B.) 
 
 8.5. A particle with mass m, electric charge q, and an initial kinetic energy T << mc2 collides 
head-on with a much more massive particle of charge Zq, in free space. Calculate the total energy of 
electromagnetic radiation during this collision, assuming it to be much lower than T. 
 
 8.6. Solve the dipole antenna radiation problem discussed in Sec. 2 (see Fig. 3) for the optimal 
value l = /2 of its length, assuming that the current distribution in each of its arms is sinusoidal: I(z, t) = 
I0cos(z/l) cost. 54 
 
 8.7. A plane wave is scattered by a localized object in free space. Relate the differential cross-
section of the wave’s scattering to the average force it exerts on the object. Use this general relation to 
calculate the force exerted by a plane monochromatic wave on a free non-relativistic particle and 
compare the result with those obtained in Problems 7.4 and 7.5. 
 
 8.8. Use the Lorentz oscillator model of a bound charge, given by Eq. (7.30), to explore the 
transition between the two scattering limits discussed in Sec. 3 and, in particular, the resonant scattering 
taking place at   0. In the last context, discuss the contribution of scattering to the oscillator’s 
damping. 
 
 8.9.* A sphere of radius R, made of a material with a uniform permanent electric polarization P0 
and a constant mass density , is free to rotate about its center. Calculate its average total cross-section 
for scattering of a linearly polarized plane electromagnetic wave of frequency  << R/c, incident from 
free space, in the weak-wave limit, assuming that the initial orientation of the polarization vector P0 is 
random. 
 
 8.10. Use Eq. (56) to analyze the interference/diffraction pattern produced by a 
plane wave’s scattering on a set of N similar equidistant small objects on a straight line 
normal to the direction of the incident wave’s propagation – see the figure on the right. 
Discuss the trend(s) of the pattern in the limit N  . 
 

 8.11. Use the Born approximation to calculate the differential cross-section of a plane wave’s 
scattering by a uniform dielectric sphere of an arbitrary radius R. In the limits kR << 1 and 1 << kR 
(where k is the wave number), analyze the angular dependence of the differential cross-section and 
calculate the total cross-section of scattering. 

54 As was emphasized in Sec. 2, this is a reasonable guess rather than a controllable approximation. The exact 
(rather involved!) theory shows that this assumption gives errors ~5%, depending on the wire’s diameter. 
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 8.12. A sphere of radius R is made of a uniform dielectric material, with an arbitrary dielectric 
constant. Calculate its total cross-section of scattering a linearly-polarized low-frequency (k << 1/R) 
wave and compare the result with the solution of the previous problem.  
 
 8.13. Use the Born approximation to calculate the differential cross-section of a plane wave’s 
scattering on a right circular cylinder of length l and radius R, for an arbitrary angle of incidence. 
 
 8.14. Formulate the quantitative condition of the Born approximation’s validity for a uniform 
dielectric scatterer, with all linear dimensions of the order of the same scale a. 
 
 8.15. If a scatterer absorbs some part of the incident wave’s power, it may be characterized by an 
absorption cross-section a defined similarly to Eq. (39) for the scattering cross-section: 

0

2
a

a
2/ ZE


P

 , 

where the numerator is the time-averaged absorbed power. Use two different approaches to calculate a 
of a very small sphere of radius R << k–1,s, made of a nonmagnetic material with an Ohmic 
conductivity  and the high-frequency permittivity opt = 0. Can a of such a sphere be larger than its 
geometric cross-section R2? 
 
 8.16. Use the Huygens principle to calculate the wave’s intensity on the symmetry plane of the 
slit diffraction experiment (i.e. at x = 0 in Fig. 12), for arbitrary ratio z/ka2. 
  
 8.17. A plane wave with wavelength  is normally 
incident on an opaque planar screen with a round orifice of 
radius R >> . Use the Huygens principle to calculate the 
passing wave’s intensity on the system’s symmetry axis, at 
distances z >> R from the screen (see the figure on the 
right), and analyze the result.  
 

 8.18. A plane monochromatic wave is now 
normally incident on an opaque circular disk of radius R 
>> . Use the Huygens principle to calculate the wave’s 
intensity at a distance z >> R behind the disk’s center – 
see the figure on the right. Discuss the result. 

 

8.19. Use the Huygens principle to analyze the Fraunhofer diffraction of a plane wave normally 
incident on a square-shaped hole, of size aa, in an opaque screen. Sketch the diffraction pattern you 
would observe at a sufficiently large distance, and quantify the expression “sufficiently large” for this 
case. 
 
 8.20. Use the Huygens principle to analyze the propagation of a monochromatic Gaussian beam 
described by Eq. (7.181), with the initial characteristic width a0 >> , in a uniform isotropic medium. 
Use the result for a semi-quantitative derivation of the so-called Abbe limit for the spatial resolution of 
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an optical system: wmin = /2sin, where   is the half-angle of the wave cone propagating from the 
object and captured by the system. 
 

 8.21. Within the Fraunhofer approximation, 
analyze the pattern produced by a diffraction grating 
with the 1D-periodic transparency profile shown in 
the figure on the right, for the normal incidence of a 
monochromatic plane wave. 
  

 8.22. N equal point charges are attached, at equal intervals, to a circle 
rotating with a constant angular velocity about its center – see the figure on the 
right. For what values of N does the system emit: 

 (i) the electric dipole radiation? 
 (ii) the magnetic dipole radiation? 
 (iii) the electric quadrupole radiation? 
 

 8.23. What general statements can you make about: 

 (i) the electric dipole radiation, and 
 (ii) the magnetic dipole radiation, 

due to a collision of an arbitrary number of similar non-relativistic classical particles? 
 
 8.24. Calculate the angular distribution and the total power radiated by a small planar loop 
antenna of radius R, fed with ac current with frequency  and amplitude I0, into free space. 
 
 8.25. The orientation of a magnetic dipole, with a constant magnitude m of its moment, is 
rotating about a certain axis with an angular velocity , with the angle  between them staying constant. 
Calculate the angular distribution and the average power of its radiation into the free space. 
 
 8.26. Solve Problem 12 (also in the low-frequency limit kR << 1), for the case when the sphere’s 
material has a frequency-independent Ohmic conductivity , and opt = 0, in two limits: 

 (i) of a very large skin depth (s >> R), and 
 (ii) of a very small skin depth (s << R). 
  
 8.27. Complete the solution of the problem started in Sec. 9, by calculating the full power of 
radiation of the system of two charges oscillating in antiphase along the same straight line – see Fig. 16. 
Also, calculate the average radiation power for the case of harmonic oscillations, d(t) = acost, 
compare it with the case of a single charge performing similar oscillations, and interpret the difference. 
 
 8.28. The system of four alternating charges located at the angles of a square, considered in 
Problem 3.3(i), is now being rotated around the axis normal to their plane and passing through the 
square’s center, with a constant angular frequency  << v/a. Calculate the time-averaged angular 
distribution and the total power of the resulting radiation.  
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Chapter 9. Special Relativity 

This chapter starts with a review of special relativity’s basics, including its very convenient 4-vector 
formalism. This background is then used for the analysis of the relation between the electromagnetic 
field’s values measured in different inertial reference frames moving relative to each other. The results 
enable us to discuss relativistic particle dynamics in the electric and magnetic fields, and the analytical 
mechanics of the particles – and of the electromagnetic field as such. 

 

9.1. Einstein postulates and the Lorentz transform 

 As was emphasized at the derivation of expressions for the dipole and quadrupole radiation in 
the last chapter, they are only valid for systems of non-relativistic particles moving with velocities u 
much lower than c. In order to generalize these results to particles moving with arbitrary u, we need help 
from the relativity theory. Moreover, an analysis of the motion of charged relativistic particles in electric 
and magnetic fields is also a natural part of electrodynamics. This is why I will follow the tradition of 
using this course for a (by necessity, brief) introduction to the special relativity theory. This theory is 
based on the fundamental idea that measurements of physical variables (including the spatial and even 
temporal intervals between two events) may give different results in different reference frames, in 
particular in two inertial frames moving relative to each other translationally (i.e. without rotation), with 
a certain constant velocity v (Fig. 1). 

  

 

 

 

 

 
 In the non-relativistic (Newtonian) mechanics the problem of transfer between such reference 
frames has a simple solution at least in the limit v << c, because the basic equation of particle dynamics 
(the 2nd Newton law) 1 
      

'
' )(

k
kkkkk Um rrr  ,     (9.1) 

where U is the potential energy of inter-particle interactions, is invariant with respect to the so-called 
Galilean transformation (or just “transform” for short).2 Choosing the coordinates in both frames so that 
their axes x and x’ are parallel to the vector v (as in Fig. 1), the transform may be represented as 

1 Let me hope that the reader does not need a reminder that for Eq. (1) to be valid, the reference frames 0 and 0’ 
have to be inertial – see, e.g., CM Sec. 1.2. 
2 It had been first formulated by Galileo Galilei, if only rather informally, as early as 1638 – four years before 
Isaac Newton was born! Note also the very unfortunate term “boost” used sometimes to describe such 
translational transformations. (It is especially unnatural in the special relativity, not describing accelerations.) In 
my course, this term is avoided, with the equivalent “transform” used instead. 
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Fig. 9.1. Translational mutual motion of 
two reference frames. 
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               t'tz'zy'yvt'x'x  ,,, ,   (9.2a) 

and plugging Eq. (2a) into Eq. (1), we get an absolutely similarly looking equation of motion in the 
“moving” reference frame 0’. Since the reciprocal transform, 

              tt'zz'y'yvtxx'  ,,, ,    (9.2b) 

is similar to the direct one, with the replacement of (+v) with (–v), we may say that the Galilean 
invariance means that there is no “master” (absolute) spatial reference frame in classical mechanics, 
although the spatial and temporal intervals between different instant events are absolute, i.e. reference-
frame invariant: x = x’,…, t = t’. 

 However, it is straightforward to use Eq. (2) to check that the form of the wave equation  

           0
1

2

2

22

2

2

2

2

2
























f
tczyx

,    (9.3) 

describing, in particular, the electromagnetic wave propagation in free space,3 is not Galilean-invariant.4 
For the “usual” (say, elastic) waves, which obey a similar equation albeit with a different speed,5 this 
lack of Galilean invariance is natural and is compatible with the invariance of Eq. (1), from which the 
wave equation originates. This is because the elastic waves are essentially the oscillations of interacting 
particles of a certain medium (e.g., an elastic solid), making the reference frame connected to this 
medium, special. So, if the electromagnetic waves were oscillations of a certain special medium (which 
was first called the “luminiferous aether”6 and later aether – or just “ether”), similar arguments might be 
applicable to reconcile Eqs. (2) and (3).  

 The detection of such a medium was the goal of the measurements carried out between 1881 and 
1887 (with better and better precision) by Albert Abraham Michelson and Edward Williams Morley, 
which are sometimes called “the most famous failed experiments in physics”. Figure 2 shows a crude 
scheme of these experiments. 

 

 

 

 

 

 

 

 

3 The discussions in this chapter and most of the next chapter will be restricted to the free-space (and hence 
dispersion-free) case; some media effects on the radiation by relativistic particles will be discussed in Sec.10.4. 
4 It is interesting that the usual (non-relativistic) Schrödinger equation, whose fundamental solution for a free 
particle is a similar monochromatic wave (albeit with a different dispersion law), is Galilean-invariant, with a 
certain change of the wavefunction’s phase – see, e.g., QM Chapter 1. 
5 See, e.g., CM Secs. 6.5 and 7.7. 
6 In ancient Greek mythology, aether is the clean air breathed by the gods residing on Mount Olympus.  

Galilean 
transform 

mirror 

mirror 

semi- 
transparent 

mirror 

detector 

Ev
expt 1 

expt 2 

Earth 

ER vv 

Fig. 9.2. The Michelson-
Morley experiment. 

light 
source 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 9                 Page 3 of 56 

 A nearly monochromatic wave from a light source is split into two parts (optimally, of equal 
intensity), using a semi-transparent mirror tilted by the angle /4 to the incident wave direction. These 
two partial waves are reflected back by two fully-reflecting mirrors and arrive at the same semi-
transparent mirror again. Here half of each wave is directed toward the light source (they vanish there 
without affecting the source), but another half is passed toward an intensity detector, forming, with its 
counterpart, an interference pattern similar to that in the Young experiment. Thus each of the interfering 
waves has traveled twice (back and forth) each of two mutually perpendicular “arms” of the 
interferometer. Assuming that the aether, in which light propagates with speed c, moves with speed v < c 
along one of the arms, of length ll, it is straightforward (and hence left for the reader’s exercise :-) to get 
the following expression for the difference between the light roundtrip times: 
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where lt is the length of the second, “transverse” arm of the interferometer (perpendicular to v), and the 
last, approximate expression is valid at lt  ll  l and v << c.  

 Since the Earth moves around the Sun with a speed vE  30 km/s  10-4 c, the arm positions 
relative to this motion alternate, due to the Earth’s rotation about its axis, every 6 hours – see the right 
panel of Fig. 2. Hence if we assume that the aether rests in the Sun’s reference frame, then t (and the 
corresponding shift of the interference fringes), has to change its sign with this half-period as well. The 
same alternation may be achieved, at a smaller time scale, by a deliberate rotation of the instrument by 
/2. In the most precise version of the Michelson-Morley experiment (circa 1887), this shift was 
expected to be close to 0.4 of the interference pattern period. The results of the search for such a shift 
were negative, with the error bar about 0.01 of the period.7  

 The most prominent immediate explanation for this zero result8 was suggested in 1889 by 
George Francis FitzGerald and (independently and more qualitatively) by H. Lorentz in 1892: as evident 
from Eq. (4), if the longitudinal arm of the interferometer itself experiences the so-called length 
contraction: 
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c

v
lvl ll ,     (9.5) 

while the transverse arm’s length is not affected by its motion through the aether, this effect kills the 
shift t. This radical idea received strong support from the proof, in 1887-1905, that the Maxwell 
equations, and hence the wave equation (3), are form-invariant under the so-called Lorentz transform,9 
which in particular describes Eq. (5). For the choice of coordinates shown in Fig. 1, the transform reads 

7 Through the 20th century, the Michelson-Morley-type experiments were repeated using more and more refined 
experimental techniques, always with zero results for the apparent aether motion speed. For example, recent 
experiments using cryogenically cooled optical resonators have reduced the upper limit for such speed to just 
310-15 c –see H. Müller et al., Phys. Rev. Lett. 91, 020401 (2003). 
8 The zero result of a slightly later experiment, namely a precise measurement of the torque that should be exerted 
by the moving aether on a charged capacitor, carried out in 1903 by F. Trouton and H. Noble (following G. 
FitzGerald’s suggestion), seconded the Michelson and Morley’s conclusions. 
9 The theoretical work toward this result included important contributions by Woldemart Voigt (in 1887), Hendrik 
Lorentz (in 1892-1904), Joseph Larmor (in 1897 and 1900), and Henri Poincaré (in 1900 and 1905).  
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It is elementary to solve these equations for the primed coordinates to get the reciprocal transform 
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(I will soon represent Eqs. (6) in a more elegant form – see Eqs. (19) below.)  

 The Lorentz transform relations (6) are evidently reduced to the Galilean transform formulas (2) 
at v2 << c2. However, all attempts to give a reasonable interpretation of these equalities while keeping 
the notion of the aether have failed, in particular because of the restrictions imposed by results of earlier 
experiments carried out in 1851 and 1853 by Hippolyte Fizeau – which were repeated with higher 
accuracy by the same Michelson and Morley in 1886. These experiments have shown that if one sticks 
to the aether concept, this hypothetical medium has to be partially “dragged” by any moving dielectric 
material with a speed proportional to ( – 1). Such local drag would be irreconcilable with the assumed 
continuity of the aether. 

 In his famous 1905 paper, Albert Einstein suggested a bold resolution of this contradiction, 
essentially removing the concept of the aether altogether.10 Moreover, he argued that the Lorentz 
transform is the general property of time and space, rather than of the electromagnetic field alone. He 
started with two postulates, the first one essentially repeating the relativity principle formulated a bit 
earlier (in 1904) by H. Poincaré in the following form: 

 “…the laws of physical phenomena should be the same, whether for an observer fixed or for 
an observer carried along in a uniform movement of translation; so that we have not and 
could not have any means of discerning whether or not we are carried along in such a 
motion.”11 

  The second Einstein postulate was that the speed of light c, in free space, should be constant in 
all reference frames. (This is essentially a denial of the aether’s existence.)  

 Then, Einstein showed that the Lorenz transform relations (6) naturally follow from his 
postulates, with a few (very natural) additional assumptions. Let a point source emit a short flash of 
light, at the moment t = t’ = 0 when the origins of the reference frames shown in Fig. 1 coincide. Then, 
according to the second of Einstein’s postulates, in each of the frames, the spherical wave propagates 
with the same speed c, i.e. the coordinates of points of its front, measured in the two frames, have to 
obey the following equalities: 

        
.0)()(

,0)()(
2222

2222


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z'y'x'ct'

zyxct
    (9.7) 

10 In hindsight, this was much relief, because the aether had been a very awkward construct to start with. In 
particular, according to the basic theory of elasticity (see, e.g., CM Ch. 7), in order to carry such transverse waves 
as the electromagnetic ones, this medium would need to have a non-zero shear modulus, i.e. behave as an elastic 
solid – rather than as a rarified gas hypothesized initially by C. Huygens.  
11 Note that though the relativity principle excludes the notion of the special (“absolute”) spatial reference frame, 
its quoted verbal formulation still leaves the possibility of the Galilean “absolute time” t = t’ open. The 
quantitative relativity theory kills this option – see Eqs. (6) and their discussion below.

Lorentz 
transform 
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What may be the general relation between the combinations in the left-hand side of these equations – 
not for this particular wave’s front, but in general? A very natural (essentially, the only justifiable) 
choice is 
          )()()()()( 222222222 z'y'x'ct'vfzyxct  .  (9.8) 

Now, according to the first postulate, the same relation should be valid if we swap the reference frames 
(x  x’, etc.) and replace v with (–v). This is only possible if  f 2 = 1, so excluding the option f = –1 
(which is incompatible with the Galilean transform in the limit  v/c  0), we are left with f = +1, i.e. 

    )()()()( 22222222 z'y'x'ct'zyxct  .   (9.9) 

 For the line with y = y’ = 0 and z =  z’ = 0, Eq. (9) is reduced to 

          2222 )()( x'ct'xct  .     (9.10) 

It is very illuminating to interpret this relation as the one resulting from a mutual rotation of the 
reference frames (that now have to include clocks to measure time) on the plane of the coordinate x and 
the so-called imaginary time    ict – see Fig. 3. 

 

 

 

 

 

 
 Indeed, rewriting Eq. (10) as 

               2222 x''x   ,     (9.11) 

we may consider it as the invariance of the squared radius at the rotation shown in Fig. 3 and described 
by the following geometric relations: 
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with the reciprocal relations 
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 So far, the angle   has been arbitrary. In the spirit of Eq. (8), a natural choice is   = (v), with 
the requirement (0) = 0. To find this function, let us write the definition of the velocity v of frame 0’, 
as measured in frame 0 (which was implied above): for x’ = 0, x = vt. In the variables x and , this means 
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On the other hand, for the same point x’ = 0, Eqs. (12a) yield 

Fig. 9.3. The Lorentz transform as a mutual rotation 
of two reference frames on the [x,  ] plane. x
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These two expressions are compatible only if 

         
c

iv
tan ,        (9.15) 

so      

   
       

,
/1

1

tan1

1
cos,

/1

/

tan1

tan
sin

2/1222/122/1222/12







 












cv

i
cv

civ
 (9.16) 

where  and  are two very convenient and commonly used dimensionless parameters defined as  
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(The vector  is called the normalized velocity, while the scalar  is the Lorentz factor.)12 

 Using the above relations for , Eqs. (12) become 

                        ,, 'x'i'ix'x       (9.18a) 

             .,   xi'ixx'     (9.18b) 

Now returning to the real variables [x, ct], we get the Lorentz transform relations (6), in a more compact 
form: 
           ,,,, x'ct'ctz'zy'yct'x'x      (9.19a) 

            .,,, xctct'zz'yy'ctxx'      (9.19b) 

 An immediate corollary of Eqs. (19) is that for   to stay real, we need v2  c2, i.e. that the speed 
of any physical body (to which we could connect a meaningful reference frame) cannot exceed the 
speed of light, as measured in any other meaningful reference frame.13  

 

9.2. Relativistic kinematic effects 

 Before proceeding to other corollaries of Eqs. (19), let us spend a few minutes discussing what 
these relations actually mean. Evidently, they are trying to tell us that the spatial and temporal intervals 
are not absolute (as they are in the Newtonian space), but do depend on the reference frame they are 
measured in. So, we have to understand very clearly what exactly may be measured – and thus may be 
discussed in a meaningful physics theory. Recognizing this necessity, A. Einstein introduced the notion 
of numerous imaginary observers that may be distributed all over each reference frame. Each observer 

12 Note the following identities: 2  1/(1-  2) and (2 – 1)   2/(1-  2)  22, which are frequently handy in 
relativity-related algebra. One more function of , the rapidity    tanh–1  (so that  = i), is also useful for 
some calculations. 
13 All attempts to rationally conjecture particles moving with v > c (called tachyons) have failed – so far, at least. 
Possibly the strongest objection against their existence is the fact that the tachyons could be used to communicate 
back in time, thus violating the causality principle – see, e.g., G. Benford et al., Phys. Rev. D 2, 263 (1970). 

Relativistic 
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has a clock and may use it to measure the instants of local events, taking place at the observer’s 
location. He also conjectured, very reasonably, that:  

 (i) all observers within the same reference frame may agree on a common length measure (“a 
scale”), i.e. on their relative positions in that frame, and synchronize their clocks,14 and 

 (ii) the observers belonging to different reference frames may agree on the nomenclature of 
world events (e.g., short flashes of light) to which their respective measurements refer. 

 Actually, these additional postulates have been already implied in our “derivation” of the 
Lorentz transform in Sec. 1. For example, by the set {x, y, z, t} we mean the results of space and time 
measurements of a certain world event, about that all observers belonging to frame 0 agree. Similarly, 
all observers of frame 0’ have to agree about the results {x’, y’, z’, t’}. Finally, when the origin of frame 
0’ passes by some sequential points xk of frame 0, the observers in the latter frame may measure its 
passage times tk without a fundamental error, and know that all these times belong to x’ = 0.  

 Now we can analyze the major corollaries of the Lorentz transform, which are rather striking 
from the point of view of our everyday (rather non-relativistic) experience. 

 (i) Length contraction. Let us consider a thin rigid rod oriented along the x-axis, with its length l 
 x2 – x1, where x1,2 are the coordinates of the rod’s ends, as measured in its rest frame 0, at any instant t 
(Fig. 4). What would be the rod’s length l’ measured by the Einstein observers in the moving frame 0’? 

 

 

 

 

 
 
 At a time instant t’ agreed upon in advance, the observers who find themselves exactly at the 
rod’s ends, may register that fact, and then subtract their coordinates x’1,2  to calculate the apparent rod 
length l’  x2’ – x1’ in the moving frame. According to Eq. (19a), l may be expressed via this l’ as 

              l''x'xct''xct''xxxl   )()()( 121212 .  (9.20a) 

Hence, the rod’s length, as measured in the moving reference frame is 
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in accordance with the FitzGerald-Lorentz hypothesis (5). This is the relativistic length contraction 
effect: an object is always the longest (has the so-called proper length l) if measured in its rest frame. 

14 A posteriori, the Lorenz transform may be used to show that consensus-creating procedures (such as clock 
synchronization) are indeed possible. The basic idea of the proof is that since at v << c, the relativistic corrections 
to space and time intervals are of the order of (v/c)2, they have negligible effects on clocks being brought together 
into the same point for synchronization slowly, with a speed u << c. The reader interested in a detailed discussion 
of this and other fine points of special relativity may be referred to, e.g., either H. Arzeliès, Relativistic 
Kinematics, Pergamon, 1966, or W. Rindler, Introduction to Special Relativity, 2nd ed., Oxford U. Press, 1991. 
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Note that according to Eqs. (19), the length contraction takes place only in the direction of the relative 
motion of two reference frames. As was noted in Sec. 1, this result immediately explains the zero result 
of the Michelson-Morley-type experiments, so they give very convincing evidence (if not irrefutable 
proof) of Eqs. (18)-(19). 

 (ii) Time dilation. Now let us use Eqs. (19a) to find the time interval t, as measured in some 
reference frame 0, between two world events – say, two ticks of a clock moving with another frame 0’ 
(Fig. 5), i.e. having fixed values of x’, y’, and z’. 

 

 

 

 

  

 Let the time interval between these two events, measured in the clock’s rest frame 0’, be t’  t2’ 
– t1’. At these two moments, the clock would fly by two Einstein’s observers at rest in frame 0, so they 
can record the corresponding moments t1,2 shown by their clocks, and then calculate t as their 
difference. According to the last of Eqs. (19a),   

                     t'cx''ctx''ctctcttc Δ)()(Δ 1212   ,   (9.21a) 
so, finally, 
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This is the famous relativistic time dilation (or “dilatation”) effect: a time interval is longer if measured 
in a frame (in our case, frame 0) moving relative to the clock, while that in the clock’s rest frame is the 
shortest possible – the so-called proper time interval.   

This rather counter-intuitive effect is the everyday reality in experiments with high-energy 
elementary particles. For example, in a typical (and by no means record-breaking) experiment carried 
out in Fermilab, a beam of charged 200 GeV pions with   1,400 traveled a distance of l = 300 m with 
the measured loss of only 3% of the initial beam intensity due to the pion decay (mostly, into muon-
neutrino pairs) with the proper lifetime t0  2.5610-8 s. Without the time dilation, only an exp{-l/ct0} 
~10-17 fraction of the initial pions would survive, while the relativity-corrected number, exp{-l/ct} = 
exp{-l/ct0}  0.97, was in full accordance with experimental measurements.  

As another example, the global positioning systems (say, the GPS) are designed with the account 
of the time dilation due to the velocity of their satellites (and also some gravity-induced, i.e. general-
relativity corrections, which I would not have time to discuss) and would give large errors without such 
corrections. So, there is no doubt that time dilation (21) is a reality, though the precision of its 
experimental tests I am aware of15 has been limited to a few percent, because of the almost unavoidable 
involvement of less controllable gravity effects – which provide a time interval change of the opposite 
sign in most experiments near the Earth’s surface. 

15 See, e.g., J. Hafele and R. Keating, Science 177, 166 (1972). 
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 Before the first reliable observation of time dilation (by B. Rossi and D. Hall in 1940), there had 
been serious doubts about the reality of this effect, the most famous being the twin paradox first posed 
(together with an immediate suggestion of its resolution) by P. Langevin in 1911. Let us send one of two 
twins on a long space roundtrip with the maximum speed approaching c. Upon his return to Earth, who 
of the twins would be older? The naïve approach is to say that due to the relativity principle, not one can 
be (and hence there is no time dilation) because each twin could claim that their counterpart rather than 
them, was moving, with the same speed but in the opposite direction. The resolution of the paradox is 
that one of the twins had to be accelerated to be brought back, and hence the reference frames have to be 
dissimilar: only one of them may stay inertial all the time. As a result, the twin who had been 
accelerated (“actually traveling”) would be younger than their sibling when they finally came together. 
Constructive proof of this conclusion for the particular case of straight-line travel with a piecewise-
constant acceleration, is simple and hence left for the reader’s exercise. 

 (iii) Velocity transformation. Now let us calculate the velocity u of a moving point, as observed 
in reference frame 0, provided that its velocity, as measured in frame 0’, is u’ (Fig. 6). 

 

 

 

 

 
 
  
 Keeping the usual definition of velocity, but with due attention to the relativity of not only 
spatial but also temporal intervals, we may write 

           
dt'
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'
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r
u  , .     (9.22) 

Plugging in the differentials of the Lorentz transform relations (6a) into these definitions, we get 
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 (9.23) 

with a similar formula for uz. In the classical limit v/c  0, these relations are reduced to   

        ,,, zzyyxx u'uu'uvu'u      (9.24a) 

and may be merged into the familiar Galilean form 

                 cv'  for  ,vuu .     (9.24b) 

 In order to see how unusual the full relativistic rules (23) are at u ~ c, let us first consider a 
purely longitudinal motion, uy = uz = 0; then16  

16 With an account of the identity tanh(a + b) = (tanha + tanhb)/(1 + tanha tanhb), which readily follows from 
MA Eq. (3.5), Eq. (25) shows that rapidities    tanh-1  add up exactly as longitudinal velocities at non-
relativistic motion, making that notion very convenient for the analysis of transfer between several frames. 
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Fig. 9.6. The relativistic velocity addition. 
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2/1 cu'v

vu'
u




 ,     (9.25) 

where u  ux and u’  u’x. Figure 7 shows this u as the function of u’, for several values of the reference 
frames’ relative velocity v. 

 

 

 

 

 

 

 

 

 

 

 

 The first sanity check is that if v = 0, i.e. if the reference frames are at rest relative to each other, 
then u = u’, as it should be – see the diagonal straight line in Fig. 7. Next, if magnitudes of u’ and v are 
both below c, so is the magnitude of u. (Also good, because otherwise, ordinary particles in one frame 
would be tachyons in the other one, and the theory would be in big trouble.) Now strange things begin: 
even as u’ and v are both approaching c, then u is also close to c, but does not exceed it. As an example, 
if we fired forward a bullet with the relative speed of 0.9c, from a spaceship moving from the Earth also 
at 0.9c, Eq. (25) predicts the speed of the bullet relative to the Earth to be just [(0.9 + 0.9)/(1 + 
0.90.9)]c  0.994c < c, rather than (0.9 + 0.9) c = 1.8 c > c as in the Galilean kinematics. Actually, we 
could expect this strangeness, because it is necessary to fulfill the 2nd Einstein’s postulate: the 
independence of the speed of light in any reference frame. Indeed, for u’ = c, Eq. (25) yields u = c, 
regardless of v. 

 In the opposite case of a purely transverse motion, when a point moves across the relative 
motion of the frames (for example, at our choice of coordinates, u’ x = u’ z = 0), Eqs. (23) yield a much 
less spectacular result 

       yyy u'u'u 

1

.     (9.26) 

This effect comes purely from the time dilation because the transverse spatial intervals are Lorentz-
invariant. 

 In the case when both u x’ and uy’ are substantial (but uz’ is still zero), we may divide Eqs. (23)  
by each other to relate the angles   of the point’s propagation, as observed in the two reference frames:  
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This expression describes, in particular, the so-called stellar aberration effect: the dependence of the 
observed direction   toward a star on the speed v of the telescope’s motion relative to the star – see Fig. 
8. (The effect is readily observable experimentally as the annual aberration due to the periodic change 
of speed v by 2vE  60 km/s because of the Earth’s rotation about the Sun. Since the aberration’s main 
part is of the first order in vE/c ~ 10-4, this effect is very significant and has been known since the early 
1700s.)  

 

 

 

  

 

 

 

 

 For the analysis of this effect, it is sufficient to take, in Eq. (27), u’ = c, i.e. v/u’ = , and 
interpret ’ as the “proper” direction to the star, which would be measured at v = 0.17 At  << 1, both 
Eq. (27) and  the Galilean result (which the reader is invited to derive directly from Fig. 8), 

              






'

'

cos

sin
tan ,     (9.28) 

may be well approximated by the first-order term 

          ''  sin .     (9.29) 

Unfortunately, it is not easy to use the difference between Eqs. (27) and (28), of the second order in , 
for special relativity’s confirmation, because other components of the Earth’s motion, such as its 
rotation, nutation, and torque-induced precession,18 give masking first-order contributions to the 
aberration. 

Finally, for a completely arbitrary direction of the vector u’, Eqs. (22) may be readily used to 
calculate the velocity’s magnitude. The most popular form of the resulting expression is the following 
expression for the square of the relative velocity (or rather the reduced relative velocity ) of two points, 

       
 

 
1

1 2
21
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2

212 





ββ

ββββ
 .    (9.30) 

where 1,2  v1,2/c are their normalized velocities as measured in the same reference frame. 

17 Strictly speaking, to reconcile the geometries shown in Fig. 1 (for which all our formulas, including Eq. (27), 
are valid) and Fig. 8 (giving the traditional scheme of the stellar aberration), it is necessary to invert the signs of u 
(and hence of sin’ and cos’) and v, but as it is evident from Eq. (27), all the minus signs cancel, and the formula 
is valid “as is”. 
18 See, e.g., CM Secs. 4.4-4.5. 
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Fig. 9.8. The stellar aberration. 
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  (iv) The Doppler effect. Let us consider a monochromatic plane wave of some physical nature, 
traveling along the x-axis: 

               cosargcos(expRe   fftkxftkxiff .  (9.31) 

Its total phase,   kx – t + arg f (in contrast to its amplitude f– see Sec. 5 below) cannot depend 
on the observer’s reference frame, because the variable f vanishes completely at  = (n + ½) (for all 
integer n), and such “world events” should be observable in all reference frames. The only way to keep 
 = ’ at all times is to have19  
               't'k'x'tkx   .     (9.32) 

 First, let us use this general relation to consider the Doppler effect in the usual non-relativistic 
mechanical waves, e.g., oscillations of particles of a certain medium. Using the Galilean transform (2), 
we may rewrite Eq. (32) as  
        'tk'x'tvtx'k   )( .     (9.33) 

Since this transform leaves all space intervals (including the wavelength  = 2/k) intact, we can take k 
= k’, so Eq. (33) yields 
        kv'   .      (9.34) 

 For a dispersion-free medium, the wave number k is the ratio of its frequency , as measured in 
the reference frame bound to the medium, and the wave velocity vw. In  particular, if the wave source 
rests in the medium, we may bind the reference frame 0 to the medium as well, and frame 0’ to the 
wave’s receiver (i.e. v = vr), so  

              
wv

k


 ,      (9.35) 

and for the frequency perceived by the receiver, Eq. (34) yields 

      
w

rw

v

vv
'


  .     (9.36)  

On the other hand, if the receiver and the medium are at rest in the reference frame 0’, while the wave 
source is bound to the frame 0 (so v = –vs), Eq. (35) should be replaced with 

        
wv

'
k'k


 ,      (9.37) 

and Eq. (34) yields a different result: 

      
sw

w

vv

v
'


  ,     (9.38) 

Finally, if both the source and detector are moving, it is straightforward to combine these two results to 
get the general relation 

      
sw

rw

vv

vv
'




  .     (9.39) 

19 Strictly speaking, Eq. (32) is valid to an additive constant, but for notation simplicity, it may be always made 
equal to zero by selecting (as has already been done in all relations of Sec. 1) the reference frame origins and/or 
clock turn-on times so that at t = 0 and x = 0, t’ = 0 and x’ = 0 as well.  
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At low speeds of both the source and the receiver, this result simplifies, 

             
w

srwith  ,1
v

vv
'


  ,    (9.40) 

but at speeds comparable to vw we have to use the more general Eq. (39). Thus, the usual Doppler effect 
is generally affected not only by the relative speed (vr – vs) of the wave’s source and detector but also by 
their speeds relative to the medium in which the waves propagate. 

 Somewhat counter-intuitively, for the electromagnetic waves the calculations are simpler 
because for them the propagation medium (aether) does not exist, the wave velocity equals c in any 
reference frame, and there are no two separate cases: we can always take k = /c and k’ = ’/c. 
Plugging these relations, together with the Lorentz transform (19a), into the phase-invariance condition 
(32), we get 

             't'x'
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ct'x'

c





 )( .   (9.41) 

This relation has to hold for any x’ and t’, so we may require that the net coefficients before these 
variables vanish. These two requirements yield the same equality: 

                        )1(  ' .     (9.42) 

This result is already quite simple, but may be transformed further to be even more illuminating: 
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At any sign before , one pair of parentheses cancels, so20 
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' .     (9.44) 

 Thus the Doppler effect for electromagnetic waves depends only on the relative velocity v = c 
between the wave source and detector – as it should be, given the aether’s absence. At velocities much 
lower than c,  Eq. (44) may be approximated as 

           

 


1

2/1

2/1



' ,     (9.45) 

i.e. in the first approximation in   v/c, it tends to the corresponding limit (40) of the usual Doppler 
effect. 

 If the wave vector k is tilted by angle   to the vector v (as measured in frame 0), then we have to 
repeat the calculations, with k replaced by kx, and components ky and kz left intact at the Lorentz 
transform. As a result, Eq. (42) is generalized as 

20 It may look like the reciprocal expression of  via ’ is different, violating the relativity principle. However, in 
this case, we have to change the sign of , because the relative velocity of the system is opposite, so we return to 
Eq. (44) again. 
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            cos1' .     (9.46) 

For the case cos = 1, Eq. (46) reduces to our previous result (42). However, at  = /2 (i.e. cos  = 0), 
the relation is rather different: 

           
  2/121 
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

' .     (9.47) 

 This is the transverse Doppler effect – which is absent in non-relativistic physics. Its first 
experimental evidence was obtained using electron beams (as had been suggested in 1906 by J. Stark), 
by H. Ives and G. Stilwell in 1938 and 1941. Later, similar experiments were repeated several times, but 
the first unambiguous measurements were performed only in 1979 by D. Hasselkamp et al. who 
confirmed Eq. (47) with a relative accuracy of about 10%. This precision may not look too spectacular, 
but besides the special tests discussed above, the Lorentz transform formulas have been also confirmed, 
less directly, by a huge body of other experimental data, especially in high energy physics, agreeing 
with calculations incorporating this transform as their part. This is why, with due respect to the spirit of 
challenging authority, I should warn the reader: if you decide to challenge the relativity theory (called 
“theory” by tradition only), you would also need to explain all these data. Best luck with that! 21 

 

9.3. 4-vectors, momentum, mass, and energy 

 Before proceeding to the relativistic dynamics, let us discuss the mathematical formalism that 
makes all calculations more compact – and more beautiful. We have already seen that the three spatial 
coordinates {x, y, z} and the product ct are Lorentz-transformed similarly – see Eqs. (18)-(19) again. So 
it is natural to consider them as components of a single four-component vector (or, for short, 4-vector), 

            r,},,,{ 3210 ctxxxx   ,     (9.48) 

with components 
            zxyxxxctx  3210 ,,, .    (9.49) 

According to Eqs. (19), its components are Lorentz-transformed as  
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


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0'j
j'jj'j x'Lx ,     (9.50) 

where Ljj’ are the elements of the following 44 Lorentz transform matrix 
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.     (9.51) 

 Since such 4-vectors are a new notion for this course and will be used for many more purposes 
than just the space-time transform, we need to discuss the general mathematical rules they obey. Indeed, 

21 The same fact, ignored by crackpots, is also valid for other favorite directions of their attacks, including the 
Universe expansion, quantum measurement uncertainty, and entropy growth in physics, and the evolution theory 
in biology. 
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as was already mentioned in Sec. 8.9, the usual (three-component) vector is not just any ordered set 
(string) of three scalars {Ax, Ay, Az}; if we want it to represent a reference-frame-independent physical 
reality, the vector’s components have to obey certain rules at the transfer from one reference frame to 
another. In particular, in the non-relativistic limit the vector’s norm (its magnitude squared), 

              2222
zyx AAAA  ,     (9.52) 

should be invariant with respect to the transfer between different reference frames. However,  a naïve 
extension of this approach to 4-vectors would not work, because, according to the calculations of Sec. 1, 
the Lorentz transform keeps intact the combinations of the type (7), with one sign negative, rather than 
the sum of all components squared. Hence for the 4-vectors, all the rules of the game have to be 
reviewed and adjusted – or rather redefined from the very beginning, for example as follows.22 

 An arbitrary 4-vector is a string of 4 scalars,23  

       3210 ,,, AAAA ,     (9.53)  

whose components Aj, as measured in the reference frames 0 and 0’ shown in Fig. 1, obey the Lorentz 
transform relations similar to Eq. (50): 
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j'jjj A'LA .     (9.54) 

As we have already seen in the example of the space-time 4-vector (48), this means in particular that 
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 This is the so-called Lorentz invariance condition for the 4-vector’s norm. (The difference 
between this relation and Eq. (52), pertaining to Euclidian geometry, is the reason why the Minkowski 
space is called pseudo-Euclidian.) It is also straightforward to use Eqs. (51) and (54) to check that the 
evident generalization of the norm, the scalar product of two arbitrary 4-vectors,   
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1
00
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jj BABA ,     (9.56) 

is also Lorentz-invariant. 

 Now consider the 4-vector corresponding to a small interval between two close world events: 

      rdcdtdxdxdxdx ,},,,{ 3210  ;    (9.57) 

its norm, 
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22 The most prominent alternative, which has both advantages and drawbacks, is to use 4-vectors with one 
imaginary component – for example, the imaginary time ict instead of the real product ct in Eq. (48). 
23 Such vectors are said to reside in so-called 4D Minkowski spaces – called after Hermann Minkowski who was 
the first one to recast (in 1907) the special relativity relations in a form in which the spatial coordinates and time 
(or rather ct) are treated on an equal footing. 
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is of course also Lorentz-invariant. Since the speed of any particle (or signal) cannot be larger than c, for 
any pair of world events that are in a causal relation with each other, (dr)2 cannot be larger than (cdt)2, 
i.e. such time-like interval (ds)2 cannot be negative. The 4D surface separating such intervals from 
space-like intervals (ds)2 < 0 is called the light cone (Fig. 9). 

  

 

 

 

 

 

 

 

 

 Now let us consider two close world events that happen with the same point moving with 
velocity u. Then in the frame moving with the point (v = u), the last term on the right-hand side of Eq. 
(58) equals zero, while the involved time is the proper one, so 

          cdds  ,      (9.59) 

where d is the proper time interval. But according to Eq. (21), this means that we can write 
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d  ,      (9.60) 

where dt  is the time interval in an arbitrary (besides being inertial) reference frame, while   
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are the parameters (17) corresponding to the point’s velocity (u) in that frame, so ds = cdt/.24 

 Let us use Eq. (60) to explore whether a 4-vector may be formed using the spatial Cartesian 
components of the point’s velocity  
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Here we have a problem: per Eqs. (22), these components do not obey the Lorentz transform. However, 
let us use d  dt/, the proper time interval of the point, to form the following string: 
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24 I have opted against using special indices (e.g., u and u) to distinguish Eqs. (17) and (61) here and below, in a 
hope that the suitable velocity (of either a reference frame or a particle) will be always clear from the context. 

4-velocity 

1x

2x

t

ctr 
0

time-like interval ds2 0 
(causal relation possible) 

space-like interval ds2 < 0 
(causal relation impossible) 
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As it follows from the comparison of the middle form of this expression with Eq. (48), since the time-
space vector obeys the Lorentz transform, and   is Lorentz-invariant, the string (63) is a legitimate 4-
vector; it is called the 4-velocity of a point – or of a point particle. 

 Now we are well equipped to proceed to relativistic dynamics. Let us start with such basic 
notions as the momentum p and the energy E – so far, for a free particle.25 Perhaps the most elegant way 
to “derive” (or rather guess26) the expressions for p and E as functions of the particle’s velocity u, is 
based on analytical mechanics. Due to the conservation of v, the trajectory of a free particle in the 4D 
Minkowski space {ct, r} is always a straight line. Hence, from the Hamilton principle,27 we may expect 
its action S, between points 1 and 2, to be a linear function of the space-time interval (59):  
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where  is some constant. On the other hand, in analytical mechanics, the action is defined as 
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where L  is the particle’s Lagrangian function.28 Comparing these two expressions, we get 
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In the non-relativistic limit (u << c), this function tends to 
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In order to correspond to the Newtonian mechanics,29 the last (velocity-dependent) term should equal 
mu2/2. From here we find  = –mc, so, finally, 

              

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2 1

mc

c

u
mc 








L .    (9.68) 

 Now we can find the Cartesian components pj of the particle’s momentum as the generalized 
momenta corresponding to the corresponding components rj (j = 1, 2, 3) of the 3D radius-vector r:30 

25 I am sorry for using, just as in Sec. 6.3, the same traditional notation (p) for the particle’s momentum as had 
been used earlier for the electric dipole moment. However, since the latter notion will be virtually unused in the 
balance of this course, this may hardly lead to confusion. 
26 Indeed, such a derivation uses additional assumptions, however natural (such as the Lorentz-invariance of S), 
i.e. it can hardly be considered as a real proof of the final results, so they require experimental confirmation. 
Fortunately, such confirmations have been numerous – see below. 
27 See, e.g., CM Sec. 10.3. 
28 See, e.g., CM Sec. 2.1. 
29 See, e.g., CM Eq. (2.19b). 
30 See, e.g., CM Sec. 2.3, in particular Eq. (2.31). 
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Thus for the 3D vector of momentum, we can write the result in the same form as in non-relativistic 
mechanics, 
                 uup Mm   ,     (9.70) 

using the reference-frame-dependent scalar M (called the relativistic mass) defined as 

                
 

m
cu

m
mM 




2/122 /1
 ,    (9.71) 

m being the non-relativistic mass of the particle. (More often, m is called the rest mass, because in the 
reference frame in which the particle rests, Eq. (71) yields M = m.) 

 Next, let us return to analytical mechanics to calculate the particle’s energy E (which for a free 
particle coincides with its Hamiltonian function H):31 
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Thus, we have arrived at the most famous of Einstein’s formulas – and probably of physics as a whole: 

              ,22 Mccm  E      (9.73) 

which expresses the relation between the free particle’s mass and its energy.32 In the non-relativistic 
limit, it reduces to 
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the first term mc2 being called the rest energy of a particle. 

 Now let us consider the following string of 4 scalars:  

















p,,,, 321 c
ppp
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EE
.     (9.75) 

Using Eqs. (70) and (73) to represent this expression as 

 up ,, cm
c








E ,     (9.76) 

31 See, e.g., CM Eq. (2.32). 
32 Let me hope that the reader understands that all the layman talk about the “mass to energy conversion” is only 
valid in a very limited sense of the word. While the Einstein relation (73) does allow the conversion of “massive” 
particles (with m  0) into particles with m = 0, such as photons, each of the latter particles also has a non-zero 
relativistic mass M, and simultaneously the energy E related to this M by Eq. (73).  

E = Mc2 
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and comparing the result with Eq. (63), we immediately see that, since m is a Lorentz-invariant constant, 
this string is a legitimate 4-vector of energy-momentum. As a result, its norm, 

         2
2

p
c







E

,      (9.77a) 

is Lorentz-invariant, and in particular, has to be equal to the norm in the particle-bound frame. But in 
that frame, p  = 0, and according to Eq. (73), E = mc2, and the norm is just 

          ,2
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so in an arbitrary frame 

             22
2

)(mcp
c







E .     (9.78a) 

This very important relation33 between the relativistic energy and momentum (valid for free particles 
only!) is usually represented in the form34  

               2222 pcmc E .     (9.78b) 

 According to Eq. (70), in the so-called ultra-relativistic limit u  c, p tends to infinity, while 
mc2 stays constant, so pc/mc2  . As follows from Eq. (78), in this limit E  pc. Though the above 
discussion was for particles with finite m, the 4-vector formalism allows us to consider compact objects 
with zero rest mass as ultra-relativistic particles for which the above energy-to-moment relation, 

          0for ,  mpcE ,     (9.79)  

is exact. Quantum electrodynamics35 tells us that under certain conditions, the electromagnetic field 
quanta (photons) may be also considered as such massless particles with momentum p = k. Plugging 
(the modulus of) the last relation into Eq. (78), for the photon’s energy we get E = pc = kc = . Please 
note again that according to Eq. (73), the relativistic mass of a photon is not equal to zero: M = E/c2 = 

/c2, so the term “massless particle” has a limited meaning: m = 0. For example, the relativistic mass 
of an optical phonon is of the order of 10–36 kg. On the human scale, this is not too much, but still, a 
noticeable (approximately one-millionth) part of the rest mass me of an electron.  

 The fundamental relations (70) and (73) have been repeatedly verified in numerous particle 
collision experiments, in which the total energy and momentum of a system of particles are conserved – 
at the same conditions as in non-relativistic dynamics. (For the momentum, this is the absence of 
external forces, and for the energy, the elasticity of particle interactions – in other words, the absence of 
alternative channels of energy escape.) Of course, generally only the total energy of the system is 
conserved, including the potential energy of particle interactions. However, at typical high-energy 

33 Please note one more simple and useful relation following from Eqs. (70) and (73): p = (E/c2)u. 
34 It may be tempting to interpret this relation as the perpendicular-vector-like addition of the rest energy mc2 and 
the “kinetic energy” pc, but from the point of view of the total energy conservation (see below), a better definition 
of the kinetic energy is T(u)  E(u) – E (0). 
35 It is briefly reviewed in QM Chapter 9. 
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particle collisions, the potential energy vanishes so rapidly with the distance between them that we can 
use the momentum and energy conservation laws using Eq. (73).  

 As an example, let us calculate the minimum energy Emin of a proton (pa), necessary for the well-
known high-energy reaction that generates a new proton-antiproton pair, pa + pb  p + p + p + p , 
provided that before the collision, proton pb had been at rest in the lab frame. This minimum 
corresponds to the vanishing relative velocity of the reaction products, i.e. their motion with virtually 
the same velocity (ufin), as seen from the lab frame – see Fig. 10. 

 

 

 

 

 
 Due to the momentum conservation, this velocity should have the same direction as the initial 
velocity (umin) of proton pa. This is why two scalar equations: for energy conservation, 
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and for momentum conservation, 
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,    (9.80b) 

are sufficient to find both umin and ufin. After a rather tedious solution of this system of two nonlinear 
equations, we get 

            ccuccu 866.0
2

3
,990.0

7

34
finmin  .   (9.81) 

Finally, we can use Eq. (72) to calculate the required energy; the result is Emin = 7 mc2. (Note that at this 
threshold, only a minor 2mc2 part of the kinetic energy Tmin = Emin – mc2 = 6mc2 of the initially moving 
particle, goes into the “useful” proton-antiproton pair production.) The proton’s rest mass, mp  1.6710-

27 kg, corresponds to mpc
2  1.50210-10 J  0.938 GeV, so Emin  6.57 GeV. 

 The second, more intelligent way to solve the same problem is to use the center-of-mass (c.o.m.) 
reference frame that, in relativity, is defined as the frame in which the total momentum of the system 
vanishes.36 In this frame, at E = Emin, the velocity and momenta of all reaction products are vanishing, 
while the velocities of the protons pa and pb before the collision are equal and opposite, with an initially 
unknown magnitude u’. Hence the energy conservation law becomes 

          
 

2
2/122
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4
/1

2
mc

cu'

mc
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
,     (9.82) 

36 Note that according to this definition, the c.o.m.’s radius-vector is R = kMkrk/kMk  kkmkrk/kkmk, i.e. is 

generally different from the well-known non-relativistic expression R = kmkrk/kmk . 

Fig. 9.10. A high-energy proton 
reaction at E  Emin – schematically.
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readily giving u’/c = 3/2. (This is of course the same result as Eq. (81) gives for ufin.) Now we can use 
the fact that the velocity of the proton pa in the c.o.m. frame is (–u’), to find its lab-frame speed, using 
the velocity transform (25): 

              
22min /1

2

cu'

u'
u


 .     (9.83) 

With the above result for u’, this relation gives the same result as the first method, umin/c = 43/7, but in 
a simpler way. 

 

9.4. More on 4-vectors and 4-tensors 

 This is a good moment to introduce a formalism that will allow us, in particular, to solve the 
same proton collision problem in one more (and arguably, the most elegant) way. Much more 
importantly, this formalism will be virtually necessary for the description of the Lorentz transform of the 
electromagnetic field, and its interaction with relativistic particles – otherwise the formulas would be too 
cumbersome.  

 Let us call the 4-vectors we have used before, 

        A,0AA  ,     (9.84) 

contravariant, and denote them with top indices, and introduce also covariant vectors, 

       A ,0AA  ,     (9.85) 

marked by bottom indices. Now if we form a scalar product of these two vectors using the standard 
(3D-like) rule, just as a sum of the products of the corresponding components, we immediately get 

        22
0 AAAAAA  


 .     (9.86) 

Note that the first and the second expressions may be understood as sums over four components of the 
product, with the summation sign dropped.37 The scalar product (86) is just the norm of the 4-vector in 
our former definition, and as we already know, is Lorentz-invariant. Moreover, the scalar product of two 
different vectors (also a Lorentz invariant), may be rewritten in any of two similar forms:38 

     


 BABABA  BA00 ;    (9.87) 

again, the only caveat is to take one vector in the covariant, and the other one in the contravariant form.  

 Now let us return to our sample problem (Fig. 10). Since all components (E/c and p) of the total 
4-momentum of our system are conserved at the collision, its norm is conserved as well: 

              



 )4()4( pppppp baba  .    (9.88) 

37 This compact notation may take some time to be accustomed to, but is very convenient (compact) and can 
hardly lead to any confusion, due to the following rule: the summation is implied when, and only when the same 
index is repeated twice, once on the top and another at the bottom. (It is frequently called dummy index, because 
its notation may be replaced with any other letter not used in the same formula.) In this course, this shorthand 
notation will be used only for 4-vectors, but not for the usual (3D spatial) vectors. 
38 Note also that, by definition, for any two 4-vectors, AB = BA. 
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Since now the vector product is the usual math construct, we know that the parentheses on the left-hand 
side of this equation may be multiplied as usual. We may also swap the operands and move constant 
factors through products as convenient. As a result, we get 

                          









 pppppppp babbaa 162  .   (9.89) 

 Thanks to the Lorentz invariance of each of the terms, we may calculate it in the reference frame 
we like. For the first two terms on the left-hand side, as well as for the right-hand side term, it is 
beneficial to use the frames in which that particular proton is at rest; as a result, according to Eq. (77b), 
each of the two left-hand-side terms equals (mc)2, while the right-hand side equals 16(mc)2. On the 
contrary, the last term on the left-hand side is more easily evaluated in the lab frame, because in it, the 
three spatial components of the 4-momentum pb vanish, and the scalar product is just the product of the 
scalars E/c for protons a and b. For the latter proton, being at rest, this ratio is just mc so we get a simple 
equation, 

        2min22 )(162)()( mcmc
c

mcmc 
E

,    (9.90) 

immediately giving the final result Emin = 7 mc2, already obtained earlier in two more complex ways. 

Let me hope that this example was a convincing demonstration of the convenience of 
representing 4-vectors in the contravariant (84) and covariant (85) forms,39 with Lorentz-invariant 
norms (86). To be useful for more complex tasks, this formalism should be developed a little bit further. 
In particular, it is crucial to know how the 4-vectors change under the Lorentz transform. For 
contravariant vectors, we already know the answer (54); let us rewrite it in our new notation: 

        


 A'LA  .     (9.91) 

where 
L  is the matrix (51), generally called the mixed Lorentz tensor:40 
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
L ,      (9.92) 

Note that though the position of the indices  and  in the Lorentz tensor notation is not crucial, because 
this tensor is symmetric, it is convenient to place them using the general index balance rule: the 
difference of the numbers of the upper and lower indices should be the same in both parts of any 4-
vector/tensor equality. (You may check that all the formulas above do satisfy this rule.)  

39 These forms are 4-vector extensions of the notions of contravariance and covariance, introduced in the 1850s 
by J. Sylvester (who also introduced the term “matrix” in its mathematical sense) for the description of the change 
of the usual 3-component spatial vectors at the transfer between different reference frames – e.g., resulting from 
the frame rotation. In this case, the contravariance or covariance of a vector is uniquely determined by its nature: 
if the Cartesian coordinates of a vector (such as the non-relativistic velocity v = dr/dt) are transformed similarly to 
the radius-vector r, it is called contravariant, while the vectors (such as f ) that require the reciprocal transform, 
are called covariant. In the 4D Minkowski space, both forms may be used for any 4-vector. 
40 Just as the 4-vectors, 4-tensors with two top indices are called contravariant, and those with two bottom indices, 
are covariant. The tensors with one top and one bottom index are called mixed. 
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 In order to rewrite Eq. (91) in a more general form that would not depend on the particular 
orientation of the coordinate axes (Fig. 1), let us use the contravariant and covariant forms of the 4-
vector of the time-space interval (57), 

             rr dcdtdxdcdtdx  ,,, 
 ;    (9.93) 

then its norm (58) may be represented as41 

     


 dxdxdxdxdrcdtds  222 )()()( .    (9.94) 

Applying Eq. (91) to the first, contravariant form of the 4-vector (93), we get  

       


 dx'Ldx  .     (9.95) 

But with our new shorthand notation, we can also write the usual rule of differentiation of each 
component x, considering it a function (in our case, linear) of four arguments x’, as follows:42 
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
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x
dx


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 .     (9.96) 

Comparing Eqs. (95) and (96), we can rewrite the general Lorentz transform rule (92) in a new form, 
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which does not depend on the coordinate axes’ orientation.  

 It is straightforward to verify that the reciprocal transform may be represented as 

                



 A

x

x'
A'


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 .     (9.97b) 

However, the reciprocal transform has to differ from the direct one only by the sign of the relative 
velocity of the frames, so for the coordinate choice shown in Fig. 1, its matrix is 

41 Another way to write this relation is (ds)2 = g dxdx = gdx dx, where double summation over indices  
and  is implied, and  g  is the so-called metric tensor, 

























1000

0100

0010

0001


 gg , 

which may be used, in particular, to transfer a covariant vector into the corresponding contravariant one 
and back: A = gA,  A = g A

. The metric tensor plays a key role in general relativity, in which it is 
affected by gravity – “curved” by particles’ masses. 
42 Note that in the index balance rule, the top index in the denominator of a fraction is counted as a bottom index 
in the numerator, and vice versa. 
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Since according to Eqs. (84)-(85), covariant 4-vectors differ from the contravariant ones by the sign of 
their spatial components, their direct transform is given by matrix (98). Hence their direct and reciprocal 
transforms may be represented, respectively, as 
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evidently satisfying the index balance rule. (Note that primed quantities are now multiplied, rather than 
divided as in the contravariant case.) As a sanity check, let us apply this formalism to the scalar product 
AA. As Eq. (96) shows, the implicit-sum notation allows us to multiply and divide any equality by the 
same partial differential of a coordinate, so we can write:  
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i.e. the scalar product AA (as well as AA) is Lorentz-invariant, as it should be. 

 Now, let us consider the 4-vectors of derivatives. Here we should be very careful. Consider, for 
example, the following 4-vector operator  
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As was discussed above, the operator is not changed by its multiplication and division by another 
differential, e.g., x’ (with the corresponding implied summation over all four values of ), so 
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But, according to the first of Eqs. (99), this is exactly how the covariant vectors are Lorentz-
transformed! Hence, we have to consider the derivative over a contravariant space-time interval as a 
covariant 4-vector, and vice versa.43 (This result might be also expected from the index balance rule.) In 
particular, this means that the scalar product 
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should be Lorentz-invariant for any legitimate 4-vector. A convenient shorthand for the covariant 
derivative, which complies with  the index balance rule, is 

           


x

,      (9.104) 

43 As was mentioned above, this is also a property of the reference-frame transform of the “usual” 3D vectors. 
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so the invariant scalar product may be written just as A. A similar definition of the contravariant 
derivative, 
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allows us to write the Lorentz-invariant scalar product (103) in any of the following two forms: 
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 Finally, let us see how the general Lorentz transform changes 4-tensors. A second-rank 44 
matrix is a legitimate 4-tensor if the 4-vectors it relates obey the Lorentz transform. For example, if two 
legitimate 4-vectors are related as 
       

 BTA  ,                (9.107)       

we should require that  
      ,

 B'T'A'                 (9.108) 

where A and A’ are related by Eqs. (97), while B and B’, by Eqs. (99). This requirement immediately 
yields 
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with the implied summation over two indices,  and . The rules for the covariant and mixed tensors are 
similar.44 

 

9.5. Maxwell equations in the 4-form 

 This 4-vector formalism background is sufficient to analyze the Lorentz transform of the 
electromagnetic field. Just to warm up, let us consider the continuity equation (4.5), 

       0



j
t


,     (9.110) 

which expresses the electric charge conservation, and as we already know, is compatible with the 
Maxwell equations. If we now define the contravariant and covariant 4-vectors of electric current as 

        ,,,, j cjcj  
 j     (9.111) 

then Eq. (110) may be represented in the form 

              0 


 jj ,     (9.112) 

showing that the continuity equation is form-invariant45 with respect to the Lorentz transform.  

44 It is straightforward to check that transfer between the contravariant and covariant forms of the same tensor 
may be readily achieved using the metric tensor g:  T = gT

 g, T
 = gT g

. 
45 In some texts, the formulas preserving their form at a transform are called “covariant”, creating a possibility for 
confusion with the covariant vectors and tensors. On the other hand, calling such formulas  “invariant” would not 
distinguish them properly from invariant quantities, such as the scalar products of 4-vectors.
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 Of course, such a form-invariance of a relation does not mean that all component values of the 4-
vectors participating in it are the same in both frames. For example, let us have some static charge 
density   in frame 0; then Eq. (97b), applied to the contravariant form of the 4-vector (111), reads 

                  0,0,0,with  , cjj
x

x'
j' 




 




 .    (9.113) 

Using the particular form (98) of the reciprocal Lorentz matrix for the coordinate choice shown in Fig. 
1,  we see that this relation yields 

          0,,  zyx j'j'vcj''  .   (9.114) 

Since the charge velocity, as observed from frame 0’, is (–v), the non-relativistic results would be ’ = 
, j’ = –v. The additional  factor in the relativistic results is caused by the length contraction: dx’ = 
dx/, so to keep the total charge dQ = d3r = dxdydz inside the elementary volume d3r = dxdydz intact, 
 (and hence jx) should increase proportionally. 

 Next, at the end of Chapter 6 we have seen that Maxwell equations for the electromagnetic 
potentials  and A may be represented in similar forms (6.118), under the Lorenz (again, not “Lorentz”, 
please!) gauge condition (6.117). For free space, this condition takes the form 
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A .     (9.115) 

This expression gives us a hint of how to form the 4-vector of electromagnetic potentials:46  
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indeed, this vector satisfies Eq. (115) in its 4-form: 

              0 


 AA .     (9.117) 

 Since this scalar product is Lorentz-invariant, and the derivatives (104)-(105) are legitimate 4-
vectors, this implies that the 4-vector (116) is also legitimate, i.e. obeys the Lorentz transform formulas 
(97), (99). Even more convincing evidence of this fact may be obtained from the Maxwell equations 
(6.118) for the potentials. In free space, they may be rewritten as  
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Using the definition (116), these equations may be merged to one:47 

        �   jA 0 ,     (9.119) 

where � is the d’Alembert operator,48 which may be represented as either of two scalar products: 

46 In the Gaussian units, the scalar potential should not be divided by c in this relation. 
47 In the Gaussian units, the coefficient 0 in Eq. (119) should be replaced, as usual, with 4/c. 
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
 2

2

2

)(ct
,    (9.120) 

and hence is Lorentz-invariant. Because of that, and the fact that the Lorentz transform changes both 4-
vectors A and j in a similar way, Eq. (119) does not depend on the reference frame choice. Thus we 
have arrived at a key point of this chapter: we see that the Maxwell equations are indeed form-invariant 
with respect to the Lorentz transform. As a by-product, the 4-vector form (119) of these equations (for 
potentials) is extremely simple – and beautiful! 

 However, as we have seen in Chapter 7, for many applications the Maxwell equations for the 
field vectors are more convenient; so let us represent them in the 4-form as well. For that, we may 
express all Cartesian components of the usual (3D) field vector vectors (6.7), 
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     (9.121) 

via those of the potential 4-vector A. For example, 
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,   (9.122) 
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Completing similar calculations for other field components (or just generating them by appropriate 
index shifts), we find that the following antisymmetric, contravariant field-strength tensor, 

            AAF  ,     (9.124) 

may be expressed via the field components as follows:49 
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so the covariant form of the tensor is 
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48 Named after Jean-Baptiste le Rond d’Alembert (1717-1783), who has made several pioneering contributions to 
the general theory of waves – see, e.g., CM Chapter 6. (Some older textbooks use notation �2 for this operator.) 
49

 In Gaussian units, this formula, as well as Eq. (131) for G, do not have the factor c in all the denominators. 
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 If Eq. (124) looks a bit too bulky, please note that as a reward, the pair of inhomogeneous 
Maxwell equations, i.e. two equations of the system (6.99), which in free space (D = 0E, B = 0H) may 
be rewritten as 

       j
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B
E

00 )(
,  


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cct

c
c

 ,    (9.126) 

may now be expressed in a very simple (and manifestly form-invariant) way, 

                
  jF 0 ,     (9.127) 

which is comparable with Eq. (119) in its simplicity – and beauty. Somewhat counter-intuitively, the 
pair of homogeneous Maxwell equations of the system (6.99), 
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    (9.128) 

look,  in the 4-vector notation, a bit more complicated:50 

      0  FFF .     (9.129) 

Note, however, that Eqs. (128) may be also represented in a much simpler 4-form, 

         0 
G ,      (9.130) 

using the so-called dual tensor 
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which may be obtained from F, given by Eq. (125a), by the following replacements:  
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 , .     (9.132) 

 Besides the proof of the form-invariance of the Maxwell equations with respect to the Lorentz 
transform, the 4-vector formalism allows us to achieve our initial goal: to find out how the electric and 
magnetic field components change at the transfer between two (inertial!) reference frames. For that, let 
us apply to the tensor F the reciprocal Lorentz transform described by the second of Eqs. (109). 
Generally, it gives, for each field component, a sum of 16 terms, but since (for our choice of 
coordinates, shown in Fig. 1) there are many zeros in the Lorentz transform matrix, and the diagonal 
components of F equal zero as well, the calculations are rather doable. Let us calculate, for example, 
E’x  –cF’01. The only non-zero terms on the right-hand side are 
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50 To be fair, note that just as Eq. (127), Eq. (129) is also a set of four scalar equations – in the latter case with the 
indices , , and   taking any three different values of the set {0, 1, 2, 3}. 
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Repeating the calculation for the other five components of the fields, we get very important relations 
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whose more compact “semi-vector” form is  
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where the indices   and  stand, respectively, for the field components parallel and normal to the 
relative velocity v of the two reference frames. In the non-relativistic limit, the Lorentz factor  tends to 
1, and Eqs. (135) acquire an even simpler form 

                  EvBBB,vEE 
2

1

c
'' .    (9.136) 

 Thus we see that the electric and magnetic fields are transformed to each other even in the first 
order of the v/c ratio. For example, if we fly across the field lines of a uniform, static, purely electric 
field E (e.g., the one in a plane capacitor) we will see not only the electric field’s renormalization (in the 
second order of the v/c ratio), but also a non-zero dc magnetic field B’ perpendicular to both the vector 
E and the vector v, i.e. to the direction of our motion. This is of course what might be expected from the 
relativity principle: from the point of view of the moving observer (which is as legitimate as that of a 
stationary observer), the surface charges of the capacitor’s plates, that create the field E, move back 
creating the dc currents (114), which induce the magnetic field B’. Similarly, motion across a magnetic 
field creates, from the point of view of the moving observer, an electric field. 

 This fact is very important conceptually. One may say there is no such thing in Mother Nature as 
an electric field (or a magnetic field) all by itself. Not only can the electric field induce the magnetic 
field (and vice versa) in dynamics, but even in an apparently static configuration, what exactly we 
measure depends on our speed relative to the field sources – justifying once again the term 
electromagnetism for the field of physics we are studying in this course. 

 Another simple but very important application of Eqs. (134)-(135) is the calculation of the fields 
created by a charged particle moving in free space by inertia, i.e. along a straight line with constant 
velocity u, at the impact parameter51 (the closest distance) b from the observer. Selecting the reference 
frame 0’ to move with the particle in its origin, and the reference frame 0 to reside in the “lab” in which 
the fields E and B are measured, we can use the above formulas with v = u. In this case, the fields E’ 
and B’ may be calculated from, respectively, electro- and magnetostatics: 

       0,
4 3

0

 '
r'

'q
' B
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,     (9.137) 

because in frame 0’, the particle does not move. Selecting the coordinate axes so that at the 
measurement point, x = 0, y = b, z = 0 (Fig. 11a), for this point we may write x’ = –ut’, y’ =  b, z’ = 0, so 
r’ = (u2t’2 + b2)1/2, and the Cartesian components of the fields (137) are: 

51 This term is very popular in the theory of particle scattering – see, e.g., CM Sec. 3.7. 
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 Now using the last of Eqs. (19b) with x = 0, giving t’ = t, and the relations reciprocal to Eqs. 
(134) for the field transform (they are similar to the direct transform but with v replaced with  –v = –u), 
in the lab frame we get  
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 (9.139) 

     yyzyx E
c

u

btu

bq

c

u
E'

c

u
BBB

22/32222
0

22 4
,0,0 










.  (9.140) 

 These results,52 plotted in Fig. 11b in the units of q2/40b
2, reveal two major effects. First, the 

charge passage by the observer generates not only an electric field pulse but also a magnetic field pulse. 
This is natural, because, as was repeatedly discussed in Chapter 5, any charge motion is essentially an 
electric current.53 Second, Eqs. (139)-(140) show that the pulse duration scale is 
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i.e. shrinks to virtually zero as the charge’s velocity u approaches the speed of light. This is of course a 
direct corollary of the relativistic length contraction. Indeed, in the frame 0’ moving with the charge, the 
longitudinal spread of its electric field at distance b from the motion line is of the order of x’ = b. 
When observed from the lab frame 0, this interval, in accordance with Eq. (20), shrinks to x = x’/ = 
b/, and hence so does the pulse duration scale t = x/u = b/u. 

  

52 In the next chapter, we will re-derive them in a different way. 
53 It is straightforward to use Eqs. (140) and the linear superposition principle to calculate, for example, the 
magnetic field of a string of charges moving along the same line and separated by equal distances x = a (so the 
average current, as measured in frame 0, is qu/a), and to show that the time-average of the magnetic field is given 
by the familiar Eq. (5.20) of magnetostatics, with b instead of . 
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9.6. Relativistic particles in electric and magnetic fields 

 Now let us analyze the dynamics of charged particles in electric and magnetic fields. Inspired by 
“our” success in forming the 4-vector (75) of energy-momentum, with the contravariant form 
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where u is the contravariant form of the 4-velocity (63) of the particle,  
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we may notice that the non-relativistic equation of motion, resulting from the Lorentz-force formula 
(5.10) for the three spatial components of p, for a charged particle’s motion in an electromagnetic field, 
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is fully consistent with the following 4-vector equality (which is evidently form-invariant with respect to 
the Lorentz transform): 
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For example, according to Eq. (125), the   = 1 component of this equation reads 
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and similarly for two other spatial components ( = 2 and  = 3). It may look that these expressions 
differ from the 2nd Newton law (144) by an extra factor of . However, plugging into Eq. (146) the 
definition of the proper time interval, d = dt/,  and canceling  in both parts, we recover Eq. (144) 
exactly – for any velocity of the particle! The only caveat is that if u is comparable with c, the vector p 
in Eq. (144) has to be understood as the relativistic momentum (70), proportional to the velocity-
dependent mass M = m  m rather than to the rest mass m. 

 The only remaining general task is to examine the meaning of the 0th component of Eq. (145). 
Let us spell it out: 
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Recalling that p0 = E/c, and using the basic relation d = dt/ again, we see that Eq. (147) looks exactly 
like the non-relativistic relation for the kinetic energy change (what is sometimes called the work-energy 
principle, in our case for the Lorentz force only54): 

54 See, e.g., CM Eq. (1.20) divided by dt, and with dp/dt = F = qE. (As a reminder, the magnetic field cannot 
affect the particle’s energy, because the magnetic component of the Lorentz force is perpendicular to its velocity.) 
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        uE  q
dt

dE
,      (9.148) 

besides that in the relativistic case, the energy has to be taken in the general form (73). 

 Without question, the 4-component equation (145) of the relativistic dynamics is absolutely 
beautiful in its simplicity. However, for the solution of particular problems, Eqs. (144) and (148) are 
frequently more convenient. As an illustration of this point, let us now use these equations to explore 
relativistic effects at charged particle motion in uniform, time-independent electric and magnetic fields. 
In doing that, we will, for the time being, neglect the contributions into the field by the particle itself.55 

 (i) Uniform magnetic field. Let the magnetic field be constant and uniform in the “lab” reference 
frame 0 that is used for measurements. Then in this frame, Eqs. (144) and (148) yield 
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From the second equation, E = const, we get u = const,   u/c = const,   (1 – 2)-1/2 = const, and M  
m = const, so the first of Eqs. (149) may be rewritten as 
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      (9.150) 

where c is the vector directed along the magnetic field B, with the magnitude equal to the following 
cyclotron frequency (sometimes called “gyrofrequency”): 
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Bqc
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qB 2
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

 .     (9.151) 

 If the particle’s initial velocity u0 is perpendicular to the magnetic field, Eq. (150) describes its 
circular motion, with a constant speed u = u0, in a plane normal to B, with the angular velocity (151). In 
the non-relativistic limit u << c, when   1, i.e. M  m, the cyclotron frequency c equals qB/m, i.e. is 
independent of the speed. However, as the kinetic energy of the particle is increased to become 
comparable with its rest energy mc2, the frequency decreases, and in the ultra-relativistic limit,  

                cu
m

qB

p

B
qc  for  ,c .    (9.152) 

 The cyclotron motion’s radius may be calculated as R = u/c; in the non-relativistic limit, it is 
proportional to the particle’s speed, i.e. to the square root of its kinetic energy. However, as Eq. (151) 
shows, in the general case the radius is proportional to the particle’s relativistic momentum rather than 
its speed: 
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,    (9.153) 

so in the ultra-relativistic limit, when p  E/c, R is proportional to the kinetic energy. 

55 As was emphasized earlier in this course, in statics this contribution is formally infinite and has to be ignored. 
In dynamics, this is generally not true; these self-action effects (which are, in most cases, negligible) will be 
discussed in the next chapter. 
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 These dependencies of c and R on energy are the major factors in the design of circular 
accelerators of charged particles. In the simplest of these machines (the cyclotron, invented in 1929 by 
Ernest Orlando Lawrence), the frequency  of the accelerating ac electric field is constant, so even if it 
is tuned to the c of the initially injected particles, the drop of the cyclotron frequency with energy 
eventually violates this tuning. Due to this reason, the largest achievable particle’s speed is limited to 
just ~0.1 c (for protons, corresponding to the kinetic energy of just ~15 MeV). This problem may be 
addressed in several ways. In particular, in synchrotrons (such as Fermilab’s Tevatron and the CERN’s 
Large Hadron Collider, LHC56) the magnetic field is gradually increased in time to compensate for the 
momentum increase (B  p), so both R (148) and c (147) stay constant, enabling proton acceleration to 
energies as high as ~ 7 TeV, i.e. ~2,000 mc2.57 

 Returning to our initial problem, if the particle’s initial velocity has a component u along the 
magnetic field, then it is conserved in time, so the trajectory is a spiral around the magnetic field lines. 
As Eqs. (149) show, in this case, Eq. (150) remains valid but in Eqs. (151) and (153) the full speed and 
momentum have to be replaced with magnitudes of their (also time-conserved) components, u and p,  
normal to B, while the Lorentz factor  in those formulas still includes the full speed of the particle. 

 Finally, in the special case when the particle’s initial velocity is directed exactly along the 
magnetic field’s direction, it continues to move straight along the vector B. In this case, the cyclotron 
frequency still has the non-zero value (151) but does not correspond to any real motion, because R = 0. 

 (ii) Uniform electric field. This problem is (technically) more complex than the previous one 
because in the electric field, the particle’s energy changes. Directing the z-axis along the field E, from 
Eq. (144) we get 

         0,  

dt

d
qE

dt

dpz p
.     (9.154) 

If E does not change in time, the first integration of these equations is elementary, 

             )0(const)(,)0()(   pp tqEtptp zz ,   (9.155) 

but the further integration requires care because the effective mass M = m of the particle depends on its 
full speed u, with 
      222

 uuu z ,      (9.156) 

making the two motions, along and across the field, mutually dependent.   

 If the initial velocity is perpendicular to the field E, i.e. if pz(0) = 0, p(0) = p(0)  p0, the easiest 
way to proceed is to calculate the kinetic energy first: 

                 2/12
0

222
0

222
0

22222 )(   where,)( pcmcqEtctpcmc  EEE . (9.157) 

On the other hand, we can calculate the same energy by integrating Eq. (148), 

56 See https://home.cern/topics/large-hadron-collider. 
57 I am sorry I have no more time/space to discuss particle accelerator physics, and have to refer the 
interested reader to special literature, for example, either S. Lee, Accelerator Physics, 2nd ed., World 
Scientific, 2004, or E. Wilson, An Introduction to Particle Accelerators, Oxford U. Press, 2001. 
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dt

dz
qEq

dt

d
 uE

E
,     (9.158) 

over time, with a simple result: 
                              ,)(0 tqEz EE      (9.159) 

where (just for the notation simplicity) I took z(0) = 0. Requiring Eq. (159) to give the same E 2 as Eq. 
(157), we get a quadratic equation for the function z(t), 

    ,)( 2
0

222
0 tqEzqEtc  EE (9.160) 

 whose solution (with the sign before the square root corresponding to E > 0, i.e. to z  0) is 
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 Now let us find the particle’s trajectory. Directing the x-axis so that the initial velocity vector 
(and hence the velocity vector at any further instant) is within the [x, z] plane, i.e. that y(t) = 0 
identically, we may use Eqs. (155) to calculate the trajectory’s slope, at its arbitrary point, as 
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Now let us use Eq. (160) to express the numerator of this fraction, qEt, as a function of z: 
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Plugging this expression into Eq. (162), we get 
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.    (9.164) 

This differential equation may be readily integrated separating the variables z and x, and using the 
substitution   cosh–1(qEz/E0 +1). Selecting the origin of axis x at the initial point, so x(0) = 0, we 
finally get the trajectory: 
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 This curve is usually called the catenary, but sometimes the “chainette” – because it (with the 
proper constant replacement) describes, in particular, the stationary shape of a heavy uniform chain in a 
uniform gravity field directed along the z-axis. At the initial part of the trajectory, where qEx << cp0(0), 
this expression may be approximated with the first non-zero term of its Taylor expansion in small x, 
giving the following parabola: 
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so if the initial velocity of the particle is much lower than c (i.e.  p0  mu0, E0  mc2), we get the very 
familiar non-relativistic formula: 
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 The generalization of this solution to the case of an arbitrary direction of the particle’s initial 
velocity is left for the reader’s exercise. 

 (iii) Crossed uniform magnetic and electric fields (E  B). In view of the somewhat bulky 
solution of the previous problem (i.e. the particular case of the current problem for B = 0), one might 
think that this problem, with B  0, should be forbiddingly complex for an analytical solution. Counter-
intuitively, this is not the case, due to the help from the field transform relations (135). Let us consider 
two possible cases. 

 Case 1: E/c < B. Let us consider an inertial reference frame 0’ moving (relatively the “lab” 
reference frame 0 in that the fields E and B are measured) with the following velocity: 

         
2B

BE
v


 ,      (9.168) 

and hence the speed v = c(E/c)/B < c. Selecting the coordinate axes as shown in Fig. 12, so 

   BBBBEEEE zyxzyx  ,0,0;0,,0 ,   (9.169) 

we see that the Cartesian components of this velocity are vx = v, vy = vz = 0.  

 

  

 

 

 

 
 
 Since this choice of the coordinates complies with the one used to derive Eqs. (134), we can 
readily use that simple form of the Lorentz transform to calculate the field components in the moving 
reference frame: 
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where the Lorentz parameter   (1 – v2/c2)-1/2 corresponds to the velocity (168) rather than that of the 
particle. These relations show that in this special reference frame, the particle only “sees” the re-
normalized uniform magnetic field B’  B, parallel to the initial field, i.e. normal to the velocity (168). 
Using the result of the above case (i), we see that in this frame the particle moves along either a circle or 
a spiral winding about the direction of the magnetic field, with the angular velocity (151): 

0
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Fig. 9.12. Particle’s trajectory in 
crossed electric and magnetic fields 
(at E/c < B). 
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and the radius (153): 

          
qB'

p'
R'  .      (9.173) 

 Hence in the lab frame, the particle performs this orbital/spiral motion plus a “drift” with the 
constant velocity v (Fig. 12). As a result, the lab-frame trajectory of the particle (or rather its projection 
onto the plane normal to the magnetic field) is a trochoid-like curve58 that, depending on the initial 
velocity, may be either prolate (self-crossing), as in Fig. 12, or curtate (drift-stretched so much that it is 
not self-crossing).  

 Such looped motion of electrons is used, in particular, in magnetrons – very popular generators 
of microwave radiation. In such a device (Fig. 13), the magnetic field, usually created by specially-
shaped permanent magnets, is nearly uniform (in the region of electron motion) and directed along the 
magnetron’s axis (in Fig. 13, normal to the plane of the drawing), while the electric field of magnitude E 
<< cB, created by the dc voltage applied between the anode and the cathode, is virtually radial.  

 

 

 

 

 

 

 

 

 

 As a result, the above simple theory is only approximately valid, and the electron trajectories are 
close to epicycloids rather than trochoids. The applied electric field is adjusted so that these looped 
trajectories pass close to the anode’s surface, and hence to the gap openings of the cylindrical 
microwave cavities drilled in the anode’s bulk. The fundamental mode of such a cavity is quasi-lumped, 
with the cylindrical walls working mostly as inductances, and the gap openings as capacitances, with the 
microwave electric field concentrated in these openings. This is why the mode is strongly coupled to the 
electrons “licking” the anode’s surface, and their interaction creates large positive feedback (equivalent 
to negative damping), which results in intensive microwave self-oscillations at the cavities’ own 
frequency.59 The oscillation energy, of course, is taken from the dc-field-accelerated electrons; due to 
this energy loss, the looped trajectory of each electron gradually moves closer to the anode and finally 

58 As a reminder, a trochoid may be described as the trajectory of a point on a rigid disk rolled along a straight 
line. It’s canonical parametric representation is x =  + acos , y = asin . (For a > 1, the trochoid is prolate, if a 
< 1, it is curtate, and if a = 1, it is called the cycloid.) Note, however, that for our problem, the trajectory in the lab 
frame is exactly trochoidal only in the non-relativistic limit v << c (i.e. E/c << B).  
59 See, e.g., CM Sec. 5.4. 

Fig. 9.13. Schematic cross-section of a typical 
magnetron. (Figure adapted from 
https://en.wikipedia.org/wiki/Cavity_magnetron 
under the Free GNU Documentation License.) 
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lands on its surface. The wide use of such generators (in particular, in microwave ovens, which operate 
in a narrow frequency band around 2.45 GHz, allocated for these devices to avoid their interference with 
wireless communication systems) is due to their simplicity and high (up to 65%) efficiency of the dc-to-
rf energy transfer. 

 Case 2: E/c > B. In this case, the speed given by Eq. (168) would be above the speed of light, so 
let us introduce a reference frame moving with a different velocity, 

        
 2/ cE

BE
v


 ,      (9.174) 

whose direction is the same as before (Fig. 12), and magnitude v = cB/(E/c) is again below c. A 
calculation absolutely similar to the one performed above for Case 1, yields 
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so in the moving frame the particle “sees” only the electric field E’  E. According to the solution of our 
previous problem (ii), the trajectory of the particle in the moving frame is the catenary (165), so in the 
lab frame it has an “open”, hyperbolic character as well. 

 To conclude this section, let me note that if the electric and magnetic fields are nonuniform, the 
particle motion may be much more complex, and in most cases, the integration of the system of 
equations (144) and (148) may be carried out only numerically. However, if the field’s nonuniformity is 
small, approximate analytical methods may be very effective. For example, if E = 0, and the magnetic 
field has a small transverse  gradient B in a direction normal to the vector B itself, such that 

      
RB

B 1
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 ,     (9.177) 

where R is the cyclotron radius  (153), then it is straightforward to use Eq. (150) to show60 that the 
cyclotron orbit drifts perpendicular to both B and B, with the drift speed  
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 The physics of this drift is rather simple: according to Eq. (153), the instant curvature of the 
cyclotron orbit is proportional to the local value of the field. Hence if the field is nonuniform, the 
trajectory bends slightly more on its parts passing through a stronger field, thus acquiring a shape close 
to a curate trochoid. 

 For experimental physics and engineering practice, the effects of longitudinal gradients of 
magnetic field on the charged particle motion are much more important, but it is more convenient for me 
to postpone their discussion until we have developed a little bit more analytical tools in the next section. 

 

60 See, e.g., Sec. 12.4 in J. Jackson, Classical Electrodynamics, 3rd ed., Wiley, 1999. 
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9.7. Analytical mechanics of charged particles 

 The general Eq. (145) gives a full description of relativistic particle dynamics in electric and 
magnetic fields, just as the 2nd Newton law (1) does it in the non-relativistic limit. However, we know 
that in the latter case, the Lagrange formalism of analytical mechanics allows an easier solution of many 
problems.61 We can expect that to be true in relativistic mechanics as well, so let us expand the analysis 
of Sec. 3 (which was valid only for free particles) to particles in the field.  

 For a free particle, our main result was Eq. (68), which may be rewritten as 

        2mcL ,      (9.179) 

with   (1 – u2/c2)-1/2, showing that the product on the left-hand side is Lorentz-invariant. How can the 
electromagnetic field affect this relation? In non-relativistic electrostatics, we could write 

            qTUT L .     (9.180) 

However, in relativity, the scalar potential  is just one component of the potential 4-vector (116). The 
only way to get from this full 4-vector a Lorentz-invariant contribution to L, which would be also 
proportional to the first power of the particle’s velocity (to account for the magnetic component of the 
Lorentz force), is evidently 
       

 Aumc  const2L ,     (9.181) 

where u is the 4-velocity (63). To comply with Eq. (180) at u << c, the constant factor should be equal 
to (–q), so Eq. (181) becomes 
           

 Aqumc  2L ,     (9.182) 

and with the account of Eqs. (63) and the second of Eqs. (116), we get very important equality 
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whose Cartesian form is 
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 Let us see whether this relation (which admittedly was derived by an educated guess rather than 
by a strict derivation) passes a natural sanity check. For the case of an unconstrained motion of a 
particle, we can select its three Cartesian coordinates rj (j = 1, 2, 3) as the generalized coordinates, and 
its linear velocity components uj as the corresponding generalized velocities. In this case, the Lagrange 
equations of motion are  
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For example, for r1 = x, Eq. (184) yields 
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61 See, e.g., CM Sec. 2.2 and on. 
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so Eq. (185) takes the form 
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 In the equations of motion, the field values have to be taken at the instant position of the particle, 
so the last (full) derivative has components due to both the actual field’s change (at a fixed point of 
space) and the particle’s motion. Such addition is described by the so-called convective derivative62 
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Spelling out both scalar products, we may group the terms remaining after cancellations as follows: 
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But taking into account the relations (121) between the electric and magnetic fields and potentials, this 
expression is nothing more than 

        xyzzyx
x qBuBuEq

dt

dp
BuE  ,    (9.190) 

i.e. the x-component of Eq. (144). Since other Cartesian coordinates participate in Eq. (184) similarly, it 
is evident that the Lagrangian equations of motion along other coordinates yield other components of 
the same vector equation of motion. 

 So, Eq. (183) does indeed give the correct Lagrangian function, and we can use it for further 
analysis, in particular to discuss the first of Eqs. (186). This relation shows that in the electromagnetic 
field, the generalized momentum corresponding to the particle’s coordinate x is not px = mux, but63  
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Thus, as was already discussed (at that point, without proof) in Sec. 6.4, the particle’s motion in a 
magnetic field may be is described by two different linear momentum vectors: the kinetic momentum p 
defined by Eq. (70), and the canonical (or “conjugate”) momentum64 

        ApP q .      (9.192) 

 In order to facilitate discussion of this notion, let us generalize Eq. (72) for the Hamiltonian 
function H  of a free particle to the case of a particle in the field: 
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62 Alternatively called the “Lagrangian derivative”; for its (rather simple) derivation see, e.g., CM Sec. 8.3. 
63 With regrets, I have to use for the generalized momentum the same (very common) notation as was used earlier 
in the course for the electric polarization – which will not be discussed here and in the balance of these notes. 
64 In the Gaussian units, Eq. (192) has the form  P = p + qA/c. 
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Merging the first two terms of the last expression exactly as it was done in Eq. (72), we get an extremely 
simple result, 
                 qmc  2H ,             (9.194a) 
which may be spelled out as            
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 These expressions may leave the reader wondering: where is the vector potential A here – and 
the magnetic field effects it has to describe? The resolution of this puzzle is easy: as we know from 
analytical mechanics,65 for most applications, for example for an alternative derivation of the equations 
of motion, H  has to be represented as a function of the particle’s generalized coordinates (in the case of 
unconstrained motion, these may be the Cartesian components of the vector r that serves as an argument 
for the potentials A and ), and the generalized momenta, i.e. the components of the vector P – 
generally, plus time. For that, the kinematic momentum p in Eq. (194b) has to be expressed via these 
variables. This may be done using Eq. (192), giving us the following generalization of Eq. (78):66 

                                .)()()( 22222 AP qcmcq  H     (9.195) 

 It is straightforward to verify that the Hamilton equations of motion for three Cartesian 
coordinates of the particle, obtained in a regular way from this H, may be merged into the same vector 
equation (144). In the non-relativistic limit, performing the expansion of Eqs. (194b) into the Taylor 
series in p2, and limiting it to two leading terms, we get the following generalization of Eq. (74):  

          qUUq
m

mcq
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p
mc  with  ,)(
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  i.e.,

2
22

2
2 APHH . (9.196) 

 These expressions for H, and Eq. (183) for L, give a clear view of the electromagnetic field 
effects’ description in analytical mechanics. The electric part qE of the total Lorentz force can perform 
mechanical work on the particle, i.e. change its kinetic energy – see Eq. (148) and its discussion. As a 
result, the scalar potential , whose gradient gives a contribution to E, may be directly associated with 
the potential energy U = q of the particle. On the contrary, the magnetic component quB of the 
Lorentz force is always perpendicular to the particle’s velocity u, and cannot perform a non-zero work 
on it, and as a result, cannot be described by a contribution to U. However, if A did not participate in the 
functions L and/or H at all, the analytical mechanics would be unable to describe effects of the 
magnetic field B = A on the particle’s motion. The relations (183) and (195)-(196) show the 
wonderful way in which physics (with some help from Mother Nature herself :-) solves this problem: 
the vector potential gives such contributions to the functions L  and H  that cannot be uniquely 
attributed to either kinetic or potential energy, but ensure both the Lagrange and Hamilton formalisms 
yield the correct equation of motion (144) – including the magnetic field effects. 

65 See, e.g., CM Sec. 10.1. 
66 Alternatively, this relation may be obtained from the expression for the Lorentz-invariant norm, pp = (mc)2, 
of the 4-momentum (75), p = {E/c, p} = {(H – q)/c, P – qA}. 
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 I believe I still owe the reader some discussion of the physical sense of the canonical momentum 
P. For that, let us consider a charged particle moving near a region of localized magnetic field B(r,t), but 
not entering this region (see Fig. 14), so on its trajectory A  B  = 0. 

 

 

 

 

 

 If there is no electrostatic field affecting the particle (i.e. no other electric charges nearby), we 
may select such a local gauge that (r, t) = 0 and A = A(t), so Eq. (144) is reduced to 

              
dt

d
qq

dt

d A
E

p
 ,     (9.197) 

and Eq. (192) immediately gives 

            0
dt

d
q

dt

d

dt

d ApP
.     (9.198) 

Hence, even if the magnetic field is changed in time, so that the induced electric field E does accelerate 
the particle, its canonical momentum does not change. Hence P is a variable more stable to magnetic 
field changes than its kinetic counterpart p. This conclusion may be criticized because it relies on a 
specific gauge, and generally P  p + qA is not gauge–invariant, because the vector potential A is not.67 
However, as was already discussed in Sec. 5.3, the integral Adr over a closed contour is gauge-
invariant and is equal to the magnetic flux  through the area limited by the contour – see Eq. (5.65). 
So, integrating Eq. (197) over a closed trajectory of a particle (Fig. 14), and over the time of one orbit, 
we get 

     0Δ that  so,ΔΦΔ  
CC

dqd rPrp ,    (9.199) 

where  is the change of flux during that time. This gauge-invariant result confirms the above 
conclusion about the stability of the canonical momentum to magnetic field variations. 

 Generally, Eq. (199) is invalid if a particle moves inside a magnetic field and/or changes its 
trajectory at the field variation. However, if the field is almost uniform, i.e. its gradient is small in the 
sense of Eq. (177), this result is (approximately) applicable. Indeed, analytical mechanics68 tells us that 
for any canonical coordinate-momentum pair {qj, pj}, the corresponding action variable, 

               jjj dqpJ
2
1

,     (9.200) 

remains virtually constant at slow variations of motion conditions. According to Eq. (191), for a particle 
in a magnetic field, the generalized momentum corresponding to the Cartesian coordinate rj is Pj rather 
than pj. Thus forming the net action variable J  Jx + Jy + Jz , we may write 

67 In contrast, the kinetic momentum p = Mu is evidently gauge- (though not Lorentz-) invariant. 
68 See, e.g., CM Sec. 10.2. 
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Fig. 9.14. Particle’s motion around a localized 
magnetic field with a time-dependent flux. 
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         constΦ2   qddJ rprP .    (9.201) 

 Let us apply this relation to the motion of a non-relativistic particle in an almost uniform 
magnetic field, with a relatively small longitudinal velocity, u / u  0  – see Fig. 15.  

  

  

 

 

 

 

 In this case,  in Eq. (201) is the flux encircled by the particle’s cyclotron orbit,  = –R2B, 
where R is its radius given by Eq. (153), and the negative sign accounts for the fact that in our case, the 
“correct” direction of the normal vector n in the definition of flux,  = Bnd2r, is antiparallel to the 
vector B. At u << c, the kinetic momentum is just p = mu, while Eq. (153) yields 

          qBRmu  .     (9.202) 

Plugging these relations into Eq. (201), we get 

      qBRqBRqR
m

qRB
mBRqRmuJ 222 )12(222  .  (9.203) 

This means that even if the circular orbit slowly moves through the magnetic field, the flux encircled by 
the cyclotron orbit should remain virtually constant. One manifestation of this effect is the result already 
mentioned at the end of Sec. 6: if a small gradient of the magnetic field is perpendicular to the field 
itself, then the particle orbit’s drift direction is perpendicular to B, so  stays constant.  

 Now let us analyze the case of a small longitudinal gradient, B B (Fig. 15). If a small initial 
longitudinal velocity u  is directed toward the higher field region, the cyclotron orbit has to gradually 
shrink to keep  constant. Rewriting Eq. (202) as 

         
R

q
R

BR
qmu


 



2

,     (9.204) 

we see that this reduction of R (at constant ) increases the orbiting speed u. But since the magnetic 
field cannot perform any work on the particle, its kinetic energy, 

                 22

2 


uu
m

E ,     (9.205) 

should stay constant, so the longitudinal velocity u  has to decrease. Hence eventually the orbit’s drift 
has to stop, and then it has to start moving back toward the region of lower fields, being essentially 
repulsed from the high-field region. This effect is very important, in particular, for plasma confinement 
systems. In the simplest of such systems, two coaxial magnetic coils, inducing magnetic fields of the 
same direction (Fig. 16), naturally form a “magnetic bottle”, which traps charged particles injected, with 
sufficiently low longitudinal velocities, into the region between the coils. More complex systems of this 

B
R

u

u
Fig. 9.15. Particle in a magnetic field with 
a small longitudinal gradient B  B. 
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type, but working on the same basic principle, are the most essential components of the persisting large-
scale efforts to achieve controllable nuclear fusion.69 

 

 

 

 

 
 Returning to the constancy of the magnetic flux encircled by free particles, it reminds us of the 
Meissner-Ochsenfeld effect, which was discussed in Sec. 6.4, and gives a motivation for a brief revisit 
of the electrodynamics of superconductivity. As was emphasized in that section, superconductivity is a 
substantially quantum phenomenon; nevertheless, the classical notion of the conjugate momentum P 
helps to understand its theoretical description. Indeed, the general rule of quantization of physical 
systems70 is that each canonical pair {qj, pj} of a generalized coordinate qj and the corresponding 
generalized momentum pj is described by quantum-mechanical operators that obey the following 
commutation relation: 
        jj'j'j ipq ˆ,ˆ .     (9.206) 

According to Eq. (191), for the Cartesian coordinates rj of a particle in the magnetic field, the 
corresponding generalized momenta are Pj, so their operators should obey the similar commutation 
relations: 

        jj'j'j iPr ˆ,ˆ .     (9.207) 

 In the coordinate representation of quantum mechanics, the canonical operators of the Cartesian 
components of the linear momentum are described by the corresponding components of the vector 
operator –i. As a result, ignoring the rest energy mc2 (which gives an inconsequential phase factor 
exp{–imc2t/} in the wavefunction), we can use Eq. (196) to rewrite the usual non-relativistic 
Schrödinger equation, 

      
Ĥ




t
i ,      (9.208) 

as follows: 
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 Thus, I believe I have finally delivered on my promise to justify the replacement (6.50), which 
had been used in Secs. 6.4 and 6.5 to discuss the electrodynamics of superconductors, including the 
Meissner-Ochsenfeld effect. The Schrödinger equation (209) may be also used as the basis for the 
quantum-mechanical description of other magnetic field phenomena, including the so-called Aharonov-
Bohm and quantum Hall effects – see, e.g., QM Secs. 3.1-3.2. 

69 For further reading on this technology, the reader may be referred, for example, to the simple monograph by F. 
Chen, Introduction to Plasma Physics and Controllable Fusion, vol. 1, 2nd ed., Springer, 1984, and/or the 
graduate-level theoretical treatment by R. Hazeltine and J. Meiss, Plasma Confinement, Dover, 2003. 
70 See, e.g., CM Sec. 10.1. 
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Fig. 9.16. A simple magnetic bottle (schematically). 
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9.8. Analytical mechanics of the electromagnetic field 

 We have just seen that the analytical mechanics of a particle in an electromagnetic field may be 
used to get some important results. The same is true for the analytical mechanics of the electromagnetic 
field as such, and the field-particle system as a whole. For such space-distributed systems as fields, 
governed by local dynamics laws (in our case, the Maxwell equations), we need to apply analytical 
mechanics to the local densities l and h of the Lagrangian and Hamiltonian functions, defined by 
relations 

           rdrd 33 , hHlL .     (9.210) 

 Let us start, as usual, from the Lagrange formalism. Some clues on the possible structure of the 
Lagrangian function density l may be obtained from that of the particle-field interaction description in 
this formalism, discussed in the last section. As we have seen, for the case of a single particle, the 
interaction is described by the last two terms of Eq. (183): 

             Au  qqintL .     (9.211) 

Obviously, if the charge q is continuously distributed over some volume, we may represent this Lint as a 
volume integral of the following Lagrangian function density: 

        
 Aj Ajintl .     (9.212) 

 Notice that this density (in contrast to Lint itself!) is Lorentz-invariant. (This is due to the 
contraction of the longitudinal coordinate, and hence volume, at the Lorentz transform.) Hence we may 
expect the density of the field’s part of the Lagrangian to be Lorentz-invariant as well. Moreover, given 
the local structure of the Maxwell equations (containing only the first spatial and temporal derivatives of 
the fields), l field should be a function of the potential’s 4-vector and its 4-derivative: 

           


 AA  ,fieldfield ll .     (9.213) 

Also, the density should be selected in such a way that the 4-vector analog of the Lagrangian equation of 
motion, 

            0fieldfield 







 


 AA

ll
,     (9.214) 

gave us the correct inhomogeneous Maxwell equations (127).71 The field part lfield of the total 
Lagrangian density l should be a scalar and a quadratic form of the field strengths, i.e. of the tensor F, 
so the natural choice is 
             

 FF constfieldl .     (9.215) 

with the implied summation over both indices. Indeed, adding to this expression the interaction 
Lagrangian (212), 
        




 AjFF  constintfield lll ,    (9.216) 

71 Here the implicit summation over the index  plays a role similar to the convective derivative (188) in 
replacing the full derivative over time, in a way that reflects the symmetry of time and space in special relativity. I 
do not want to spend more time justifying Eq. (214), because of the reasons that will be clear imminently.  
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and performing the differentiations, we see that Eqs. (214)-(215) indeed yield Eqs. (127), provided that 
the constant factor equals (-1/40).72 So, the field’s Lagrangian density is 
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where ue is the electric field energy density (1.65), and um is the magnetic field energy density (5.57). 
Let me hope the reader agrees that Eq. (217) is a wonderful result because the Lagrangian function has a 
structure absolutely similar to the well-known expression L  = T – U of classical mechanics. So, for the 
field alone, the “potential” and “kinetic” energies are separable again.73  

Now let us explore whether we can calculate the 4-form of the field’s Hamiltonian function H. 
In the generic analytical mechanics,   
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.     (9.218) 

However, just as for the Lagrangian function, for a field we should find the spatial density h of the 
Hamiltonian, defined by the second of Eqs. (210), for which the natural 4-form of Eq. (218) is 
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Calculated for the field alone, i.e. using Eq. (217) for l, this definition yields 

               ,field
  Dh      (9.220) 

where the tensor  
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is gauge-invariant, while the remaining term, 
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is not, so it cannot correspond to any measurable variables. Fortunately, it is straightforward to verify 
that the last tensor may be represented in the form 
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and as a result, obeys the following relations:  

                    ,0,0 30 rdDD


      (9.224) 

72 In the Gaussian units, this coefficient is (-1/16). 
73 Since the Lagrange equations of motion are homogeneous, the simultaneous change of the signs of T and U 
does not change them. Thus, it is not important which of the two energy densities, ue or um, we count as the 
potential energy, and which as the kinetic energy. (Actually, such duality of the two energy components is typical 
for all analytical mechanics – see, e.g., the discussion of this issue in CM Sec. 2.2.) 
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so it does not interfere with the conservation properties of the gauge-invariant, symmetric energy-
momentum tensor (also called the symmetric stress tensor) , to be discussed below. 

 Let us use Eqs. (125) to express the elements of the latter tensor via the electric and magnetic 
fields. For   =  = 0, we get 
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i.e. the expression for the total energy density u – see Eq. (6.113). The other 3 elements of the same 
row/column turn out to be just the Cartesian components of the Poynting vector (6.114), divided by c: 
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The remaining 9 elements jj’ of the tensor, with j,  j’ = 1, 2, 3, are usually represented as 
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where (M) is the so-called Maxwell stress tensor: 
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so the whole symmetric energy-momentum tensor (221) may be conveniently represented in the 
following symbolic way: 
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 The physical meaning of this tensor may be revealed in the following way. Considering Eq. 
(221) as the definition of the tensor ,74 and using the 4-vector form of Maxwell equations given by 
Eqs. (127) and (129), it is straightforward to verify an extremely simple result for the 4-derivative of the 
symmetric tensor: 
               


 jF .     (9.230) 

This expression is valid in the presence of electromagnetic field sources, e.g., for any system of charged 
particles and the fields they have created. Of these four equations (for four values of the index ), the 
temporal one (with  = 0) may be simply expressed via the energy density (225) and the Poynting vector 
(226): 
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while three spatial equations (with  = j = 1, 2, 3) may be represented in the form 

74 In this way, we are using Eq. (219) just as a useful guess, which has led us to the definition of , and may 
leave its strict justification for more in-depth field theory courses.  
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 If integrated over a volume V limited by surface S, with the account of the divergence theorem, 
Eq. (231) returns us to the Poynting theorem (6.111): 
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while Eq. (232) yields75 
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where dAj = njdA = njd
2r is the jth component of the elementary area vector dA = ndA = nd2r that is 

normal to the volume’s surface, and directed out of the volume – see Fig.  17.76 

 

 

 

 

 

 

 

 Since, according to Eq. (5.10), the vector f in Eq. (234) is nothing other than the density of 
volume-distributed Lorentz forces exerted by the field on the charged particles, we can use the 2nd 
Newton law, in its relativistic form (144), to rewrite Eq. (234), for a stationary volume V, as 

         Fp
S









 part

3
2

V

rd
cdt

d
,     (9.235) 

where ppart is the total mechanical (relativistic) momentum of all particles in the volume V, and the 
vector F is defined by its Cartesian components: 
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 Relations (235)-(236) are our main new results. The first of them shows that the vector 

75 Just like the Poynting theorem (233), Eq. (234) may be obtained directly from the Maxwell equations, without 
resorting to the 4-vector formalism – see, e.g., Sec. 8.2.2 in D. Griffiths, Introduction to Electrodynamics, 3rd ed., 
Prentice-Hall, 1999. However, the derivation discussed above is superior because it shows the wonderful unity 
between the laws of conservation of energy and momentum.
76 The same notions are used in the mechanical stress theory – see, e.g., CM Sec. 7.2. 

Fig. 9.17. The force dF exerted on a boundary 
element dA of the volume V occupied by the field. 
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2c

S
g  ,      (9.237) 

already discussed in Sec. 6.8 without derivation, may be indeed interpreted as the density of momentum 
of the electromagnetic field (per unit volume). This classical relation is consistent with the quantum-
mechanical picture of photons as ultra-relativistic particles, with a momentum of magnitude E/c, because 
then the flux of the momentum carried by photons through a unit normal area per unit time may be 
represented either as Sn/c or as gnc. It also allows us to revisit the Poynting vector paradox that was 
discussed in Sec. 6.8 – see Fig. 611 and its discussion. As was emphasized in that discussion, in this 
case, the vector S = EH does not correspond to any measurable energy flow. However, the 
corresponding momentum of the field, equal to the integral of the density (237) over a volume of 
interest,77 is not only real but may be measured by the recoil impulse it gives to the field sources – say, 
to the magnetic coil inducing the field H, or to the capacitor plates creating the field E.  

 Now let us turn to our second result, Eq. (236). It tells us that the 33-element Maxwell stress 
tensor complies with the general definition of the stress tensor78 characterizing the forces exerted on the 
boundaries of a volume, in our current case the volume occupied by the electromagnetic field (Fig. 17). 
Let us use this important result to analyze two simple examples of static fields. 

 (i) Electrostatic field’s effect on a perfect conductor. Since Eq. (235) has been derived for a free 
space region, we have to select volume V outside the conductor, but we may align one of its faces with 
the conductor’s surface (Fig. 18).  

 

 

 

 

 

  

 From Chapter 2, we know that the electrostatic field just outside the conductor’s surface has to 
be normal to it. Selecting the z-axis in this direction, we have Ex = Ey =0, Ez = E, so only diagonal 
elements of the tensor (228) are not equal to zero:  

       20)M(20)M()M(

2
,

2
EE zzyyxx





  ,    (9.238) 

Since the elementary surface area vector has just one non-zero component, dAz, according to Eq. (236), 
only the last component (that is positive regardless of the sign of E) gives a contribution to the surface 
force F. We see that the force exerted by the conductor (and eventually by the external forces that hold 
the conductor in its equilibrium position) on the field is normal to the conductor and directed out of the 
field volume: dFz  0. Hence, by the 3rd Newton law, the force exerted by the field on the conductor’s 
surface is directed toward the field-filled space: 

77 It is sometimes called hidden momentum. 
78 See, e.g., CM Sec. 7.2. 
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Fig. 9.18. The electrostatic field 
near a conductor’s surface.
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      dAEdFdF z
20

surface 2


 .    (9.239) 

 This important result could be obtained by simpler means as well. (Actually, this was the task of 
one of the exercise problems assigned in Chapter 2.) For example, one could argue, quite convincingly, 
that the local relation between the force and the field should not depend on the global configuration 
creating the field, and thus consider the simplest configuration, a planar capacitor (see, e.g. Fig. 2.3) 
with surfaces of both plates charged by equal and opposite charges of density  = 0E. According to 
the Coulomb law, the charges should attract each other, pulling each plate toward the field region, so the 
Maxwell-tensor result gives the correct direction of the force. Now the force’s magnitude given by Eq. 
(239) may be verified either by the direct integration of the Coulomb law or by the following simple 
reasoning. In the plane capacitor, the inner field Ez = /0 is equally contributed by two surface charges; 
hence the field created by the negative charge of the counterpart plate (not shown in Fig. 18) is E- = –
/20, and the force it exerts of the elementary surface charge dQ = dA of the positively charged plate 
is dFsurface = EdQ = –2dA/20 = 0E

2dA/2, in accordance with Eq. (239).79 

 Quantitatively, even for such a high electric field as E = 105 V/m (close to the electric 
breakdown’s threshold in the air at a frequency of 10 GHz80), the “negative pressure” (dF/dA) given by 
Eq. (239) is of the order of 0.05 Pa (N/m2), i.e. many orders below the ambient atmospheric pressure  of 
1 bar  105 Pa. Still, this negative pressure may be substantial (well above 1 bar) in some cases, for 
example in good dielectrics (such as the high-quality SiO2 grown at high temperature, which is broadly 
used in integrated circuits), which can withstand electric fields up to ~109 V/m. 

 (ii) Static magnetic field’s effect on its source81 – say a solenoid’s wall or a superconductor’s 
surface (Fig. 19). With the Cartesian coordinates’ choice shown in that figure, we have Bx = B, By = Bz = 
0, so the Maxwell stress tensor (228) is diagonal again: 

    2

0

)M()M(2

0

)M(

2

1
,

2

1
BB zzyyxx 




  .    (9.240) 

However, since for this geometry, only dAz differs from 0 in Eq. (236), the sign of the resulting force is 
opposite to that in electrostatics: dFz  0, and the force exerted by the magnetic field upon the 
conductor’s surface, 

                 dABdFdF z
2

0
surface 2

1


 ,    (9.241) 

79 By the way, repeating these arguments for a plane capacitor filled with a linear dielectric, we may 
readily see that Eq. (239) may be generalized for this case by replacing 0 with . A similar replacement 
(0  ) is valid for Eq. (241) in a linear magnetic medium. 
80 Note that the breakdown field Et in is a strong function of frequency. In the ambient air, it drops from its dc 
value of ~3106 V/m to ~1.5105 V/m at microwave frequencies and then rises to as much as ~6109 V/m at 
optical frequencies. The reason of the rise is that at very high frequencies, the amplitude of the field-induced 
oscillations of the rare free electrons becomes much smaller than their mean free path, inhibiting the bulk impact-
ionization of neutral atoms. (Because of this reason, Et also depends on the air’s pressure.) 
81 The causal relation is not important here. Especially in the case of a superconductor, the magnetic field may be 
induced by another source, with the surface supercurrent j just shielding the superconductor’s bulk from its 
penetration – see Sec. 6. 
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corresponds to positive pressure. For good laboratory magnets (B ~ 10 T), this pressure is of the order of 
4107 Pa  400 bars, i.e. is very substantial, so the magnets require solid mechanical design. 

  

 

 

 

 

 
 The direction of the force (241) could be also readily predicted using elementary magnetostatics 
arguments. Indeed, we can imagine the magnetic field volume limited by another, parallel wall with the 
opposite direction of surface current. According to the starting point of magnetostatics, Eq. (5.1), such 
surface currents of opposite directions have to repulse each other – doing that via the magnetic field. 

 Another explanation of the fundamental sign difference between the electric and magnetic field 
pressures may be provided using the electric circuit language. As we know from Chapter 2, the potential 
energy of the electric field stored in a capacitor may be represented in two equivalent forms, 

               
C

QCV
U

22

22

e  .     (9.242) 

Similarly, the magnetic field energy of an inductive coil is 

                
L

LI
U

22

22

m


 .     (9.243) 

If we do not want to consider the work of external sources at a virtual change of the system dimensions, 
we should use the last forms of these relations, i.e. consider a galvanically detached capacitor (Q = 
const) and an externally-shorted inductance (  = const).82 Now if we let the electric field forces (239) 
drag the capacitor’s plates in the direction they “want”, i.e. toward each other, this would lead to a 
reduction of the capacitor thickness, and hence to an increase of its capacitance C, and hence to a 
decrease of Ue. Similarly, for a solenoid, allowing the positive pressure (241) to move its walls from 
each other would lead to an increase of the solenoid’s volume, and hence of its inductance L, so the 
potential energy Um would be also reduced – as it should be. It is remarkable (actually, beautiful!) how 
the local field formulas (239) and (241) “know” about these global circumstances. 

 Finally, let us see whether the major results (237) and (241) obtained in this section, match each 
other. For that, let us return to the normal incidence of a plane, monochromatic wave from the free space 
upon the plane surface of a perfect conductor (see, e.g., Fig. 7.8 and its discussion), and use those results 
to calculate the time average of the pressure dFsurface/dA imposed by the wave on the surface. At elastic 
reflection from the conductor’s surface, the electromagnetic field’s momentum retains its amplitude but 
reverses its sign, so the average momentum transferred to a unit area of the surface in a unit time (i.e. 
the average pressure) is  

82 Of course, this condition may hold “forever” only for solenoids with superconducting wiring, but even in 
normal-metal solenoids with practicable inductances, the flux relaxation constants L/R may be rather large 
(practically, up to a few minutes), quite sufficient to carry out the force measurement.  

Fig. 9.19. The magnetostatic field near 
a current-carrying surface. 
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where E and H are complex amplitudes of the incident wave. Using the relation (7.7) between these 
amplitudes (for  = 0 and  = 0 giving E = cB), we get 
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 BB

cB
cdA

dF
 .    (9.245) 

 On the other hand, as was discussed in Sec. 7.3, at the surface of a perfect mirror the electric 
field vanishes while the magnetic field doubles, so we can use Eq. (241) with B  B(t) = 2Re[Bexp{-
it}]. Averaging the pressure given by Eq. (241) over time, we get 

          
0

2
2

0

surface Re2
2

1





 B

eB
dA

dF ti   ,    (9.246) 

i.e. the same result as Eq. (245). 

 For physics intuition development, it is useful to evaluate the electromagnetic radiation pressure. 
Even for a relatively high wave intensity Sn of 1 kW/m2 (close to that of the direct sunlight at the Earth’s 
surface), the pressure 2cgn = 2Sn/c is somewhat below 10-5 Pa ~ 10-10 bar. Still, this extremely small 
effect was experimentally observed (by P. Lebedev) as early as 1899, giving one more confirmation of 
Maxwell’s theory. Currently, there are ongoing attempts to use the pressure of the Sun’s light for 
propelling small spacecraft, e.g., the LightSail 2 satellite with a 32-m2 sail, launched in 2019. 

 

9.9. Exercise problems 

 9.1. Use the pre-relativistic picture of light propagation with velocity c in a Sun-bound aether to 
derive Eq. (4). 
 
 9.2. Show that two successive Lorentz space/time transforms, with velocities u’ and v in the 
same direction, are equivalent to the single transform with the velocity u given by Eq. (25).  
 
 9.3. N + 1 reference frames numbered by index n (taking values 0, 1, …, N) move in the same 
direction as a particle. Express the particle’s velocity in the frame number 0 via its velocity uN in the 
frame number N and the velocities vn of the frame number n relative to the frame number (n – 1).  
 
 9.4. A spaceship moving with a constant velocity v directly from the Earth sends back brief 
flashes of light with a period ts – as measured by the spaceship's clock. Calculate the period with that 
an Earth-based observer may receive these signals – as measured by their clock. 
  
 9.5. From the point of view of observers in a reference frame 0', a 
straight thin rod, parallel to the x'-axis, is moving without rotation with a 
constant velocity u' directed along the y'-axis. The reference frame 0' is itself 
moving relative to another ("lab") reference frame 0 with a constant velocity 
v along the x-axis, also without rotation – see the figure on the right. 

x x'

y y'

0 '0
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Calculate: 

 (i) the direction of the rod's velocity, and 
 (ii) the orientation of the rod on the [x, y] plane, 

– both as observed from the lab reference frame. Is the velocity, in this frame, perpendicular to the rod? 
  

 9.6. Starting from the rest at t = 0, a spaceship moves directly from the Earth, with a constant 
acceleration as measured in its instantaneous rest frame. Find its displacement x(t) from the Earth, as 
measured from the Earth’s reference frame, and interpret the result. 

 Hint: The instantaneous rest frame of a moving particle is the inertial reference frame that, at the 
considered moment of time, has the same velocity as the particle. 
  
 9.7. Analyze the twin paradox for the simplest case of 1D travel with a piecewise-constant 
acceleration. 

 Hint: You may use an intermediate result of the solution of the previous problem. 
 
9.8. Suggest a natural definition of the 4-vector of acceleration (commonly called the 4-

acceleration) of a point and calculate its components for of a relativistic point moving with velocity u = 
u(t). 

 
9.9. Calculate the first relativistic correction to the frequency of a harmonic oscillator as a 

function of its amplitude.  
 
9.10. An atom with an initial rest mass m has been excited to an internal state with an additional 

energy E, while still being at rest. Next, it returns to its initial state, emitting a photon. Calculate the 
photon’s frequency, taking into account the relativistic recoil of the atom. 

Hint: In this problem, and also in Problems 13-15 below, you may treat photons as classical 
ultra-relativistic point particles with zero rest mass, energy E = , and momentum p = k. 

 
9.11. A particle of mass m, initially at rest, decays into two particles with rest masses m1 and m2. 

Calculate the total energy of the first product particle, in the c.o.m. reference frame. 
 
 9.12. A relativistic particle with a rest mass m, moving with velocity u, decays into two particles 
with zero rest mass.  

 (i) Calculate the smallest possible angle between the decay product velocities (in the lab frame, 
in that the velocity u is measured).  
 (ii) What is the largest possible energy of one product particle?  
 
 9.13. A relativistic particle flying in free space with velocity u decays into two photons.83 
Calculate the angular dependence of the photon detection probability, as measured in the lab frame. 

83 Such a decay may happen, for example, with a neutral pion. 
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 9.14. A photon with wavelength  is scattered by an 
electron, initially at rest. Calculate the wavelength ’ of the 
scattered photon as a function of the scattering angle  – 
see the figure on the right.84 
 
 9.15. Calculate the threshold energy of a -photon for the reaction  

0πppγ  , 
if the proton was initially at rest. 

 Hint: For protons, mpc
2  938 MeV, while for neutral pions, mc

2  135 MeV. 
  
 9.16. Calculate the largest possible velocity of the electrons emitted by (initially, resting) 
neutrons at their -decays: 

eepn  . 

 Hint: Electron neutrinos e and antineutrinose are virtually massless (on the energy scale of 
this problem); the rest energies E  mc2 of the other involved particles are as follows: 939.565 MeV for 
the neutron, 938.272 MeV for the proton, 0.511 MeV for the electron. 
 
 9.17. A relativistic particle with a rest mass m and an energy E collides with a similar particle, 
initially at rest in the laboratory reference frame. Calculate: 

 (i) the final velocity of the center of mass of the system, in the lab frame,  
 (ii) the total energy of the system, in the center-of-mass frame, and 
 (iii) the final velocities of both particles (in the lab frame), provided that they move along the 
same direction. 
  
 9.18. A “primed” reference frame moves, relative to the “lab” frame, with a reduced velocity   
v/c = nx. Use Eq. (109) to express the elements T’00 and T’0j (with j = 1, 2, 3) of an arbitrary 
contravariant 4-tensor T via its elements in the lab frame. 
 
 9.19. Prove that quantities E2 – c2B2 and EB are Lorentz-invariant. 
 
 9.20. Consider the situation when static fields E and B are uniform but arbitrary (both in 
magnitude and in direction). What should be the velocity of an inertial reference frame to have the 
vectors E’ and B’, observed from that frame, parallel? Is this solution unique?  
 
 9.21. Two charged particles moving with equal constant velocities u are 
offset by a constant vector R = {a, b} (see the figure on the right), as measured in 
the lab frame. Calculate the force of interaction between the particles – also in the 
lab frame. 

 

84 This is the famous Compton scattering effect, whose discovery in 1923 was one of the major motivations for 
the development of quantum mechanics – see, e.g., QM Sec. 1.1. 
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9.22. Each of two thin, long, parallel particle beams of the same velocity u, separated by distance 
d, carries electric charges with a constant density  per unit length, as measured in the reference frame 
moving with the particles. 

 (i) Calculate the distribution of the electric and magnetic fields in the system (outside the 
beams), as measured in the lab reference frame. 
 (ii) Calculate the interaction force between the beams (per particle) and the resulting 
acceleration, both in the lab reference frame and in the frame moving with the particles.  
 (iii) Compare the results and give a brief discussion of their relation. 
 
 9.23.  
 (i) Spell out the Lorentz transform of the Cartesian components of the scalar potential and the 
vector potential of an arbitrary electromagnetic field. 
 (ii) Use this general result to calculate the potentials of the field created by a point charge q 
moving with a constant velocity u, as measured in the lab reference frame. 
 
 9.24. Calculate the scalar and vector potentials created by a time-independent electric dipole p, 
as measured in a reference frame that moves relative to the dipole with a constant velocity v, with the 
shortest distance (“impact parameter”) equal to b. 
 
 9.25. Solve the previous problem, in the limit v << c, for a time-independent magnetic dipole m. 
 
 9.26. Review the solution of Problem 23 (on the hypothetical magnetic monopole passing 
through a superconducting ring) for the case when this particle moves with an arbitrary constant 
velocity. 
 
 9.27. Re-derive Eq. (161) for the simplest case p(0) = 0, by using the 4-vector form (145) of the 
equation of motion and the notion of rapidity   tanh-1  that was briefly discussed in Sec. 2.  
 
 9.28.* Calculate the trajectory of a relativistic particle in a uniform electrostatic field E, for an 
arbitrary direction of its initial velocity u(0), by using two different ways – at least one of them different 
from the approach described in Sec. 6 for the case u(0)  E. 
 
 9.29. A charged relativistic particle the rest mass m performs planar cyclotron rotation, with 
velocity u, in a uniform external magnetic field of magnitude B. How much would the velocity and the 
orbit’s radius change at a slow change of the field to a new magnitude B' ? 
 
 9.30.* Analyze the motion of a relativistic particle in uniform, mutually perpendicular fields E 
and B, for the particular case when E is exactly equal to cB.  
 
 9.31. Find the law of motion of a relativistic particle in uniform static fields E and B parallel to 
each other. 
  
 9.32. An external Lorentz force F is exerted on a relativistic particle with an electric charge q 
and a rest mass m, moving with velocity u, as observed from some inertial “lab” frame. Calculate its 
acceleration as observed from that frame. 
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 9.33. Neglecting relativistic kinetic effects, calculate the lowest voltage V that has to be applied 
between the anode and cathode of a magnetron (see Fig. 13 and its discussion) to enable electrons to 
reach the anode, at negligible electron-electron interactions (including the space-charge effects) and 
collisions with the residual gas molecules. You may: 

 (i) model the cathode and anode as two coaxial round cylinders, of radii R1 and R2, respectively; 
 (ii) assume that the magnetic field B is uniform and directed along their common axis; and 
 (iii) neglect the initial velocity of the electrons emitted by the cathode.  

After the solution, estimate the validity of the last assumption and of the non-relativistic approximation, 
for reasonable values of parameters. 
 
 9.34. A charged relativistic particle has been injected into a region with a uniform electric field 
whose magnitude oscillates in time with frequency . Calculate the time dependence of the particle’s 
velocity, as observed from the lab reference frame.  
 
 9.35.* A linearly-polarized plane electromagnetic wave of frequency  is incident on an 
otherwise free relativistic particle with electric charge q. Analyze the dynamics of the particle’s 
momentum and compare the result with those of the previous problem and Problem 7.5. 
 
 9.36. Analyze the motion of a non-relativistic particle in a region where the electric and 
magnetic fields are both uniform and constant in time, but not necessarily parallel or perpendicular to 
each other.  
  
 9.37. A static distribution of electric charge in otherwise free space has created a time-
independent distribution E(r) of the electric field. Use two different approaches to express the field 
energy density u’ and the Poynting vector S’, as observed from a reference frame moving with a 
constant velocity v, via the Cartesian components of the vector E. In particular, is S’ equal to (–vu’)? 
 
 9.38. A traveling plane wave of frequency  and intensity S is normally incident on a perfect 
mirror moving with velocity v in the same direction as the wave.  

 (i) Calculate the reflected wave’s frequency, and 
(ii) use the Lorentz transform of the fields to calculate the reflected wave’s intensity 

– both as observed from the lab reference frame. 
 
 9.39. Perform the second task of the previous problem by using general relations between the 
wave’s energy, power, and momentum.  

 Hint: As a byproduct, this approach should also give you the pressure exerted by the wave on the 
moving mirror. 
 
 9.40. For the simple model of capacitor charging by a lumped source 
of current I(t), shown in the figure on the right, prove that the momentum 
given by a constant, uniform external magnetic field B to the current-carrying 
conductor is equal and opposite to the momentum of the electromagnetic field 
that this current builds up in the capacitor. (You may assume that the capacitor 
is planar and very broad, and hence neglect the fringe field effects.) 




)(tI B
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 9.41. Consider an electromagnetic plane wave packet propagating in free space, with its electric 
field represented as the Fourier integral 

kctkzdket kkk
k

k

i  




    and    ,with  ,Re),( ErE . 

Express the full linear momentum (per unit area of wave’s front) of the packet via the complex 
amplitudes Ek of its Fourier components. Does the momentum depend on time? (In contrast with 
Problem 7.8, the wave packet is not necessarily narrow.) 
 
 9.42. Calculate the forces exerted on well-conducting walls of a waveguide with a rectangular 
(ab) cross-section, by a wave propagating along it in the fundamental (H10) mode. Give an 
interpretation of the results. 
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Chapter 10. Radiation by Relativistic Charges 

The discussion of special relativity in the previous chapter enables us to revisit the analysis of 
electromagnetic radiation by charged particles, now for arbitrary velocities. For a single point particle, 
it turns out to be possible to calculate the radiated wave fields in an explicit form and analyze the 
results for such important particular cases as synchrotron radiation and the “Bremsstrahlung”  (brake 
radiation). After that, we will discuss the apparently unrelated effect of the so-called Coulomb losses of 
energy by a particle moving in condensed matter, because this discussion will naturally lead us to such 
important phenomena as the Cherenkov radiation and the transitional radiation. At the end of the 
chapter, I will briefly review the effects of the back action of the emitted radiation on the emitting 
particle, whose analysis reveals some limitations of classical electrodynamics.  

 

10.1. Liénard-Wiechert potentials 

 A convenient starting point for the discussion of radiation by relativistic charges is provided by 
Eqs. (8.17) for the retarded potentials. In free space, these formulas with the integration variable 
notation changed from r’ to r” for the clarity of what follows, are reduced to
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 . (10.1a) 

As a reminder, Eqs. (1a) were derived from the Maxwell equations without any restrictions, and are very 
natural for situations with continuous distributions of the electric charge and/or current. However, for a 
single charged particle, whose charge and current distributions may be described as 

           ''qt'qt rurrurjrrr  with  ,,,,  ,  (10.1b) 

where r’ = r’(t) is the instantaneous position of the charge, it is more convenient to recast Eqs. (1a) into 
an explicit form that would not require integration in each particular case. Indeed, as Eqs. (1) show, the 
potentials at a given observation point {r, t} are contributed by only one specific point {r’(tret), tret} of 
the particle’s 4D trajectory (called its world line), which satisfies the following condition: 

         ,ret
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R
tt        (10.2) 

where tret is called the retarded time, and Rret is the length of the following distance vector 

                 retret t't rrR       (10.3) 

– physically, the distance covered by the electromagnetic wave from its emission to observation. 

 The reduction of Eqs. (1a) to such a simpler form, however, requires some care. Their naïve 
integration over r” would yield the following apparent but wrong results: 
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where uret is the particle’s velocity at the retarded point r’(tret). Eqs. (4) is a good example of how the 
relativity theory (even the special one :-) cannot be taken too lightly. Indeed, the strings (9.84)-(9.85), 
formed from the apparent potentials (4), would not obey the Lorentz transform rule (9.91), because 
according to Eqs. (2)-(3), the distance Rret also depends on the reference frame it is measured in. 

 In order to correct the error, we need, first of all, to discuss the conditions (2)-(3). Combining 
them by eliminating Rret, we get the following equation for tret: 

        )()()( retret t'tttc rr  .      (10.5) 

Figure 1 depicts the graphical solution of this self-consistency equation as the only1 point of intersection 
of the light cone of the observation point (see Fig. 9.9 and its discussion) and the particle’s world line.  

  

 

 

 

 

 

 
 

 In Eq. (5), just as in Eqs. (1)-(3), all variables have to be measured in the inertial (“lab”) 
reference frame in which the observation point r rests. Now let us write Eqs. (1) for a point charge in 
another inertial frame the frame 0’ whose velocity (as measured in the lab frame) coincides, at the 
moment t’ = tret, with the velocity uret of the charge.2 In that frame, the charge rests, so, as we know 
from the electro- and magnetostatics, 

                 0,
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(Remember that this R’ may not be equal to Rret, because the latter distance is measured in the “lab” 
reference frame.) Let us use the identity 1/0  0c

2 again to rewrite Eqs. (6a) in the form of components 
of a 4-vector similar in structure to the last two of Eqs. (4): 
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Now it is easy to guess the correct answer for the 4-potential for an arbitrary reference frame: 

1 As Fig. 1 shows, there is always another, “advanced” point {r’(tadv), tadv} of the particle’s world line, with tadv > 
t, which is also a solution of Eq. (5), but it does not fit Eqs. (1), because the observation, at the point {r, t < tadv}, 
of the field induced at the advanced point, would violate the causality principle. 
2 This is just a particular case of the instantaneous reference frame –the notion that was encountered in several 
exercise problems of the previous chapter, and indeed was implied (though admittedly not sufficiently advertised) 
as the derivation of the key Eq. (9.60).  
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Fig. 10.1. Graphical 
solution of Eq. (5). 
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where (as a reminder) A  {/c, A}, u  {c, u}, and R is the 4-vector of the inter-event distance, 
formed similarly to that of a single event – cf. Eq. (9.48): 

           }),({}),({ 't'tc't'tcR rrR  .    (10.8) 

Indeed, we needed the 4-vector A  that would:  

 (i) obey the Lorentz transform,  
 (ii) have its spatial components Aj scaling, at low velocity, as uj, and  
 (iii) be reduced to the correct result (6) in the instantaneous reference frame of the charge.  

Eq. (7) evidently satisfies all these requirements, because the scalar product in its denominator is just 

                 nβRβRuRu  1])([),(, 2 cRRct'tct'tccRu 
 , (10.9) 

where n  R/R is a unit vector in the observer’s direction,   u/c is the normalized velocity of the 
particle, and   1/(1- u2/c2)1/2. In the instantaneous reference frame of the charge (in which  = 0 and  
= 1), the expression (9) is reduced to cR, so Eq. (7) is correctly reduced to Eq. (6b). Now let us spell out 
the components of Eq. (7) for the lab frame (in which t’ = tret and R = Rret): 
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 These formulas are called the Liénard-Wiechert potentials.3 In the non-relativistic limit, they 
coincide with the naïve guess (4), but in the general case include the additional factor 1/(1 – n)ret. Its 
physical origin may be illuminated by one more formal calculation – whose result we will need anyway. 
Let us differentiate the geometric relation (5), rewritten as 

      )( retret ttcR  ,     (10.11) 

over tret and then, independently, over t, assuming that r is fixed. For that, let us first differentiate, over 
tret, both sides of the identity Rret

2 = RretRret: 

        
ret

ret
ret

ret

ret
ret 22

tt
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
 R

R .     (10.12) 

If r is fixed, then Rret/tret  (r – r’)/tret = –r’/tret  –uret, and Eq. (12) yields 

                ret
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ret un
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Now let us differentiate the same Rret over t. On one hand, Eq. (11) yields 

3 They were derived in 1898 by Alfred-Marie Liénard and (independently) in 1900 by Emil Wiechert. 

Liénard-
Wiechert 

potentials 
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 retret .     (10.14) 

On the other hand, according to Eq. (5), at the partial differentiation over time, i.e. if r is fixed, tret is a 
function of t alone, so (using Eq. (13) at the second step), we may write 
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Now requiring Eqs. (14) and (15) to give the same result, we get:4 
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 This important relation may be readily re-derived (and more clearly understood) for the 
particular case when the charge’s velocity is directed straight toward the observation point. In this case, 
its vector u resides in the same space-time plane as the observation point’s world line r = const – say, 
the plane [x, t] shown in Fig. 2. 

 

 

 

 

  

 

 
 Let us consider an elementary time interval dtret  dt’, during which the particle would travel the 
space interval dxret = uretdtret. In Fig. 2, the corresponding segment of its world line is shown with a solid 
vector. The dotted vectors in this figure show the world lines of the radiation emitted by the particle in 
the beginning and at the end of this interval, and propagating with the speed of light c. As it follows 
from the drawing, the time interval dt between the instants of the arrival of the radiation from these two 
points to any time-independent spatial point of observation is 

    
retret

ret
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ret 1
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dtdt . (10.17) 

This expression coincides with Eq. (16) for our particular case when the directions of the vectors   u/c 
and n  R/R (both taken at time tret) coincide, and hence (n)ret = ret.  The difference between Eqs. (16) 
and (17) may be interpreted by saying that the particle’s velocity in the transverse directions (normal to 
the vector n) is not important for this kinematic effect5 – the fact almost evident from Fig. 1.  

4 This relation may be used for an alternative derivation of Eqs. (10) directly from Eqs (1) – the calculation left 
for the reader’s exercise.  
5 Note that this effect (linear in ) has nothing to do with the Lorentz time dilation (9.21), which is quadratic in . 
(Indeed, all our arguments above referred to the same, lab frame.) Rather, it is close in nature to the Doppler 
effect. 

Fig. 10.2. Deriving Eq. (16) 
for the case n = . 

retretret dtudx 

retdt

cdxdtdt /retret 
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 So, the additional factor in the Liénard-Wiechert potentials is just the derivative tret/t. The 
reason for its appearance in Eqs. (10) is usually interpreted along the following lines. Let the charge q 
be spread along the direction of the vector Rret (in Fig. 2, along the x-axis) by an infinitesimal speed-
independent interval xret, so the linear density  of its charge is proportional to 1/xret. Then the time 
rate of charge’s arrival at some spatial point is uret = dxret/dtret, i.e. scales as 1/dtret. However, the rate 
of radiation’s arrival at the observation point scales as 1/dt, so due to the non-zero velocity uret of the 
particle, this rate differs from the charge arrival rate by the factor of dtret/dt, given by Eq. (16). (If the 
particle moves toward the observation point, (n)ret > 0, as shown in Fig. 2, this factor is larger than 1.) 
This radiation compression effect leads to the field change (at (n)ret > 0, its enhancement) by the same 
factor (16) – as described by Eqs. (10).  

 So, the 4-vector formalism was very instrumental for the calculation of field potentials. It may be 
also used to calculate the fields E and B – by plugging Eq. (7) into Eq. (9.124) to calculate the field 
strength tensor. This calculation yields 
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Now using Eq. (9.125) to identify the elements of this tensor with the field components, we may bring 
the result to the following vector form: 6 
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 Thus the magnetic and electric fields of a relativistic particle are always proportional and 
perpendicular to each other, and related just as in a plane wave – cf. Eq. (7.6), with the difference that 
now the vector nret may be a function of time. Superficially, this result contradicts the electro- and 
magnetostatics, because, for a particle at rest, B should vanish while E stays finite. However, note that 
according to the Coulomb law for a point charge, in this case, E = Enret, so B  nretE  nretnret = 0. 
(Actually, in these relations, the subscript “ret” is unnecessary.)  

 As a sanity check, let us use Eq. (19) as an alternative way to find the electric field of a charge 
moving without acceleration, i.e. uniformly, along a straight line – see Fig. 9.11a reproduced, with 
minor changes, in Fig. 3. (This calculation will also illustrate the technical challenges of practical 
applications of the Liénard-Wiechert formulas for even simple cases.) In this case, the vector  does not 
change in time, so the second term in Eq. (19) vanishes, and all we need to do is to spell out the 
Cartesian components of the first term.  
 

6 An alternative way of deriving these formulas (highly recommended to the reader as an exercise) is to plug Eqs. 
(10) into the general relations (9.121), and carry out the required temporal and spatial differentiations directly, 
using Eq. (16) and its spatial counterpart (which may be derived absolutely similarly): 
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 Let us select the coordinate axes and the time origin as shown in Fig. 3, and make a clear 
distinction between the actual position, r’ (t) = {ut, 0, 0} of the charged particle at the instant t we are 
considering, and its position r’(tret) at the retarded instant defined by Eq. (5), i.e. the moment when the 
particle’s field had to be radiated to reach the observation point r at the given time t, propagating with 
the speed of light. In these coordinates 

          ,0,sin,cos,0,0,)(,0,,0,0,0, retretret   nrrβ utt'b  (10.21) 

with cos = –utret/Rret, so [(n – )x]ret = –utret/Rret – , and Eq. (19) yields, in particular: 
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 But according to Eq. (5), the product Rret may be represented as c(t – tret)  u(t – tret). Plugging 
this expression into Eq. (22), we may eliminate the explicit dependence of Ex on time tret:  
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The only non-zero transverse component of the field also has a similar form:  
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while Ez = 0. From Fig. 3,  – nret = cos  = –utret/Rret, so (1 – n)Rret  Rret + utret, and we may again 
use Eq. (5) to get (1 – n)Rret = c(t – tret) + utret  ct – ctret/2. What remains is to calculate tret from the 
self-consistency equation (5), whose square in our current case (Fig. 3) takes the form 

     2
ret

22
ret

22
ret )()( ttcutbR  .    (10.25) 

This is a simple quadratic equation for tret, which (with the appropriate negative sign before the square 
root, to get tret < t) yields: 

                  2/122222
2/1

2222222
ret / btu

c
tcbtttt   ,  (10.26) 

so the only retarded-function combination that participates in Eqs. (23)-(24) is  
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and, finally, the electric field components are  

Fig. 10.3. The linearly moving  
charge problem. 0 x
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 But these are exactly Eqs. (9.139),7 which had been obtained in Sec. 9.5 by much simpler means, 
without the necessity to solve the self-consistency equation (5). However, that alternative approach was 
essentially based on the inertial motion of the particle, and cannot be used in problems in which it 
moves with acceleration. In such problems, the second term in Eq. (19), dropping with distance more 
slowly, as 1/Rret, and hence describing wave radiation, is frequently the most important one. 

 

10.2. Radiation power 

 Let us calculate the angular distribution of the particle’s radiation. For that, we need to return to 
Eqs. (19)-(20) to find the Poynting vector S = EH, and in particular, its radial component Sn = Snret, at 
large distances R from the particle. Following tradition,8 let us express the result as the energy radiated 
into unit solid angle per unit time interval dtrad of the radiation, rather than that (dt) of its measurement. 
(We will need to return to the measurement time t in the next section to calculate the observed radiation 
spectrum.) Using Eq. (16), we get 
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At sufficiently large distances from the particle, i.e. in the limit Rret   (in the radiation zone), the 
contribution of the first (essentially, the Coulomb-field) term in the square brackets of Eq. (19) vanishes 
as 1/R2, and the substitution of the remaining term into Eqs. (20) and then Eq. (29) yields the following 
formula, which is valid for an arbitrary law of the particle’s motion:9 
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 Now, let us apply this important result to some simple cases. First of all, Eq. (30) says that a 
charge moving with a constant velocity  does not radiate at all. This might be expected from our 
analysis of this case in Sec. 9.5 because in the reference frame moving with the charge it produces only 
the Coulomb electrostatic field, i.e. no radiation.  

 Next, let us consider a linear motion of a point charge with a non-zero acceleration directed 
along the straight line of the motion. In this case, with the coordinate axes selected as shown in Fig. 4a, 
each of the vectors involved in Eq. (30) has at most two non-zero Cartesian components:  

7 A similar calculation of magnetic field components from Eq. (20) gives results identical to Eqs. (9.140). 
8 This tradition may be reasonably justified. Indeed, we may say that the radiation field “detaches” from the 
particle at times close to tret, while the observation time t depends on the detector’s position, and hence is less 
relevant for the radiation process as such. 
9 If the direction of radiation, n, does not change in time, this formula does not depend on the observer’s position 
R. Hence, from this point on, the index “ret” may be safely dropped for brevity, though we should always 
remember that  in Eq. (30) is the reduced velocity of the particle at the instant of the radiation’s emission, not of 
its observation. 
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density 
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             ,0,0,,0,0,cos,0,sin  ββn ,   (10.31) 

where   is the angle between the directions of the particle’s motion and of the radiation’s propagation. 
Plugging these expressions into Eq. (30) and performing the vector multiplications, we readily get 
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Figure 4b shows the angular distribution of such radiation, for three values of the particle’s speed u. 

 

 

 

 

 

 

 
  

 If the speed is relatively low (u << c, i.e.  << 1), the denominator in Eq. (32) is very close to 1 
for all observation angles , so the angular distribution of the radiation power is close to sin2  – just as 
it follows from the general non-relativistic Larmor formula (8.26), for our current case with  = . 
However, as the velocity is increased, the denominator becomes less than 1 for   < /2, i.e. for the 
forward-looking directions, and larger than 1 for back directions. As a result, the radiation in the 
direction of the particle’s motion is increased (somewhat counter-intuitively, regardless of the 
acceleration’s sign!), while that in the back direction is suppressed. For ultra-relativistic particles (  
1), this trend is strongly exacerbated, and radiation to very small forward angles dominates. To describe 
this main part of the angular distribution, we may expand the trigonometric functions of   participating 
in Eq. (32) in the Taylor series in small , and keep only their leading terms: sin , cos  1 –  2/2, 
so (1 – cos)  (1 + 2 2)/22. The resulting expression,  
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describes a narrow “hollow cone” distribution of radiation, with its maximum at the angle 

                  1
2

1
0 


 .      (10.34) 

Another important aspect of Eq. (33) is how extremely fast (as 8) the radiation density grows with the 
Lorentz factor , i.e. with the particle’s energy E = mc2.  

 Still, the total radiated power P  (into all observation angles) at linear acceleration is not too high 
for any practicable values of parameters. To show this, let us first calculate P  for an arbitrary motion of 
the particle. To start, let me demonstrate how P  may be found (or rather guessed) from the general 
relativistic arguments. In Sec. 8.2, we have derived Eq. (8.27) for the power of the electric dipole 
radiation for a non-relativistic particle motion. That result is valid, in particular, for one charged particle, 

Fig. 10.4. Particle’s radiation 
at its linear acceleration: (a) 
the problem’s geometry, and 
(b) the last fraction of Eq. (32) 
as a function of the angle . 

(a)      (b) 
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whose electric dipole moment’s derivative over time may be expressed as d(qr)/dt = (q/m)p, where p is 
the particle’s linear mechanical momentum (not its electric dipole moment). As a result, the Larmor 
formula  (8.27) in free space, i.e. with v = c (but u << c) reduces to 
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This is evidently not a Lorentz-invariant result, but it gives a clear hint of how such an invariant, which 
would be reduced to Eq. (35) in the non-relativistic limit, may be formed: 
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Using the relativistic expressions p = mc, E = mc2, and d = dt/, the last formula may be recast into 
the so-called Liénard extension of the Larmor formula:10  
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It may be also obtained by direct integration of Eq. (30) over the full solid angle, thus confirming our 
guess.  

 However, for some applications, it is beneficial to express P  via the time evolution of the 
particle’s momentum alone. For that, we may differentiate the fundamental relativistic relation (9.78),   
E 2 = (mc2)2 + (pc)2, over the proper time   to get 
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where the last step used the relativistic relation c2p/E = u mentioned in Sec. 9.3. Plugging Eq. (38) into 
Eq. (36), we may rewrite it as 
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Please note the difference between the squared derivatives in this expression: in the first of them we 
have to differentiate the momentum’s vector p first, and only then form a scalar by squaring the 
resulting vector derivative, while in the second case, only the magnitude of the vector has to be 
differentiated. For example, for circular motion with a constant speed (to be analyzed in detail in the 
next section), the second term vanishes, while the first one does not.  

However, if we return to the simplest case of linear acceleration (Fig. 4), then (dp/d)2 = 
(dp/d)2, and Eq. (39) is reduced to 

10 The second form of Eq. (10.37), which is frequently more convenient for applications, may be readily obtained 
from the first one by applying MA Eq. (7.7a) to the vector product. 
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i.e. formally coincides with the non-relativistic relation (35). To get a better feeling of the magnitude of 
this radiation, we may combine Eq. (9.144) with B = 0, and Eq. (9.148) with E  u to get dp/dtret = 
dE/dz’, where z’ is the particle’s coordinate at the moment tret. The last relation allows us to rewrite Eq. 
(40) in the following form: 
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For the most important case of ultra-relativistic motion (u  c), this result reduces to  
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where rc is the classical radius of the particle, defined by Eq. (8.41). This formula shows that the 
radiated power, i.e. the change of the particle’s energy due to radiation, is much smaller than that due to 
the accelerating field unless energy as large as ~mc2 is gained on the classical radius of the particle. For 
example, for an electron, with rc  310-15 m and mc2 = mec

2  0.5 MeV, such an acceleration would 
require the accelerating electric field of the order of (0.5 MV)/(310-15 m) ~ 1014 MV/m, while 
practicable accelerating fields are below 102 MV/m – limited by the electric breakdown effects. (As 
described by the factor m2 in the denominator of Eq. (41), for heavier particles such as protons, the 
relative losses are even lower.) Such negligible radiative losses of energy are actually a large advantage 
of linear accelerators  – such as the famous two-mile-long SLAC,11 which can accelerate electrons or 
positrons to energies up to 50 GeV, i.e. to   105. If obtaining radiation from the accelerated particles is 
the goal, it may be readily achieved by bending their trajectories using additional magnetic fields – see 
the next section.  

 

10.3. Synchrotron radiation 

 Now let us consider a charged particle being accelerated in the direction perpendicular to its 
velocity u (for example by the magnetic component of the Lorentz force), so its speed u, and hence the 
magnitude p of its momentum, do not change. In this case, the second term in the square brackets of Eq. 
(39) vanishes, and it yields 
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Comparing this expression with Eq. (40), we see that for the same acceleration magnitude, the 
electromagnetic radiation is a factor of 2 larger. For modern accelerators, with  ~ 104-105, such a factor 
creates an enormous difference. For example, if a particle is on a cyclotron orbit in a constant magnetic 
field (as was analyzed in Sec. 9.6), both u and p = mu obey Eq. (9.150), so   

11 See, e.g., https://www6.slac.stanford.edu/. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 10                   Page 11 of 40

                
R

mc
p

R

u
p

dt

d 2
2

c
ret

 
p

,    (10.44) 

(where R is the orbit’s radius), so for the power of this synchrotron radiation, Eq. (43) yields 
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 Note that for ultrarelativistic particles (  1), the power grows as 2, i.e. as the square of the 
particle’s energy E  . For example, for typical parameters of the first electron cyclotrons (such as the 
General Electric’s machine in which the synchrotron radiation was first noticed in 1947), R ~ 1 m, E ~ 

0.3 GeV ( ~ 600), Eq. (45) gives a very modest electron energy loss per one revolution: PT  P(2R/u) 

 2PR/c ~ 1 keV. However, already by the mid-1970s, electron accelerators, with R ~ 100 m, could 
give each particle energy E ~10 GeV, and the energy loss per revolution grew to ~ 10 MeV, becoming 
the major energy loss mechanism. For proton accelerators, such energy loss is much less of a problem, 
because the   of an ultra-relativistic particle (at fixed E) is proportional to 1/m, so the estimates, at the 
same R, should be scaled back by (mp/me)

4 ~ 1013. Nevertheless, in the giant modern accelerators such as 
the LHC (with R  4.3 km and E up to 7 TeV), the synchrotron radiation loss per revolution is rather 
noticeable (PT ~ 6 keV), leading not as much to particle deceleration as to a substantial photoelectron 

emission from the beam tube’s walls, creating harmful defocusing effects.  

 However, what is bad for particle accelerators and storage rings is good for the so-called 
synchrotron light sources – the electron accelerators designed for the generation of intensive 
synchrotron radiation – with the spectrum extending well beyond the visible light range. Let us analyze 
the angular and spectral distributions of such radiation. To calculate the angular distribution, let us select 
the coordinate axes as shown in Fig. 5, with the origin at the current location of the orbiting particle, the 
z-axis directed along its instant velocity (i.e. the vector ), and the x-axis, toward the orbit’s center.  

 

 

 

 

 

 
 

In the general case, when the unit vector n toward the radiation’s observer is not within any of 
the coordinate planes, it has to be described by two angles – the polar angle , and the azimuthal angle   
between the x-axis and the projection 0P of the vector n onto the [x, y]-plane. Since the length of the 
segment 0P is sin, the Cartesian components of the relevant vectors are as follows: 

                   0,0,  and,,0,0,cos,sinsin,cossin    ββn .  (10.46) 

Plugging these expressions into the general Eq. (30), we get 

Fig. 10.5. The synchrotron 
radiation problem’s geometry. 
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According to this result, just as at the linear acceleration, in the ultra-relativistic limit, most 
radiation goes into a narrow cone (of a width  ~ -1 << 1) around the vector , i.e. around the instant 
direction of the particle’s propagation. For such small angles, and  >> 1,   
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The left panel of Fig. 6 shows a color-coded contour map of this angular distribution f(, ), as observed 
on a distant plane normal to the particle’s instant velocity (in Fig. 5, parallel to the [x, y]-plane), while 
its right panel shows the factor f as a function of   in two perpendicular directions: within the particle’s 
rotation plane (in the direction parallel to the x-axis, i.e. at  = 0) and perpendicular to this plane (along 
the y-axis, i.e. at  = /2). The result shows, first of all, that, in contrast to the case of linear 
acceleration, the narrow radiation cone is now not hollow: the intensity maximum is reached at  = 0, 
i.e. exactly in the direction of the particle’s motion direction. Second, the radiation cone is not axially 
symmetric: within the particle rotation plane, the intensity drops faster (and even has nodes at   = 1/).  

 

 

 

 

 

 

 

 

 

 

 

  

 The angular distribution (47) of the synchrotron radiation was calculated for the (inertial) 
reference frame whose origin coincides with the particle’s position at this particular instant, i.e. its 
radiation pattern is time-independent in the frame moving with the particle. This pattern enables a semi-
quantitative description of the radiation by an ultra-relativistic particle from the point of view of a 
stationary observer: if the observation point is on (or very close to) the rotation plane,12 it is being 

12 It is easy (and hence is left for the reader’s exercise) to show that if the observation point is much off-plane 
(say, is located on the particle orbit’s axis), the radiation is virtually monochromatic, with frequency c. (As we 
know from Sec. 8.2, in the non-relativistic limit u << c, this is true for any observation point.)  

Synchrotron 
radiation: 
angular 
distribution 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Fig. 10.6. The angular distribution of the synchrotron radiation at   >> 1. 
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“struck” by the narrow radiation cone once each rotation period T  2R/c, each “strike” giving a field 

pulse of a short duration tret << 1/c – see Fig. 7.13  

  
 

 

 

 

 

 

 

 The evaluation of the time duration t of each pulse requires some care: its estimate tret ~ 1/c 
is correct for the duration of the retarded time interval during which its cone is aimed at the observer. 
However, due to the time compression effect discussed in detail in Sec. 1 and described by Eq. (16), the 
pulse duration as seen by the observer is a factor of  1/(1 – ) shorter, so 
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 Ttt .   (10.49) 

From the Fourier theorem, we can expect the frequency spectrum of such radiation to consist of 
numerous (N ~  3 >> 1) harmonics of the particle rotation frequency c, with comparable amplitudes. 
However, if the orbital frequency fluctuates even slightly (c/c > 1/N ~ 1/3), as it happens in most 
practical systems, the radiation pulses are not coherent, so the average radiation power spectrum may be 
calculated as that of one pulse, multiplied by the number of pulses per second. In this case, the spectrum 
is continuous, extending from low frequencies all the way to approximately 

             .~/1~ c
3

max  t      (10.50) 

 In order to verify and quantify this result, let us calculate the spectrum of radiation due to a 
single pulse. For that, we should first make the general notion of the radiation spectrum quantitative. Let 
us represent an arbitrary electric field (say that of the synchrotron radiation we are studying now) 
observed at a fixed point r, as a function of the observation time t, as a Fourier integral:14 

               




 dtet ti
EE .     (10.51)  

13 The fact that the in-plane component of each electric field’s pulse E(t) is antisymmetric with respect to its 
central point, and hence vanishes at that point (as Fig. 7b shows), readily follows from Eq. (19).    
14 In contrast to the single-frequency case (i.e. a monochromatic wave), we may avoid taking the real part of the 
complex function (Ee-it) by requiring that in Eq. (51), E- = E*. However, it is important to remember the 
factor ½ required for the transition to a monochromatic wave of frequency 0 and with real amplitude E0: E = E0 
[( – 0) + ( + 0)]/2.

Fig. 10.7. (a) The synchrotron radiation cones (at   >> 1) for two close values of tret, and (b) the in-plane 
component of the electric field observed in the rotation plane, as a function of time t – schematically. 
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This expression may be plugged into the formula for the total energy of the radiation pulse (i.e. of the 
loss of particle’s energy E) per unit solid angle:15 
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This substitution, followed by a natural change of the integration order, yields 

            .
)(

0

2

Ω 












 t'i
ω' edt'dd

Z

R

d

d 










 EE
E

   (10.53) 

But the inner integral (over t) is just 2( + ’).16 This delta function kills one of the frequency 
integrals (say, one over ’), and Eq. (53) gives us a result that may be recast as 
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where the evident frequency symmetry of the scalar product EE- has been utilized to fold the integral 
of I() to positive frequencies only. The first of Eqs. (54) makes the physical sense of the function I() 
very clear: this is the so-called spectral density of the electromagnetic radiation (per unit solid angle).17 

 To calculate the spectral density, we can express the function E via E(t) using the Fourier 
transform reciprocal to Eq. (51): 
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In the particular case of radiation by a single point charge, we may use here the second (radiative) term 
of Eq. (19): 

            
 
















 dte

cR

q ti
 

ret

3
0 )1(

)(1

42

1

nβ

ββnn
E


.   (10.56) 

Since the vectors n and  are more natural functions of the radiation’s emission (retarded) time tret, let us 
use Eqs. (5) and (16) to exclude the observation time t from this integral: 
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Assuming that the observer is sufficiently far from the particle,18 we may treat the unit vector n as a 
constant and also use the approximation (8.19) to reduce Eq. (57) to  

15 Note that the expression under this integral differs from dP/d defined by Eq. (29) by the absence of the term 
(1 – n) = tret/t – see Eq. (16). This is natural because now we are calculating the wave energy arriving at the 
observation point r during the time interval dt rather than dtret. 
16 See, e.g. MA Eq. (14.4). 
17 The notion of spectral density may be readily generalized to random processes – see, e.g., SM Sec. 5.4. 
18 According to the estimate (49), for a synchrotron radiation pulse, this restriction requires the observer to be 
much farther than r’ ~ ct ~ R/3 from the particle. With the values R ~ 104 m and   ~ 105 mentioned above, r’ 
~ 10-11 m, so this requirement is satisfied for any realistic radiation detector. 
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Plugging this expression into Eq. (54), and then using the definitions c  1/(00)
1/2 and Z0  (0/0)

1/2, 
we get19 
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 This result may be further simplified by noticing that the fraction before the exponent may be 
represented as a full derivative over tret, 
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and working out the resulting integral by parts. At this operation, the time differentiation of the 
parentheses in the exponent gives d[tret – nr’(tret)/c]/dtret  = (1 – nu/c)ret  (1 – n)ret, leading to the 
cancellation of the remaining factor in the denominator and hence to a very simple general result: 20 
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 Now returning to the particular case of the synchrotron radiation, it is beneficial to choose the 
origin of time tret so that at tret = 0, the angle   between the vectors n and  takes its smallest value 0, 
i.e., in terms of Fig. 5, the vector n is within the [y, z]-plane. Fixing this direction of the axes so that they 
do not move, we can redraw that figure as shown in Fig. 8.  

 

 

 

 

 
  

  

 In this “lab” reference frame, the vector n does not depend on time, while the vectors r’(tret) and 
ret do depend on it via the angle   ctret: 

19 Note that for our current purposes of calculation of the spectral density of radiation by a single particle, the 
factor exp{ir/c} got canceled. However, as we have seen in Chapter 8, this factor plays a central role in the 
interference of radiation from several (many) sources. Such interference is important, in particular, in undulators 
and free-electron lasers –  the devices to be (qualitatively) discussed below.  
20 Actually, this simplification is not occasional. According to Eq. (10b), the expression under the derivative in 
the last form of Eq. (60) is just the transverse component of the vector potential A (give or take a constant factor), 
and from the discussion in Sec. 8.2 we know that this component determines the electric dipole radiation of a 
system, which dominates the radiation in our current case of a single particle with a non-zero electric charge. 
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Fig. 10.8. Deriving the synchrotron radiation’s 
spectral density. The vector n is static within 
the [y, z]-plane, while the vectors r’(tret) and 
ret rotate, within the [x, z]-plane, with the 
angular velocity c of the particle. 
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Now an easy multiplication yields 
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As we already know, in the (most interesting) ultra-relativistic limit  >> 1, most radiation is confined to 
short pulses, so only small angles  ~ ctret ~  –1 may contribute to the integral in Eq. (61). Moreover,  
since most radiation goes to small angles   ~ 0 ~  –1, it makes sense to consider only such small 
angles. Expanding both trigonometric functions of these small angles, participating in parentheses of Eq. 
(64), into the Taylor series, and keeping only the leading terms, we get 
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Since (R/c)c = u/c =   1, in the two last terms, we may approximate this parameter by 1. However, it 
is crucial to distinguish the difference between the two first terms, proportional to (1 – )tret, from zero; 
as we have done before, we may approximate it with tret/22. On the right-hand side of Eq. (63), which 
does not have such a critical difference, we may be bolder, taking21 
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As a result, Eq. (61) is reduced to  
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where ax and ay are the following dimensionless factors:  
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that describe the frequency spectra of two components of the synchrotron radiation, with mutually 
perpendicular polarization planes. Defining the following dimensionless parameter 
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21 This expression confirms that the in-plane (x) component of the electric field is an odd function of tret and hence 
of t – t0 (see its sketch in Fig. 7b), while the normal (y) component is an even function of this difference. Also, 
note that for an observer exactly in the rotation plane (0 = 0) the latter component equals zero for all times – the 
fact which could be predicted from the very beginning because of the evident mirror symmetry of the problem 
with respect to the particle’s rotation plane. 
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which is proportional to the observation frequency, and changing the integration variable to   
ctret/(0

2 + -2)1/2, the integrals (68) may be reduced to the modified Bessel functions of the second kind, 
but with fractional indices: 
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 Figure 9a shows the dependence of the Bessel factors defining the amplitudes ax and ay on the 
normalized observation frequency . It shows that the radiation intensity changes with frequency 
relatively slowly (note the log-log scale of the plot!) until the normalized frequency defined by Eq. (69) 
is increased beyond ~1. For the most important observation angles 0 ~ ,  this means that our estimate 
(50) is indeed correct, though formally the frequency spectrum extends to infinity.22 

  

 

 

 

 

 

 

 

 

 

 
 
 Naturally, the spectral density integrated over the full solid angle exhibits a similar frequency 
behavior. Without performing the integration,23 let me just give the result (also valid for  >> 1 only) for 
the reader’s reference: 
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Figure 9b shows the dependence of this integral on the normalized frequency . (This plot is sometimes 
called the “universal flux curve”.)  In accordance with the estimate (50), it reaches the maximum at  

22 The law of the spectral density decrease at large   may be readily obtained from the second of Eqs. (2.158), 
which is valid even for any (even non-integer) Bessel function index n: ax  ay  -1/2exp{-}. Here the 
exponential factor is certainly the most important one. 
23 For that, and many other details, the interested reader may be referred, for example, to the fundamental review 
collection by E. Koch et al. (eds.) Handbook on Synchrotron Radiation (in 5 vols.), North-Holland, 1983-1991, or 
to a more concise monograph by A. Hofmann, The Physics of Synchrotron Radiation, Cambridge U. Press, 2007. 

Fig. 10.9. The frequency spectra of: (a) two components of the synchrotron radiation, at a fixed angle 0, and 
(b) its total (polarization- and angle-averaged) intensity. 
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     3c
maxmax 2
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  .    (10.72) 

 For example, in the National Synchrotron Light Source (NSLS-II) in the Brookhaven National 
Laboratory near our SBU campus, with its ring’s circumference of 792 m, the electron revolution period 
T  is 2.64μs. With c = 2π/T  2.4106 s-1, for the achieved    6103 (E  3 GeV), we get max ~ 

31017 s-1, i.e. the photon energy max ~ 200 eV corresponding to soft X-rays. In light of this estimate, 
the reader may be surprised by Fig. 10, which shows the calculated spectra of the radiation that this 
facility was designed to produce, with the intensity maxima at photon energies up to a few keV. 

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The reason for this discrepancy is that in the NLLS-II, and in all modern synchrotron light 
sources, most radiation is produced not by the circular orbit itself (which is, by the way, not exactly 

Fig. 10.10. Design brightness of various synchrotron radiation sources of the NSLS-II facility. 
For the bend magnets and wigglers, the “brightness” may be obtained by multiplication of the 
one-pulse spectral density I() calculated above, by the number of electrons passing the source 
per second. (Note the non-SI units used by the synchrotron radiation community.) However, for 
undulators, there is an additional factor due to the partial coherence of radiation – see below. 
(Adapted from the document NSLS-II Source Properties and Floor Layout that was available 
online at https://www.bnl.gov/ps/docs/pdf/SourceProperties.pdf in 2011-2020.) 
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circular, but consists of a series of straight and bend-magnet sections), but by such bend sections, and 
the devices called wigglers and undulators: strings of several strong magnets with alternating field 
direction (Fig. 11), that induce periodic bending (wiggling”) of the electron’s trajectory, with the 
synchrotron radiation emitted at each bend. 

   

 

 

 

 

 

 

 

  

 The difference between the wigglers and the undulators is more quantitative than qualitative: the 
former devices have a larger spatial period u (the distance between the adjacent magnets of the same 
polarity, see Fig. 11), giving enough space for the electron beam to bend by an angle larger than  –1, i.e. 
larger than the radiation cone’s width. As a result, the radiation reaches an in-plane observer as a 
periodic sequence of individual pulses – see Fig. 12a. 

 

 

  

 

 

 

 

 The shape of each pulse, and hence its frequency spectrum, are essentially similar to those 
discussed above,24 but with much higher local values of c and hence max – see Fig. 10. Another 
difference is a much higher frequency of the pulses. Indeed, the fundamental Eq. (16) allows us to 
calculate the time distance between them, for the observer, as 
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24 Indeed, the period u is typically a few centimeters (see the numbers in Fig. 10), i.e. is much larger than the 
interval r’ ~ R/3 estimated above. Hence the synchrotron radiation results may be applied locally, to each 
electron beam’s bend. (In this context, a simple problem for the reader: use Eqs. (19) and (63) to explain the 
difference between shapes of the in-plane electric field pulses emitted at opposite magnetic poles of the wiggler, 
which is schematically shown in Fig. 12a.) 

Fig. 10.12. Waveforms of the radiation emitted by 
(a) a wiggler and (b) an undulator – schematically.
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Fig. 10.11. The generic structure of the wigglers, 
undulators, and free-electron lasers. (Adapted from 
http://www.xfel.eu/overview/how_does_it_work/. ) 
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where the first two relations are valid at u << R (the relation typically satisfied very well, see the 
numbers in Fig. 10), and the last two relations assume the ultra-relativistic limit. As a result, the 
radiation intensity, which is proportional to the number of poles, is much higher than that from the bend 
magnets – see Fig. 10 again.  

 The situation is different in undulators – similar structures with a smaller spatial period u, in 
which the electron’s velocity vector oscillates with an angular amplitude smaller than  –1. As a result, 
the radiation pulses overlap (Fig. 12b), and the radiation waveform is closer to the sinusoidal one. As a 
result, the radiation spectrum narrows to the central frequency25 
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For example, for the LSNL-II undulators with u = 2 cm, this formula predicts a radiation peak at 
phonon energy 0  4 keV, in reasonable agreement with the quantitative calculation results shown in 
Fig. 10.26 Due to the spectrum narrowing, the undulator’s radiation intensity is higher than that of 
wigglers using the same electron beam. 

 This spectrum-narrowing trend is brought to its logical conclusion in the so-called free-electron 
lasers27 whose basic structure is the same as that of wigglers and undulators (Fig. 11), but the radiation 
at each beam bend is so intense and narrow-focused that it affects the electron motion downstream of the 
radiation cone. As a result, the radiation spectrum narrows around the central frequency (74), and its 
power grows as a square of the number N of electrons in the structure (rather than proportionately to N  
in wigglers and undulators).  

 Finally, note that wigglers, undulators, and free-electron lasers may be also used at the end of a 
linear electron accelerator (such as SLAC) which, as was noted above, may provide extremely high 
values of , and hence radiation frequencies, due to the smallness of radiation energy losses at the 
electron acceleration stage. Very unfortunately, I do not have time/space to discuss the (very interesting) 
physics of these devices in more detail.28 

 

10.4. Bremsstrahlung and Coulomb losses 

 Surprisingly, a very similar mechanism of radiation by charged particles works on a much 
smaller spatial scale, namely at their scattering by charged particles of the propagation medium. This 

25 This important formula may be also derived in the following way. Due to the relativistic length contraction 
(9.20), the undulator structure period as perceived by beam electrons is ’ = u/, so the central frequency of the 
radiation in the reference frame moving with the electrons is 0’ = 2c/’ = 2c/u. For the lab-frame observer, 
this frequency is Doppler-upshifted in accordance with Eq. (9.44): 0 = 0’[(1 + )/(1 – )]1/2  20’, giving the 
same result as Eq. (74). 
26 Some of the difference is due to the fact that those plots show the spectral density of the number of photons n = 
E/ per second, which peaks at a frequency below that of the density of power, i.e. of the energy E per second. 
27 This name is somewhat misleading, because in contrast to the usual (“quantum”) lasers, a free-electron laser is 
essentially a classical device, and the dynamics of electrons in it is very similar to that in vacuum-tube microwave 
generators, such as the magnetrons briefly discussed in Sec. 9.6. 
28 The interested reader may be referred, for example, to either P. Luchini and H. Motz, Undulators and Free-
electron Lasers, Oxford U. Press, 1990; or E. Salin et al., The Physics of Free Electron Lasers, Springer, 2000. 
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effect, traditionally called by its German name bremsstrahlung (“brake radiation”), is responsible, in 
particular, for the continuous part of the frequency spectrum of the radiation produced in standard 
vacuum X-ray tubes, at the electron collisions with a metallic “anticathode”. 29 

 The bremsstrahlung in condensed matter is generally a rather complicated phenomenon because 
of the simultaneous involvement of many particles, and (frequently) some quantum electrodynamic 
effects. This is why I will give only a very brief glimpse at the theoretical description of this effect, for 
the simplest case when the scattering of incoming, relatively light charges (such as electrons, protons, -
particles, etc.) is produced by atomic nuclei, which remain virtually immobile during the scattering 
event (Fig. 13a). This is a reasonable approximation if the energy of incoming particles is not too low; 
otherwise, most scattering is produced by atomic electrons whose dynamics is substantially quantum – 
see below. 

 

 

 

 

 

 
To calculate the frequency spectrum of the radiation emitted during a single scattering event, it is 

convenient to use a byproduct of the last section’s analysis, namely Eq. (59) with the replacement (60):30 
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A typical duration  of a single scattering event we are discussing is of the order of   a0/c ~ (10-10 

m)/(3108 m/s) ~ 10-18 s in solids, and only an order of magnitude longer in gases at ambient conditions. 
This is why for most frequencies of interest, from zero all the way up to at least soft X-rays,31 we can 
use the so-called low-frequency approximation, taking the exponent in Eq. (75) for 1 through the whole 
collision event, i.e. the integration interval. This approximation immediately yields  
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29 Such X-ray radiation had been first observed experimentally (though not correctly interpreted) by N. Tesla in 
1887, i.e. before it was rediscovered and studied in detail by W. Röntgen. 
30 In publications on this topic (whose development peak was in the 1920s-1930s), the Gaussian units are more 
common, and the uppercase letter Z  is usually reserved for expressing charges as multiples of the fundamental 
charge e, rather than for the wave impedance. This is why, in order to avoid confusion and facilitate the 
comparison with other texts, in this section I (while still staying with the SI units used throughout my series) will 
use the fraction 1/0c, instead of its equivalent Z0, for the free-space wave impedance, and write the coefficients in 
a form that makes the transfer to the Gaussian units elementary: it is sufficient to replace all (qq’/40)SI with 
(qq’)Gaussian. In the (rare) cases when I spell out the charge values, I will use a different font: q  Ze, q’  Z’e. 
31 A more careful analysis shows that this approximation is actually quite reasonable up to much higher 
frequencies, of the order of 2/. 
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In the non-relativistic limit (ini, fin << 1), this formula is reduced to the following result: 
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(which may be derived from Eq. (8.27) as well), where q is the momentum transferred from the scattering 
center to the scattered charge (Fig. 13b):32 

     inifininifin ΔΔ βββupp  mcmcmq ,   (10.78) 

and   (not to be confused with the particle scattering angle ’ shown in Fig. 13!) is the angle between 
the vector q and the direction n toward the observer – at the collision moment.  

 The most important feature of the result (77)-(78) is the frequency-independent (“white”) 
spectrum of the radiation, very typical for any rapid pulses that may be approximated as delta functions 
of time.33 (Note, however, that Eq. (77) implies a fixed value of q, so the statistics of this parameter, to 
be discussed in a minute, may “color” the radiation.)  

 Note also the “doughnut-shaped” angular distribution of the radiation, typical for non-relativistic 
systems, with the symmetry axis directed along the momentum transfer vector q. In particular, this 
means that in typical cases when  ’  << 1, i.e. q << p, when the vector q is nearly normal to the vector 
pini (see, e.g., the example shown in Fig. 13b), the bremsstrahlung produces a significant radiation flow 
in the direction back to the particle source – the fact significant for the operation of X-ray tubes.  

 Now integrating Eq. (77) over all wave propagation angles, just as we did for the instant 
radiation power in Sec. 8.2, we get the following spectral density of the particle energy loss, 
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In most applications of the bremsstrahlung theory (as in most scattering problems34), the impact 
parameter b (Fig. 13a), and hence the scattering angle ’ and the transferred momentum q, have to be 

32 Please note the font-marked difference between this variable (q) and the particle’s electric charge (q). 
33 This is the basis, in particular, of the so-called High-Harmonic Generation (HHG) effect, discovered in 1977, 
which takes place at the irradiation of gases by intensive laser beams. The high electric field of the beam strips 
electrons from atoms, and accelerates them away from the remaining ions, just to slam them back into the same 
ions as the field’s polarity changes in time. The electrons change their momentum sharply during their 
recombination with the ions, resulting in bremsstrahlung-like emission of short radiation pulses. The spectrum of 
radiation from each such pulse obeys Eq. (77), but since the ionization/acceleration/recombination cycles repeat 
periodically with the frequency 0 of the laser field, the final spectrum consists of many equidistant lines, with 
frequencies n0. The classical theory of the bremsstrahlung does not give a cutoff max = nmax0 of the spectrum;  
such a limit is imposed by quantum mechanics: max  max + 3Ep, where the so-called ponderomotive energy Ep 

= (eE0/0)
2/4me is the average kinetic energy given to a free electron by the periodic electric field of the laser 

beam, with amplitude E0 – see, for example,  M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994). In practice, the 
HHG pulses may be shorter than 10-15 s, and nmax as high as ~100, enabling numerous applications of this effect. 
34 See, e.g., CM Sec. 3.5 and QM Sec. 3.3. 
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considered random. For elastic (ini = fin  ) Coulomb collisions we can use the so-called  Rutherford 
formula for the differential cross-section of scattering35 
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Here d = 2bdb is the elementary area of the sample cross-section (as visible from the direction of the 
incident particles) corresponding to their scattering into an elementary body angle36 
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Differentiating the geometric relation, which is evident from Fig. 13b, 
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we may represent Eq. (80) in a more convenient form 
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Now combining Eqs. (79) and (83), we get 
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This product is called the differential radiation cross-section. When integrated over all values of 
q (which is equivalent to averaging over all values of the impact parameter), it gives a convenient 
measure of the radiation intensity. Indeed, after the multiplication by the volume density n of 
independent scattering centers, such integral yields the particle’s energy loss per unit bandwidth of 
radiation per unit path length, –d2E/ddx. A minor problem here is that the integral of 1/q formally 
diverges at both infinite and zero values of q. However, these divergences are very weak (logarithmic), 
and the integral converges due to virtually any reason unaccounted for in our simple analysis. The 
standard (though slightly approximate) way to account for these effects is to write 
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and then plug, instead of qmax and qmin, the scales of the most important effects limiting the range of the 
transferred momentum’s magnitude. In the classical-mechanics analysis, according to Eq. (82), qmax = 2p 
 2mu. To estimate qmin, let us note that the very small momentum transfer takes place when the impact 
parameter b is very large, and hence the effective scattering time   ~ b/v is very long. Recalling the 
condition of the low-frequency approximation, we may associate qmin with   ~ 1/ and hence with b ~ 

35 See, e.g., CM Eq. (3.73) with  = qq’/40. In the form used in Eq. (80), the Rutherford formula is also valid 
for the small-angle scattering of relativistic particles, the criterion being  << 2/. 
36 Again, the angle ’ and the differential d’, describing the scattered particles (see Fig. 13) should not be 
confused with the parameters  and d describing the radiation emitted at the scattering event. 
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u  ~ v/. Since for the small scattering angles, q is close to the impulse F ~ (qq’/4π0b
2) of the 

Coulomb force, we get the estimate qmin ~ (qq’/4π0)/u2, and Eq. (85) should be used with 
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  This is Bohr’s formula for what is called the classical bremsstrahlung. We see that the low 
momentum cutoff indeed makes the spectrum slightly colored, with more energy going to lower 
frequencies. There is even a formal divergence at   0; however, this divergence is integrable, so it 
does not present a problem for finding the total energy radiative losses (-dE/dx) as an integral of Eq. (86) 
over all radiated frequencies . A larger problem for this procedure is the upper integration limit,   
, at which the integral diverges. This means that our approximate description, which considers the 
collision as an elastic process, becomes invalid and needs to be amended by taking into account the 
difference between the initial and final kinetic energies of the particle due to radiation of the energy 
quantum   of the emitted photon, so 
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As a result, taking into account that the minimum and maximum values of q correspond to, respectively, 
the parallel and antiparallel alignments of the vectors pini and pfin, we get 
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Plugged into Eq. (85), this expression yields the so-called Bethe-Heitler formula for quantum 
bremsstrahlung.37 Note that in this approach, qmax is close to that of the classical approximation, but qmin 

is of the order of /u, so 
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where Z and Z’ are the particles’ charges in the units of e, and   is the dimensionless fine structure 
(“Sommerfeld”) constant, 
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which is one of the basic notions of quantum mechanics.38 Due to the smallness of the constant, the ratio 
(89) is below 1 for most cases of practical interest, and since the integral of (84) over q is limited by the 
largest of all possible cutoffs qmin, it is the Bethe-Heitler formula that should be used. 

37 The modifications of this formula necessary for the relativistic description are surprisingly minor – see, e.g., 
Chapter 15 in J. Jackson, Classical Electrodynamics, 3rd ed., Wiley 1999. For even more detail, the standard 
reference monograph on bremsstrahlung is W. Heitler, The Quantum Theory of Radiation, 3rd ed., Oxford U. Press 
1954 (reprinted in 1984 and 2010 by Dover).  
38 See, e.g., QM Secs. 4.4, 6.3, 6.4, 9.3, 9.5, and 9.7.  
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 Now nothing prevents us from calculating the total radiative losses of energy per unit length: 
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where max = E is the maximum energy of the radiation quantum. By introducing the dimensionless 

integration variable   /E = 2/(mu2/2), this integral is reduced to a table one,39 and we get 
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 Following my usual style, at this point I would give you an estimate of the losses for a typical 
case; however, let me first discuss a parallel particle energy loss mechanism, the so-called Coulomb 
losses, due to the transfer of mechanical impulse from the scattered particle to the scattering centers. 
(This energy eventually goes into an increase of the thermal energy of the scattering medium, rather 
than to the electromagnetic radiation.)  

 Using Eqs. (9.139) for the electric field of a linearly moving charge q, we can readily find the 
momentum it transfers to the counterpart charge q’:40 
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Hence, the kinetic energy acquired by the scattering particle (and hence to the loss of the energy E of the 
incident particle) is  
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 Such elementary energy losses have to be summed up over all collisions, with random values of 
the impact parameter b. At the scattering center density n, the number of collisions per small path length 
dx per small range db is  dN = n 2πbdb dx, so 
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 Here, at the last step, the logarithmic integral over b was treated similarly to that over q in the 
bremsstrahlung theory. This approximation is adequate because the ratio bmax/bmin is much larger than 1. 
Indeed, bmin may be estimated from (p’)max ~ p = mu. For this value, Eq. (93) with q’ ~ q gives bmin ~ 
rc (see Eq. (8.41) and its discussion), which, for elementary particles, is of the order of 10-15m. On the 
other hand, for the most important case when the Coulomb energy absorbers are electrons (which, 
according to Eq. (94), are the most efficient ones, due to their very low mass m’), bmax may be estimated 
from the condition   = b/u ~ 1/min, where min ~ 1016 s-1 is the characteristic frequency of electron 

39 See, e.g., MA Eq. (6.14). 
40 According to Eq. (9.139), Ez =0, while the net impulse of the longitudinal force q’Ex is zero, so Eq. (93) gives 
the full momentum transfer. 
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transitions in atoms. (Quantum mechanics forbids such energy transfer at lower frequencies.) From here, 
we have the estimate bmax ~ u/min, so  
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
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b

b
B  ,     (10.96) 

for  ~ 1 and u ~ c  3108 m/s giving bmax ~ 310-8 m, so B ~ 109 (give or take a couple of orders of 
magnitude – this does not change the estimate lnB  20 too much). 41 

 Now we can compare the non-radiative Coulomb losses (95) with the radiative losses due to the 
bremsstrahlung, given by Eq. (92): 
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Since   ~ 10-2 << 1, for non-relativistic particles ( << 1) the bremsstrahlung losses of energy are much 
lower (that is why I did not want to rush with their estimates), and only for ultra-relativistic particles, the 
relation may be opposite. 

 According to Eqs. (95)-(96), for electron-electron scattering (q = q’ = –e, m = m’ = me),42 at the 
value n  = 61026 m-3 typical for air at ambient conditions, the characteristic length of energy loss,  
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E
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 ,     (10.98) 

for electrons with kinetic energy E = 6 keV is close to 210-4 m  0.2 mm. (This is why we need high 
vacuum in electron microscope columns and other vacuum electron devices.) Since lc  E2, more 
energetic particles penetrate to matter deeper, until the bremsstrahlung steps in, and limits this trend at 
very high energies. 

 

10.5. Density effects and the Cherenkov radiation 

 For condensed matter, the Coulomb loss estimate made in the last section is not quite suitable, 
because it is based on the upper cutoff bmax ~ u/min. For the example given above, the incoming 
electron velocity u is close to 5107 m/s, and for the typical value min ~ 1016 s-1 (min ~ 10 eV), this 
cutoff bmax is of the order of ~510-9 m = 5 nm. Even for air at ambient conditions, this is somewhat 
larger than the average distance (~ 2 nm) between the molecules, so at the high end of the impact 
parameter range, at b ~ bmax, the Coulomb loss events in adjacent molecules are not quite independent, 
and the theory needs some corrections. For condensed matter, with much higher particle density n, most 
collisions satisfy the following condition: 

41 A quantum analysis (carried out by Hans Bethe in 1940) replaces, in Eq. (95), lnB with ln(22mu2/) –  2, 
where  is the average frequency of the atomic quantum transitions weight by their oscillator strength. This 
refinement does not change the estimate given below. Note that both the classical and quantum formulas describe 
a fast increase (as 1/) of the energy loss rate (-dE/dx) at   1, and its slow increase (as ln) at    , so the 
losses have a minimum at (  – 1) ~ 1. 
42 Actually, the above analysis has neglected the change of momentum of the incident particle. This is legitimate 
at m’ << m, but for m = m’ the change approximately doubles the energy losses. Still, this does not change the 
order of magnitude of the estimate. 
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          13 nb ,      (10.99) 

and the treatment of Coulomb collisions as a set of independent events is inadequate. However, this 
condition enables the opposite approach: treating the medium as a continuum. In the time-domain 
formulation used in the previous sections of this chapter, this would be a very complex problem, 
because it would require an explicit description of the medium dynamics. Here the frequency-domain 
approach, based on the Fourier transform in both time and space, helps a lot, provided that the functions 
() and () are considered known – either calculated or taken from experiment. Let us have a good 
look at this approach because it gives some interesting (and practically important) results. 

 In Chapter 6, we have used the macroscopic Maxwell equations to derive Eqs. (6.118), which 
describe the time evolution of electrodynamic potentials in a linear medium with frequency-independent 
 and . Looking for all functions participating in Eqs. (6.118) in the plane-wave expansion form43 
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and requiring all coefficients at similar exponents to be balanced, we get their Fourier images: 44 
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As was discussed in Chapter 7, in such a Fourier form, the macroscopic Maxwell theory remains valid 
even for dispersive (but isotropic and linear!) media, so Eqs. (101) may be generalized as 
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 An evident advantage of these equations is that their formal solution is elementary: 
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so the “only” remaining things to do is, first, to calculate the Fourier transforms of the functions (r, t) 
and j(r, t), describing stand-alone charges and currents, using the transform reciprocal to Eq. (100), with 
one factor 1/2 per each scalar dimension,  
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and then to carry out the integration (100) of Eqs. (103).  

 For our problem of a single charge q uniformly moving through a medium with velocity u,  

                )(),(),(),( tqttqt ururjurr   ,            (10.105) 

43 All integrals here and below are in infinite limits unless specified otherwise. 
44 As was discussed in Sec. 7.2, the Ohmic conductivity of the medium (generally, also a function of frequency) 
may be readily incorporated into the dielectric permittivity: ()  ef() + i()/. In this section, I will assume 
that such incorporation, which is especially natural for high frequencies, has been performed, so the current 
density j(r, t) describes only stand-alone currents – for example, the current (105) of the incident particle.  
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the first task is easy:  
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Since the expressions (105) for (r, t) and j(r, t) differ only by a constant factor u, it is clear that the 
absolutely similar calculation for the current gives 

        )(
)2( 3, uk

u
jk  


q

.              (10.107) 

Let us summarize what we have got by now, by plugging Eqs. (106)-(107) into Eqs. (103): 

        








 ,223,223, )()(
)()(

)()(

)2(

1
,

)()()(

)(

)2(

1
kkk u

uku
A

uk











k

q

k

q
.(10.108) 

 Now, at the last calculation step, namely the integration (100), we are starting to pay a heavy 
price for the easiness of the first steps. This is why let us think well about what exactly we need from it. 
First of all, for the calculation of power losses, the electric field is more convenient to use than the 
potentials, so let us calculate the Fourier images of E and B. Plugging the expansion (100) into the basic  
relations (6.7), and again requiring the balance of exponent’s coefficients, we get 
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so Eqs. (100) and (108) yield 
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This formula may be rewritten as the temporal Fourier integral (51), with the following r-dependent 
complex amplitude: 
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 Let us calculate the Cartesian components of this partial Fourier image E, at a point separated 
by distance b from the particle’s trajectory. Selecting the coordinates and time origin as shown in Fig. 3, 
we have r = {0, b, 0} and u = {u, 0, 0}, so only Ex and Ey are different from zero. In particular, 
according to Eq. (111),  
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The delta function kills one integral (over kx) of the three, and we get 
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The internal integral (over kz) may be readily reduced to the table integral d/(1 + 2) in infinite limits, 
equal to ,45 and the result represented as 
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where the parameter  (generally, a complex function of frequency) is defined as46 
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The last integral may be expressed via the modified Bessel function of the second kind:47 
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A very similar calculation yields 
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 Now, instead of rushing to make the final integration (51) over  to calculate E(t), let us realize 
that what we need most is the total energy loss through the whole time of the particle’s passage over an 
elementary distance dx. According to Eq. (4.38), the energy loss per unit volume is 
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where j is the current of the bound charges in the medium, and should not be confused with the stand-
alone incident-particle current (105). This integral may be readily expressed via the partial Fourier 
image E and the similarly defined image j., just as it was done at the derivation of Eq. (54): 
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Let us incorporate the effective Ohmic conductivity ef() into the complex permittivity  () just as 
this was discussed in Sec. 7.2, using Eq. (7.46) to write 
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As a result, Eq. (119) yields 
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(The last step was possible due to the property (–) = *(), which was discussed in Sec. 7.2.) 

45 See, e.g., MA Eq. (6.5a). 
46 The frequency-dependent parameter ()  should not be confused with the dc low-frequency dielectric constant 
 (0)/0 that was discussed in Chapter 3.  
47 As a reminder, the main properties of these functions are listed in Sec. 2.7 – see, in particular, Fig. 2.22 and 
Eqs. (2.157)-(2.158).  

Function () 
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 Finally, just as in the last section, we have to average the energy loss rate over random values of 
the impact parameter b:    
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Due to the (weak) divergence of the functions K0() and K1() at   0, we have to cut the resulting 
integral over b at some bmin where our theory loses legitimacy. (On that limit, we are not doing much 
better than in the past section). Plugging in the calculated expressions (116) and (117) for the field 
components, swapping the integrals over  and b, and using the recurrence relations (2.142), which are 
valid for all Bessel functions, we finally get: 
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 This general result is valid for a linear medium with arbitrary dispersion relations () and (). 
(The last function participates in Eq. (123) only via Eq. (115) that defines the parameter .) To get more 
concrete results, some particular model of the medium should be used. Let us explore the Lorentz-
oscillator model that was discussed in Sec. 7.2, in its form (7.33) suitable for the transition to the 
quantum-mechanical description of atoms: 
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If the damping of the effective atomic oscillators is low, j  << j, as it typically is, and the particle’s 
speed u is much lower than the typical wave’s phase velocity v (and hence than c!), then for most 
frequencies Eq. (115) gives 
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i.e.    *  /u is virtually real. In this case, Eq. (123) may be reduced to Eq. (95) with 
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u
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123.1
max  .               (10.126) 

 The good news here is that both approaches (the microscopic analysis of Sec. 4 and the 
macroscopic analysis of this section) give essentially the same result. The same fact may be also 
perceived as bad news: the treatment of the medium as a continuum does not give any new results here. 
The situation somewhat changes at relativistic velocities, at which such treatment provides noticeable 
corrections (called density effects), in particular reducing the energy loss estimates.  

Let me, however, leave these details for special topic courses and focus on a much more 
important effect described by our formulas. Consider the dependence of the electric field components on 
the impact parameter b, i.e. on the closest distance between the particle’s trajectory and the field 
observation point. At b  , we can use, in Eqs. (116)-(117), the asymptotic formula (2.158), 
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to conclude that if 2 > 0, i.e. if   is real, the complex amplitudes E of both components Ex and Ey of 
the electric field decrease with b exponentially. However, let us consider what happens at frequencies 
where 2() < 0, 48 i.e.  

    00222

11

)(

1
)()( 


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cuv
.             (10.128) 

(This condition means that the particle’s velocity is larger than the phase velocity of the waves at this 
particular frequency.) In this case, the parameter () is purely imaginary, so the functions exp{b} in 
the asymptotes (127) of Eqs. (116)-(117) become just phase factors, and the field component amplitudes 
fall very slowly: 
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b
EE yx   .              (10.129) 

This means that the Poynting vector drops as 1/b, so its flux through a surface of a round cylinder of 
radius b, with its axis on the particle trajectory (i.e. the power flow from the particle), does not depend 
on b at all. This is an electromagnetic wave emission – the famous Cherenkov radiation.49 

 The direction n of its propagation may be readily found taking into account that at large 
distances from the particle’s trajectory, the emitted wave has to be locally planar and transverse (nE), 
so the so-called Cherenkov angle   between the vector n and the particle’s velocity u may be simply 
found from the ratio of the electric field components – see Fig. 14a: 
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 The ratio on the right-hand side of this relation may be calculated by plugging the asymptotic 
formula (127) into Eqs. (116) and (117) and calculating their ratio: 

48 Strictly speaking, the inequality 2() < 0 does not make sense for a medium with a complex product ()(), 
and hence complex 2(). However, in a typical medium where particles can propagate over substantial distances, 
the imaginary part of the product ()() does not vanish only in very limited frequency intervals, much more 
narrow than the intervals that we are discussing now – please have one more look at Fig. 7.5. 
49 This radiation was observed experimentally by Pavel Alekseevich Cherenkov (in older Western texts, 
“Čerenkov”) in 1934, with the observations explained by Ilya Mikhailovich Frank and Igor Yevgenyevich Tamm 
in 1937. Note, however, that the effect had been predicted theoretically as early as 1889 by the same Oliver 
Heaviside whose name was mentioned in this course so many times – and whose genius I believe is still 
underappreciated.  
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Fig. 10.14. (a) The Cherenkov radiation’s propagation angle , and (b) its interpretation. 
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so 
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 Remarkably, this direction does not depend on the emission time tret, so the radiation of 
frequency , at each instant, forms a hollow cone led by the particle. This simple result allows an 
evident interpretation (Fig. 14b): the cone’s interior is just the set of all observation points that have 
already been reached by the radiation, propagating with the speed v() < u, emitted from all previous 
points of the particle’s trajectory by the given time t. This phenomenon is an analog of the so-called 
Mach cone in fluid dynamics,50 besides that in the Cherenkov radiation, there is a separate cone for each 
frequency (of the range in which v() < u): the smaller is the ()() product, i.e. the higher is the 
wave velocity v() = 1/[()()]1/2, the broader is the cone, so the earlier the corresponding “shock 
wave” arrives to an observer. Please note that the Cherenkov radiation is a unique radiative 
phenomenon: it takes place even if a particle moves without acceleration, and (in agreement with our 
analysis in Sec. 2), is impossible in free space, where v() = c = const is larger than u for any particle. 

 The Cherenkov radiation’s intensity may be also readily found by plugging the asymptotic 
expression (127), with imaginary , into Eq. (123). The result is 

        
  

 
d

u

ve

dx

d

uv




















)(
2

22

1
4

ZE
.           (10.132) 

For non-relativistic particles (u << c), the Cherenkov radiation condition u > v() is fulfilled only in 
relatively narrow frequency intervals where the product ()() is very large (usually, due to optical 
resonance peaks of the electric permittivity – see Fig. 7.5 and its discussion). In this case, the emitted 
light consists of a few nearly-monochromatic components. On the contrary, if the condition u > v(), i.e. 
u2/()() > 1 is fulfilled in a broad frequency range, as it is for ultra-relativistic particles in 
condensed media, then the radiated power, according to Eq. (132), is dominated by higher frequencies of 
the range – hence the famous bluish color of the Cherenkov radiation glow from water-filled nuclear 
reactors– see Fig. 15. 

 

 

 

 

 

 

 

 

50 Its brief discussion may be found in CM Sec. 8.6. 

Cherenkov 
radiation: 
intensity 
 

Cherenkov 
radiation: 
angle 

Fig. 10.15. The Cherenkov 
radiation glow in the 
Advanced Test Reactor of the 
Idaho National Laboratory in 
Arco, ID. (Adapted from 
http://en.wikipedia.org/wiki/
Cherenkov_radiation under 
the Creative Commons CC-
BY-SA-2.0 license.) 
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 The Cherenkov radiation is broadly used in high-energy experiments for particle identification 
and speed measurement (since it is easy to pass the particles through layers of different densities and 
hence with different dielectric constants) – for example, in the so-called Ring Imaging Cherenkov 
(RICH) detectors that have been designed for the DELPHI experiment51 at the Large Electron-Positron 
Collider (LEP)  in CERN. 

 A little bit counter-intuitively, the formalism described in this section is also very useful for the 
description of an apparently rather different effect – the so-called transition radiation that takes place 
when a charged particle crosses a border between two media.52 The effect may be interpreted as the 
result of the time dependence of the electric dipole formed by the moving charge q and its mirror image 
q’ in the counterpart medium – see Fig. 16.  

 

 

 

 

 

 

 In the non-relativistic limit, this effect allows a straightforward description combining the 
electrostatics picture of Sec. 3.4 (see Fig. 3.9 and its discussion), and Eq. (8.27), corrected for the media 
polarization effects. However, if the particle’s velocity u is comparable with the phase velocity of waves 
in either medium, the adequate theory of the transition radiation becomes very close to that of the 
Cherenkov radiation.  

 In comparison with the Cherenkov radiation, the transition radiation is rather weak, and its 
practical use (mostly for the measurement of the Lorentz factor , to which the radiation intensity is 
nearly proportional) requires multi-layered stacks.53 In these systems, the radiation emitted at sequential 
borders may be coherent, and the system’s physics may become close to that of the free-electron lasers 
mentioned in Sec. 4. 

 

10.6. Radiation’s back-action 

 An attentive and critically-minded reader could notice that so far our treatment of charged 
particle dynamics has never been fully self-consistent. Indeed, in Sec. 9.6 we have analyzed particle’s 
motion in various external fields, ignoring those radiated by the particle itself, while in Sec. 8.2 and 
earlier in this chapter these fields have been calculated (admittedly, just for a few simple cases), but, 
again, their back-action on the emitting particle has been ignored. Only in very few cases we have taken 

51 See, e.g., http://delphiwww.cern.ch/offline/physics/delphi-detector.html. For an in-depth review of radiation 
detectors (including the Cherenkov ones), the reader may be referred, for example, to the classical text by G. F. 
Knoll, Radiation Detection and Measurement, 4th ed., Wiley, 2010, and a newer treatment by K. Kleinknecht, 
Detectors for Particle Radiation, Cambridge U. Press, 1999. 
52 The effect was predicted theoretically in 1946 by V. Ginzburg and I. Frank, and only later observed 
experimentally. 
53 See, e.g., Sec. 5.3 in K. Kleinknecht’s monograph cited above. 

q q'

Fig. 10.16. The transition radiation’s 
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the back effects of the radiation implicitly, via the energy conservation arguments. However, even in 
these cases, the near-field effects, such as the first term in Eq. (19), which affect the moving particle 
most, have been ignored.  

 At the same time, it is clear that in sharp contrast with electrostatics, the interaction of a moving 
point charge with its own field cannot be always ignored. As the simplest example, if an electron is 
made to fly through a resonant cavity, thus inducing electromagnetic oscillations in it, and then is forced 
(say, by an appropriate static field) to return into the cavity before the oscillations have decayed, its 
motion will certainly be affected by the oscillating fields, just as if they had been induced by another 
source. There is no conceptual problem with applying the Maxwell theory to such “field-particle 
rendezvous” effects; moreover, it is the basis of the engineering design of such vacuum electron devices 
as klystrons, magnetrons, and free-electron lasers.  

 A problem arises only when no clear “rendezvous” points are enforced by boundary conditions, 
so the most important self-field effects are at R  r – r’  0, the most evident example being the 
charged particle’s radiation into free space, described earlier in this chapter. We already know that such 
radiation takes away a part of the charge’s kinetic energy, i.e. has to cause its deceleration. One should 
wonder, however, whether such self-action effects might be described in a more direct, non-perturbative 
way.  

 As the first attempt, let us try a phenomenological approach based on the already derived 
formulas for the radiation power P. For the sake of simplicity, let us consider a non-relativistic point 
charge q in free space, so P is described by Eq. (8.27), with the electric dipole moment’s derivative over 
time equal to qu: 
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 The most naïve approach would be to write the equation of the particle’s motion in the form 

      selfext FFu m ,              (10.134) 

and try to calculate the radiation back-action force Fself by requiring its instant power, –Fselfu, to be 
equal to P.  However, this approach (say, for a 1D motion) would give a very unnatural result, 
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that might diverge at some points of the particle’s trajectory. This failure is clearly due to the retardation 
effect: as the reader may recall, Eq. (133) results from the analysis of radiation fields in the far-field 
zone, i.e. at large distances R from the particle, e.g., from the second term in Eq. (19), i.e. when the non-
radiative first term (which is much larger at small distances, R  0) is ignored.  

 Before exploring the effects of this term, let us, however, make one more attempt at Eq. (133), 
considering its average effect on some periodic motion of the particle. (A possible argument for this 
step is that at the periodic motion, the retardation effects should be averaged out – just as at the transfer 
from Eq. (8.27) to Eq. (8.28).) To calculate the average, let us write the identity 
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and carry out the integration on the right-hand side of Eq. (133) by parts over the motion period T: 
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On the other hand, the back-action force should give  
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These two averages coincide if54 
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 This is the so-called Abraham-Lorentz force of back-action. Before going after a more serious 
derivation of this formula, let us estimate its scale, representing Eq. (139) as 

            
0

2

3self 43

2
with  ,


 q

mc
m  uF  ,             (10.140)  

where the constant   evidently has the dimension of time. Recalling the definition (8.41) of the classical 
radius rc of the particle, Eq. (140) for   may be rewritten as 
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For the electron,   is of the order of 10-23 s, so the right-hand side of Eq. (140) is very small. This means 
that in most cases the Abrahams-Lorentz force is either negligible or leads to the same results as the 
perturbative treatments of energy loss we have used earlier in this chapter.  

 However, Eq. (140) brings some unpleasant surprises. For example, let us consider a 1D 
oscillator with frequency 0. For it, Eq. (134), with the back-action force given by Eq. (140), takes the 
form 
             xmxmxm    2

0 .              (10.142) 

 Looking for the solution of this linear differential equation in the usual exponential form, x(t)  
exp{t}, we get the following characteristic equation, 
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It may look like that for any “reasonable” value of 0 << 1/ ~ 1023 s-1, the right-hand side of this 
nonlinear algebraic equation may be treated as a perturbation. Indeed, looking for its solutions in the 

54 Just for the reader’s reference, this formula may be readily generalized to the relativistic case, in the 4-form: 
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 the so-called Abraham-Lorentz-Dirac force. 
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natural form  = i0 + ’, with ’ << 0, expanding both parts of Eq. (143) in the Taylor series in 
the small parameter ’, and keeping only the terms linear in ’, we get 

           
2

2
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 ' .              (10.144) 

This means that the energy of free oscillations decreases in time as exp{2’t} = exp{-0
2 t};  this is 

exactly the radiative damping analyzed earlier. However, Eq. (143) is deceiving; it has the third root 
corresponding to unphysical, exponentially growing (so-called run-away) solutions. It is easiest to see 
this for a free particle, with 0 = 0. Then Eq. (143) becomes very simple, 

             32   ,               (10.145) 

and it is easy to find all its three roots explicitly: 1 = 2 = 0 and 3 = 1/. While the first two roots 
correspond to the values  found earlier, the last one describes an exponential (and extremely rapid!) 
acceleration. 

 In order to remove this artifact, let us try to develop a self-consistent approach to the back-action 
effects, taking into account the near-field terms of particle fields. For that, we need to somehow 
overcome the divergence of Eqs. (10) and (19) at R  0. The most reasonable way to do this is to spread 
the particle’s charge over a ball of radius a, with a spherically symmetric (but not necessarily constant) 
density (r), and at the end of the calculations trace the limit a  0.55 Again sticking to the non-
relativistic case (so the magnetic component of the Lorentz force is not important), we should calculate 
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where the electric field is that of the charge itself, with the field of any elementary charge dq = (r)d3r 
described by Eq. (19). 

 To enable an analytical calculation of the force, we need to make the assumption a << rc, treat 
the ratio R/rc ~ a/rc as a small parameter, and expand the resulting right-hand side of Eq. (146) into the 
Taylor series in small R. This procedure yields 
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The distance R cancels only in the term with n = 1, 
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showing that we have recovered (now in an apparently legitimate fashion) Eq. (139) for the Abrahams-
Lorentz force. One could argue that in the limit a  0 the terms higher in R ~ a (with n > 1) could be 
ignored. However, we have to notice that the main contribution to the series (147) is not described by 
Eq. (148) for n = 1, but is given by the much larger term with n = 0: 

55 Note: this operation cannot be interpreted as describing a quantum spread due to the finite extent of the point 
particle’s wavefunction. In quantum mechanics, different parts of the wavefunction of the same charged particle 
do not interact with each other! 
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where U is the electrostatic energy (1.59) of the static charge’s self–interaction. This term may be 
interpreted as the inertial “force” 56 (–mefa) with the following effective electromagnetic mass: 
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which is a factor of 4/3 larger than it should be according to Einstein’s formula (9.73). This is the 
famous (or rather infamous :-) 4/3 problem that does not allow one to interpret the electron’s mass as 
that of its electric field. Some (admittedly, rather formal) resolution of this paradox is possible only in 
quantum electrodynamics with its renormalization techniques – beyond the framework of this course.  

 Note that all these issues are only important for motions with frequencies of the order of 1/ ~ 
1023 s–1, i.e. at energies as high as ~/ ~ 108 eV, while other quantum electrodynamics effects may be 
observed at much lower frequencies, starting from ~1010 s–1. Hence the 4/3 problem is by no means the 
only or the most significant motivation for the transfer from classical to quantum electrodynamics. 
However, the reader should not think that their time spent on this course has been lost: quantum 
electrodynamics it heavily based on classical electrodynamics, incorporates virtually all its results, and 
the basic transition between them is surprisingly straightforward.57 So, I look forward to welcoming the 
reader to the next, quantum-mechanics part of this series. 

 
10.6. Exercise problems 

 10.1. Derive Eqs. (10) from Eqs. (1) by a direct (but careful!) integration. 
  
 10.2. Derive the radiation-related parts of Eqs. (19)-(20) from the Liénard-Wiechert potentials 
(10) by direct differentiation. 
 
 10.3. A point charge q that was in a stationary position on a circle of radius 
R is carried over, along the circle, to the opposite position on the same diameter 
(see the figure on the right) as fast as only physically possible, and then is kept 
steady at this new position. Calculate and sketch the time dependence of its electric 
field E at the center of the circle. 
 
 10.4. Express the instantaneous power of electromagnetic radiation by a relativistic particle with 
electric charge q and rest mass m, moving with velocity u, via the Lorentz force F providing its 
acceleration. 
  
 10.5. A relativistic particle with rest mass m and electric charge q, initially at rest, is accelerated 
by a constant force F until it reaches a certain velocity u and then is left to move by inertia. Calculate 
the total energy radiated during the acceleration.  
 

56 See, e.g., CM Sec. 4.6. 
57 See, e.g., QM Secs. 9.1-9.4. 

Electro-
magnetic  

mass 

R
q
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 10.6. A charged relativistic particle with an initial momentum p0 flies ballistically from a free-
space region into a region of a constant, uniform electric field E, whose force is directed opposite to p0. 
Calculate the energy radiated by the particle during its motion in the field, assuming that it is small in 
comparison with the particle’s initial kinetic energy. 
 
 10.7. Calculate  

 (i) the instantaneous power, and  
 (ii)* the power spectrum  

of the radiation emitted, into a unit solid angle, by a relativistic particle with charge q, performing 1D 
harmonic oscillations with frequency 0 and displacement amplitude a. 

 
 10.8. Calculate and analyze the time dependence of the energy of a charged relativistic particle 
rotating in a constant and uniform magnetic field B and, as a result, emitting the synchrotron radiation. 
Qualitatively, what is the particle’s trajectory? 

 Hint: You may assume that the energy loss is relatively slow (–dE/dt << cE), but should spell 
out the condition of validity of this assumption. 
  
 10.9. Analyze the polarization of the synchrotron radiation propagating within the particle’s 
rotation plane. 
 

10.10. Analyze the polarization and the spectral contents of the synchrotron radiation 
propagating in the direction normal to the particle’s rotation plane. How do the results change if not one, 
but N > 1 similar particles move around the circle, at equal angular distances? 
  
  10.11.* The basic quantum theory of radiation shows that the electric dipole radiation by a 
particle is allowed only if the change of its angular momentum’s magnitude L at the transition is of the 
order of Planck’s constant .   

 (i) Estimate the change of L of an ultra-relativistic particle due to its emission of a typical single 
photon of the synchrotron radiation.  
 (ii) Do you think quantum mechanics forbid such radiation? If not, why? 
 
 10.12. A relativistic particle moves along the z-axis, with velocity uz, through an undulator – a 
system of permanent magnets providing (in the simplest model) a perpendicular magnetic field, whose 
distribution near the axis is sinusoidal:58  

zkBy 00 cosnB  . 

Assuming that the field is so weak that it causes negligible deviations of the particle’s trajectory from 
the straight line, calculate the angular distribution of the resulting radiation. What condition does the 
above assumption impose on the system’s parameters?  
  

58 As the Maxwell equation for H shows, this field distribution cannot be created in any non-zero volume of 
free space. However, it may be created on a line – e.g., on the particle’s trajectory.  
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 10.13. Discuss possible effects of the interference of the undulator radiation from different 
periods of its static field distribution. In particular, calculate the angular positions of the power density 
maxima.  
 
 10.14. An electron launched directly toward a plane surface of a perfect conductor is instantly 
absorbed by it at the impact. Calculate the angular distribution and the frequency spectrum of the 
electromagnetic waves radiated at this event, provided that the initial kinetic energy T of the particle is 
much larger than the conductor’s workfunction .59 Is your result valid near the conductor’s surface? 
 
 10.15. A relativistic particle, with a rest mass m and an electric charge q, flies ballistically, with 
velocity u, by an immobile point charge q’, with an impact parameter b so large that the deviations of its 
trajectory from the straight line are negligible. Calculate the total energy loss due to the electromagnetic 
radiation during the passage. Quantify the conditions of validity of your result. 

59 See Sec. 2.9, in particular Fig. 2.27a. 
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